58
Revision of collisional-radiative models and neutral-transport code for hydrogen and helium species Keiji Sawada Shinshu University, Japan Motoshi Goto NIFS, Japan 2011.8.10-12 IAEA

Revision of collisional-radiative models and neutral … of collisional-radiative models and neutral-transport code for hydrogen and helium species Keiji Sawada Shinshu University,

Embed Size (px)

Citation preview

  • Revision of collisional-radiative

    models and neutral-transport code for

    hydrogen and helium species

    Keiji Sawada Shinshu University, Japan Motoshi Goto NIFS, Japan

    2011.8.10-12 IAEA

  • Neutral-Transport Code

    Introduction : Our models

    Hydrogen atom

    Hydrogen molecule (H2)

    Helium atom (Dr. Goto)

    elastic collision

    CollisionalRadiative Models

  • Neutral-Transport Code for LHD (NIFS Japan) plasmas

    1.0x1019

    0.80.60.40.20.0

    H2 density [m-3

    ]

    7x1016

    6543210

    H density [m-3

    ]

    H2 H

    Main plasma Main plasma

    Trace H and H2(X,v=0-14)

  • H and He RF plasma

    Z

    Coil Coil

    Gas

    Pump

    AntennaPyrex glass 50 mm

    Matching box

    RF oscillatorf = 13.56 MHz

    1 m

    Baratrongauge

    RF

    800 13.56

    B 100

    Gas pressure

    0.144torr

    He flow

    H2 flow

  • (1) H and He Collional-Radiative Models

    Application of H and He models to the RF plasma

    Radiation trapping

    (2) H2 Collisional Radiative Model

    Revision to include rotational states

    in addition to electronic and vibrational states

    Calculation of effective reaction rate coefficient

    Determination of ne, Te, Tv, Trot

    Table of Contents

  • H Collisional-Radiative Model

    ieie

    pq pq

    ee nnpnnpqnpqAnpqFqnnpqCdt

    pdn)()()()},(),({)(),(

    )(2

    pq

    e

    pq pq

    pnqpAnpSqpCqpF )()],(})(),(),([{

    )(),( qnnpqF e

    )(),( pnnqpC e

    q

    i

    p

    de-excitation spontaneous transition

    Ionization

    3-body rec. radiative rec.

    ie nnp2)(

    )(),( qnpqA

    )()( pnnpS e

    iennp)(

    excitation

    inflow

    outflow

    PLASMA

    e H+ H

  • eei

    e

    e

    nn

    C

    Cnn

    n

    n

    n

    n

    n

    ndt

    d)1(

    )2,1(

    )3,1(

    .

    .

    ).2()2(

    )3()3(

    .

    .

    )2(

    )3(

    .

    .

    ....

    ....

    ....

    ....

    )2(

    )3(

    .

    .

    ieie

    pq pq

    ee nn)p(nn)p()q(n)}p,q(An)p,q(F{)q(nn)p,q(Cdt

    )p(dn

    2

    pq

    e

    pq pq

    pnqpAnpSqpCqpF )()],(})(),(),([{

    eei nnpRnnpRpn )1()()()( 10

    ee nnnnSdt

    dnH

    CRCR

    )1()1(

    Solving Rate equations

    0

    p>=2

    quasi-steady-

    state

    approximation

    (QSS)

    p=1

    Recombining

    component

    unknown

    SCR effective ionization rate coefficient

    CR effective recombination rate coefficient

    Ionizing

    component

  • Effective Ionization and Recombination Rate coefficients

    10-16

    10-15

    10-14

    10-13

    10-12

    10-11

    10-10

    10-9

    10-8

    10-7

    SC

    R an

    d

    CR

    (

    cm

    3/s

    )

    0.1 1 10 100 1000

    electron temperature (eV)

    SCR

    CR

    ne=108cm

    -3

    ne=1015

    cm-3

    ne=108cm

    -3

    1012

    cm-3

    1011

    cm-3

    1010

    cm-3

    109cm

    -3

    1013

    cm-3

    1014

    cm-3

    1015

    cm-3

    ee nnnnSdt

    dnH

    CRCR

    )1()1(

    SCR Effective Ionization Rate Coefficient

    CR Effective Recombination Rate Coefficient

  • Ionizing component Te=10eV ne=1010cm-3 n(1)=1cm-3

    10-12

    10-11

    10-10

    10-9

    10-8

    10-7

    10-6

    10-5

    10-4

    10-3

    n(p

    )/g

    (p)

    (

    cm

    -3)

    2 3 4 5 6 7 8 9

    102

    principal quantum number

    Ionizing plasma

    Te=10eV

    ne=108cm

    -3

    1010

    cm-3

    1012

    cm-3

    1014

    cm-3

    ex. 1.27E2 denotes 1.27x102 [1/(cm3s)]

    Griems

    boundary

    S(1)n(1)ne=6.92E1 [1/(cm3s)]

    blue : electron impact

    red : spontaneous transition

  • 10-14

    10-12

    10-10

    10-8

    10-6

    10-4

    n(p

    )/g

    (p)

    (

    cm

    -3)

    2 3 4 5 6 7 8 9

    102

    principal quantum number

    Recombining plasma

    Te=0.1eV

    ne=108cm

    -3

    1010

    cm-3

    1012

    cm-3

    1014

    cm-3

    Byrons

    boundary

    Griems

    boundary

    (1)ne+(1))nzne=4.69E-1 [1/(cm3s)]

    Recombining component

    Te=0.1eV ne=1012cm-3 ni=1cm-3

  • H and He RF plasma

    Z

    Coil Coil

    Gas

    Pump

    AntennaPyrex glass 50 mm

    Matching box

    RF oscillatorf = 13.56 MHz

    1 m

    Baratrongauge

    RF

    800 13.56

    B 100

    Gas pressure

    0.144torr

    He flow

    H2 flow

  • He and H emission line intensities

    Before Abel Inversion After Abel Inversion

  • 25

    20

    15

    10

    5

    0

    En

    erg

    y (

    eV

    )

    1S

    3S

    1P

    3P

    1D

    3D

    1F

    3F

    1

    2

    2

    43 3

    3 33

    22

    3

    4 4 4 4 4 44

    Singlet Triplet

    4

    He Collisional-Radiative Model : Determination of Te and ne Inclusion of radiation trapping

    QSS

    Fitting parameters

    M.GOTO, JQSRT, 76, 331 (2003)

    )(),( qnnpqF e

    )(),( pnnqpC e

    q

    i

    p

    de-excitation spontaneous transition

    Ionization

    3-body rec. radiative rec.

    ie nnp2)(

    )(),( qnpqA

    )()( pnnpS e

    iennp)(

    excitation

  • Convergent close-coupling method

    D.V. Fursa and I. Bray, Phys. Rev. A 52, 1279 (1995)

    I. Bray and D.V. Fursa, J. Phys. B 28, L197 (1995).

    D.V. Fursa and I. Bray, J. Phys. B 30, 757 (1997).

    R-Matrix with pseudostates method

    K. Bartschat, J. Phys. B 31, L469 (1998).

    He excitation cross sections

    M.GOTO

    Collisional-Radiative model for neutral helium in plasma revisited

    JQSRT, 76, 331 (2003)

  • He population : ne dependence

  • He population : Te dependence

  • He population

    Fitting parameters

    25

    20

    15

    10

    5

    0

    En

    erg

    y (

    eV

    )

    1S

    3S

    1P

    3P

    1D

    3D

    1F

    3F

    1

    2

    2

    43 3

    3 33

    22

    3

    4 4 4 4 4 44

    Singlet Triplet

    4

  • ne and Te

    Z

    Coil Coil

    Gas

    Pump

    AntennaPyrex glass 50 mm

    Matching box

    RF oscillatorf = 13.56 MHz

    1 m

    Baratrongauge

  • Estimation of molecular density from Flcher band spectra intensity

    Determined by Flcher Corona Model

    nH2 =7.61013 -3 , Tv=4200K, Trot=350K

    H2 dissociative

    excitation is negligible.

  • [1] R.K.Janev, D.Reiter, U.Samm,

    Collision Processes in Low-Temperature

    Hydrogen Plasmas,

    http://www.eirene.de/report_4105.pdf

    [2] W.T. Miles, R. Thompson, and A.E.S. Green,

    J. Appl. Phys. 43, 678 (1972).

    [3] G.R.Mhlmann and F.J.De Heer,

    Chem.Phys.Letters 43,240 (1976).

    X -> d electron impact excitation rate coefficient

  • H atom Balmer line intensity

    nH =1.01014 cm-3

    Determined from H

    intensity

  • Plasma

    Spectroscopic measurement

    Position B atom

    Ground state

    Excited state 1

    Excited state 2

    Electron

    impact

    Photo

    emission

    Emission line 1

    Emission line 2 absorbed

    Radiation Trapping and Spectroscopic measurement

    Photo

    absorption

    Position A atom

  • H Collisional-Radiative Model

    ieie

    pq pq

    ee nnpnnpqnpqAnpqFqnnpqCdt

    pdn)()()()},(),({)(),(

    )(2

    pq

    e

    pq pq

    pnqpAnpSqpCqpF )()],(})(),(),([{

    )(),( qnnpqF e

    )(),( pnnqpC e

    q

    i

    p

    de-excitation spontaneous transition

    Ionization

    3-body rec. radiative rec.

    ie nnp2)(

    )(),( qnpqA

    )()( pnnpS e

    iennp)(

    excitation

    inflow

    outflow

    PLASMA

    e H+ H

  • 32 )1(

    0

    1

    0

    0

    )1(

    1

    0

    0

    0

    )2,1(

    )3,1(

    .

    .

    ).2()2(

    )3()3(

    .

    .

    )2(

    )3(

    .

    .

    ....

    ....

    ....

    ....

    )2(

    )3(

    .

    .

    LnLnnn

    C

    Cnn

    n

    n

    n

    n

    n

    ndt

    deHeH

    e

    e

    Emission

    absorption

    Iterative calculation )1(})()(),1({ 11 ngpB p

    total

    p

    Lp

    Iterative CR model for radiation trapping

    0

  • H atom Balmer line intensity

    Determined by Flcher

    Corona Model

    nH2 =7.61013 -3

    Radiation trapping >> H2 dissociative excitation

    Determined by Iterative

    Collisional-Radiative

    Model

    nH =1.01014 -3

    TH = 0.7 eV

  • H atom Excitation

    Rate oefficient

    in CR MODEL

    and

    H. Anderson

    et al.

    R-Matrix

    J.Phys.B 33,

    1255 (2000).

    J.Phys.B 35,

    1613 (2002).

  • H atom Excitation

    Rate oefficient

    in CR MODEL

    and

    H. Anderson

    et al.

    R-Matrix

    J.Phys.B 33,

    1255 (2000).

    J.Phys.B 35,

    1613 (2002).

  • H. Anderson et al. R-Matrix

    J.Phys.B 33, 1255 (2000),

    J.Phys.B 35, 1613 (2002).

    0.5 eV < Te < 25 eV

    5s,5p,5d,5f,5g

    4s,4p,4d,4f

    3s,3p,3d

    2s,2p

    1s

  • H(n,l) model is necessary for low ne.

    H(n,l) model is necessary

    for radiation trapping (?)

    H (n,l) CR model

    Born approximation cross section

  • Other reactions for H atom Balmer line intensity diagnostics

    1.0x1019

    0.80.60.40.20.0

    H2 density [m-3

    ]

    7x1016

    6543210

    H density [m-3

    ]

    H2 H

    Main plasma Main plasma

    Trace H and H2(X,v=0-14)

  • 35

    30

    25

    20

    15

    10

    5

    0

    Po

    ten

    tia

    l E

    ne

    rgy

    (e

    V)

    43210Internuclear Distance ()

    H2

    X1

    g

    +

    b3

    u

    +

    X2

    g

    +

    H2+

    n=3

    n=4

    E,F1

    g

    +

    a3

    g

    +

    B1

    u

    +C

    1

    u

    c3

    u

    H++ H

    H + H

    H2 + e -> H + H(p) + e

    3

    4

    5

    6

    7

    8

    90.01

    2

    3

    4

    5

    6

    PR

    OD

    UC

    TIO

    N C

    RO

    SS

    SE

    CT

    ION

    (a

    02)

    102 3 4 5 6 7 8 9

    1002 3 4 5 6 7 8 9

    1000

    ENERGY (eV)

    Eth

    Hemission

    PRESENT E.R.Williams, J.V.Martinez, and G.H.Dunn, Bull. Am. Phys. Soc. 12, 233 (1967).

    D.A.Vroom and F.J.de Heer, J. Chem. Phys. 50, 580 (1969).

    L.D.Weaver and R.H.Hughes, J. Chem. Phys. 52, 2299 (1970).

    R.S.Freund, J.A.Schiovone, and D.F.Brader, J. Chem. Phys. 64, 1122 (1976).

    G.A.Khayarallah, Phys. Rev. A 13, 1989 (1976).

    C.Karolis and E.Harting, J.Phys. B 11, 357 (1976).

    G.R.Mohlmann, F.J. de Heer, and J.Los, Chem. Phys. 25, 103 (1977).

    J.M.Kurepa, M.D.Tasic, and Z.L.Petrovic (private communication).

    J.M.Ajello, D.E.Shemansky, B.Franklin, J.Watkins, S.Srivastava, G.K.James, W.T.Simms,

    C.W.Hord, W.Pryor, W.McClintock, V.Argabright, and D.Hall, Appl. Opt. 27, 890 (1988). (L )

    10-15

    10-14

    10-13

    10-12

    10-11

    10-10

    10-9

    10-8

    rate

    co

    eff

    icie

    nt

    (

    cm

    3/s

    )

    2 3 4 5 6 7 8 9

    102 3

    principal quantum number

    10eV

    100eV

    1000eV

    H(1) + e -> H(p) + e

    H2 + e ->

    H(1) + H(p) + e

  • eHH

    eei

    e

    e

    nn

    C

    Cnn

    C

    Cnn

    n

    n

    n

    n

    n

    ndt

    d

    H

    22

    )2(

    )3(

    .

    .

    )1(

    )2,1(

    )3,1(

    .

    .

    ).2()2(

    )3()3(

    .

    .

    )2(

    )3(

    .

    .

    ....

    ....

    ....

    ....

    )2(

    )3(

    .

    .

    2

    ieie

    pq pq

    ee nn)p(nn)p()q(n)}p,q(An)p,q(F{)q(nn)p,q(Cdt

    )p(dn

    2

    pq

    e

    pq pq

    pnqpAnpSqpCqpF )()],(})(),(),([{

    eHeei nnpRnnpRnnpRpn 2210 )()1()()()(

    Collisional-Radiative Model : Inclusion of H2 + e -> H + H(p) + e

    0

    p>=2

    (QSS) Ionizing

    component

    Recombining

    component

    unknown

    eHH nnpC 22 )(

    New term

    H2 + e -> H + H(p) + e

  • MAR (Molecular Assisted Recombination)

    22 HeMARHe2He1He0)()()()()( nnpRnnpRnnpRnnpRpn

    10-14

    10-13

    10-12

    10-11

    10-10

    10-9

    10-8

    10-7

    MA

    R r

    ate

    co

    eff

    icie

    nt

    (c

    m3/s

    )

    14121086420

    v

    H2(v) + e -> H- + H

    H- + H

    + -> H + H

    *

    H*-> H

    H2(v) + H+ -> H2

    + + H

    H2+ + e -> H + H

    *

    H*-> H

    Te 2eV

    ne 1014

    cm-3

    CX

    DA

    10-25

    10-24

    10-23

    10-22

    10-21

    10-20

    10-19

    10-18

    10-17

    H P

    op

    ula

    tio

    n C

    oe

    ffic

    ien

    t (

    cm

    3)

    1098765432

    Principal Quantum Number

    CX MAR(v=0)

    CX MAR(v=12)

    CX MAR(v=8)

    H+ + e -> H*

    H(1s) + e -> H* + e

    H2(v=0) + e -> H + H* + e

    T=2.0eV

    ne1014

    cm-3

    R0

    R1

    RCXMAR

    CX MAR(v=4)

    DA MAR(v=0)

    DA MAR(v=4)

    DA MAR(v=8)

    R2

    RDAMAR

  • 35

    30

    25

    20

    15

    10

    5

    0

    Po

    ten

    tial

    En

    erg

    y

    (eV

    )

    43210

    Internuclear Distance (A)

    H2

    X1

    g

    +

    b3

    u

    +

    X2

    g

    +

    H2+

    n=3

    n=4

    E,F1

    g

    +

    a3

    g

    +

    B1

    u

    +

    C1

    u

    c3

    u

    H++ H

    H + H

    H2+

  • (1) H and He Collional-Radiative Models

    Application of H and He models to the RF plasma

    Radiation trapping

    (2) H2 Collisional Radiative Model

    Revision to include rotational states

    in addition to electronic and vibrational states

    Calculation of effective reaction rate coefficient

    Determination of ne, Te, Tv, Trot

    Table of Contents

  • H2 Collisional-Radiative Model (ver.1)

    Calculation of effective reaction rate coefficients

    K. Sawada, K. Eriguchi, T. Fujimoto: Hydrogen-atom spectroscopy of the ionizing plasma containing molecular hydrogen: line intensities and ionization rate; J. Appl. Phys. 73, 8122-8125, 1993. K. Sawada, T. Fujimoto: Effective ionization and dissociation rate coefficients of molecular hydrogen in plasma; J. Appl. Phys. 78, 2913-2924, 1995.

    35

    30

    25

    20

    15

    10

    5

    0

    Po

    ten

    tial

    En

    erg

    y

    (eV

    )

    43210

    Internuclear Distance (A)

    H2X

    1

    g

    +

    b3

    u

    +

    X2

    g

    +

    H2+

    n=3

    n=4

    E,F1

    g

    +

    a3

    g

    +

    B1

    u

    +

    C1

    u

    c3

    u

    H++ H

    H + H

  • H2 Collisional-Radiative Model (ver.2)

    Vibrational levels for n H- + H

    H- + H

    + -> H + H

    *

    H*-> H

    H2(v) + H+ -> H2

    + + H

    H2+ + e -> H + H

    *

    H*-> H

    Te 2eV

    ne 1014

    cm-3

    CX

    DA

    MAR rate coefficient

    K. Sawada and T. Fujimoto: Effect of initial vibrational excitation of molecular hydrogen on molecular assisted recombination in divertor plasmas; Contrib. Plasma Phys. 42, 603-607, 2002.

  • Construction of Collisional-Radiative Model for H2

    15

    10

    5

    0

    En

    erg

    y (

    eV)

    E

    B

    H

    C

    B'D G J 3 3

    3 3 33

    22

    2

    1g

    +

    ns np np nd nd nd

    1u

    + 1u

    1g

    + 1g

    1g

    ns np np nd nd nd

    3

    3

    3 3 3 3

    2 2a c

    he

    d g i j

    Singlet TripletX

    1

    b2

    3g

    + 3u

    + 3u

    3g

    + 3g

    3g

    O B'' D' P R S fk p r s4

    4 4 4 4 4 44 4 4 4

    I

    H2+

    repulsive

    metastable(v=0)

    25

    20

    15

    10

    5

    0

    En

    erg

    y (e

    V)

    1S

    3S

    1P

    3P

    1D

    3D

    1F

    3F

    1

    2

    2

    43 3

    3 33

    22

    3

    4 4 4 4 4 44

    Singlet Triplet

    4

    H2 He atom

    Tv=4500K

    Trot=300K

    Determination of ne, Te, Tv, Trot

    from observed spectra

    Tv,Trot -> Population X1g+(v,J)

    Calculation of effective

    reaction rate coefficients

    J. Horacek et al., NIFS-DATA-73 (Feb. 2003)

  • H2 energy levels

    The Hydrogen Molecule

    Wavelength Tables of

    GERHARD HEINRICH DIEKE,

    Edited by H. M. Crosswhite,

    John Wiley & Sons Inc (1972)

    15

    10

    5

    0

    En

    erg

    y (

    eV)

    E

    B

    H

    C

    B'D G J 3 3

    3 3 33

    22

    2

    1g

    +

    ns np np nd nd nd

    1u

    + 1u

    1g

    + 1g

    1g

    ns np np nd nd nd

    3

    3

    3 3 3 3

    2 2a c

    he

    d g i j

    Singlet TripletX

    1

    b2

    3g

    + 3u

    + 3u

    3g

    + 3g

    3g

    O B'' D' P R S fk p r s4

    4 4 4 4 4 44 4 4 4

    I

    H2+

    repulsive

    metastable(v=0)

    Hunds case (b)

    (K) (N)

    2131 levels are included in H2

    CR model.

  • H2 Transition Probability Annie Hansson and James K.G. Watson, Journal of Molecular Spectroscopy 233 (2005) 169-173

    Hnl-London

    factor

    Transition moment

    25

    20

    15

    10

    5

    0

    Po

    ten

    tial en

    erg

    y (e

    V)

    6543210

    Internuclear distance ()

    B,1u

    + 3p

    G1g

    + 3d

    H1g

    + 3s

    i3g 3d

    I1g 3d

    h3g

    + 3s

    g3g

    + 3d

    e3u

    + 3p

    B1u

    + 2p

    d3u 3p

    X1g

    + 1s

    E1g

    + 2s

    c3u 2p

    C1u 2p

    a3g

    + 2s

    b3u

    + 2p

    D1u 3p

    j3g 3d

    J1g 3d

    Potential U(R) and Re(R)

    Calculated by

    Kolos and Wolniewicz et al.

    except for P, G, p, s, j states

  • H2 Transition moment

    Hunds case (b)

    HERZBERG, MOLECULAR SPECTRA

    and MOLECULAR STRUCTURE

    I. SPECTRA OF DIATOMIC

    MOLECULES

    Numerov method

    d

    X

  • H2 Transition Probability Hnl-London Factor James K.G. Watson, Journal of Molecular Spectroscopy 252 (2008) 5-8

    SJJ

  • 25

    20

    15

    10

    5

    0

    Po

    ten

    tial en

    erg

    y (e

    V)

    6543210

    Internuclear distance ()

    B,1u

    + 3p

    G1g

    + 3d

    H1g

    + 3s

    i3g 3d

    I1g 3d

    h3g

    + 3s

    g3g

    + 3d

    e3u

    + 3p

    B1u

    + 2p

    d3u 3p

    X1g

    + 1s

    E1g

    + 2s

    c3u 2p

    C1u 2p

    a3g

    + 2s

    b3u

    + 2p

    D1u 3p

    j3g 3d

    J1g 3d

    H2 Transition Probability to Continuum states

  • Transition Probability

    [1] S.A.Astashkevich et al. ,

    J. Quant. Spectrosc. Radiat. Transfer 56,

    725-751 (1996).

    e->a, d->a, i->c, j->c, I->C, J->C

    [2] S.A.Astashkevich and B.P.Lavrov,

    Lifetimes of the electronic-vibro-rotational

    states of hydrogen molecule (review),

    Optics and Spectroscopy 92,

    888-922, (2002).

    [3] S.A.Astashkevich and B.P.Lavrov,

    Tables of the lifetimes for excited

    electronic-vibro-rotational

    states of isotopomers of diatomic

    hydrogen, (2008).

    http://arxiv.org/html/0812.4573v1

    15

    10

    5

    0E

    nerg

    y (e

    V)

    E

    B

    H

    C

    B'D G J 3 3

    3 3 33

    22

    2

    1g

    +

    ns np np nd nd nd

    1u

    + 1u

    1g

    + 1g

    1g

    ns np np nd nd nd

    3

    3

    3 3 3 3

    2 2a c

    he

    d g i j

    Singlet TripletX

    1

    b2

    3g

    + 3u

    + 3u

    3g

    + 3g

    3g

    O B'' D' P R S fk p r s4

    4 4 4 4 4 44 4 4 4

    I

    H2+

    repulsive

    metastable(v=0)

  • H2 e -> a transition probability

    P-branch A[107 s-1] R-branch A[107 s-1]

    v' v'' N' Present ref.1 Present /ref.1 Present ref.1 Present /ref.1

    1 0 1 0.497 0.522 0.951 0.274 0.298 0.919

    2 0.431 0.447 0.964 0.339 0.372 0.910

    3 0.395 0.405 0.975 0.373 0.414 0.902

    4 0.370 0.374 0.989 0.396 0.441 0.898

    5 0.349 0.349 1.002 0.414 0.463 0.895

    2 0 1 0.107 0.124 0.863 0.063 0.086 0.737

    2 0.091 0.100 0.915 0.080 0.113 0.706

    3 0.082 0.085 0.965 0.090 0.132 0.682

    4 0.076 0.075 1.014 0.097 0.147 0.665

    5 0.071 0.067 1.056 0.104 0.159 0.654

    2 1 1 0.675 0.649 1.040 0.362 0.352 1.028

    2 0.591 0.565 1.046 0.443 0.432 1.026

    3 0.546 0.519 1.052 0.482 0.471 1.024

    4 0.515 0.485 1.061 0.507 0.495 1.025

    5 0.489 0.458 1.069 0.524 0.511 1.027

    3 0 1 0.023 0.032 0.721 0.014 0.016 0.892

    2 0.019 0.029 0.659 0.019 0.019 0.960

    3 0.017 0.029 0.590 0.021 0.020 1.052

    3 1 1 0.239 0.259 0.923 0.136 0.168 0.814

    2 0.205 0.213 0.965 0.171 0.218 0.784

    3 0.186 0.185 1.010 0.190 0.250 0.760

    4 0.173 0.164 1.054 0.205 0.278 0.736

    5 0.162 0.147 1.101 0.217 0.303 0.716

    3 2 1 0.647 0.564 1.148 0.336 0.291 1.153

    2 0.572 0.497 1.150 0.406 0.350 1.158

    3 0.533 0.462 1.155 0.436 0.373 1.167

    4 0.507 0.437 1.159 0.451 0.384 1.175

    5 0.485 0.416 1.165 0.460 0.387 1.187

  • P-branch A[107 s-1] R-branch A[107 s-1]

    v' v'' N' Present ref.1 Present /ref.1 Present ref.1 Present /ref.1

    0 0 1 0.841 0.289 2.909 1.724 0.542 3.180

    2 1.000 0.354 2.826 1.564 0.476 3.285

    3 1.063 0.385 2.761 1.501 0.443 3.388

    4 1.093 0.403 2.713 1.470 0.407 3.613

    5 1.109 0.415 2.672 1.454 0.407 3.572

    6 1.117 0.422 2.647 1.445 0.397 3.639

    2 1 1 0.091 0.035 2.592 0.211 0.065 3.269

    2 0.104 0.043 2.413 0.200 0.056 3.601

    3 0.106 0.046 2.275 0.200 0.053 3.795

    4 0.104 0.048 2.156 0.204 0.051 4.049

    5 0.102 0.049 2.066 0.210 0.049 4.259

    6 0.099 0.049 2.002 0.217 0.049 4.406

    2 2 1 0.626 0.199 3.146 1.230 0.346 3.555

    2 0.755 0.248 3.043 1.099 0.296 3.712

    3 0.811 0.272 2.983 1.038 0.269 3.857

    4 0.844 0.288 2.930 0.999 0.251 3.982

    5 0.865 0.298 2.902 0.971 0.238 4.081

    H2 d -> a transition probability

  • Transition Probability

    [1] S.A.Astashkevich et al. ,

    J. Quant. Spectrosc. Radiat. Transfer 56,

    725-751 (1996).

    e->a, d->a, i->c, j->c, I->C, J->C

    [2] S.A.Astashkevich and B.P.Lavrov,

    Lifetimes of the electronic-vibro-rotational

    states of hydrogen molecule (review),

    Optics and Spectroscopy 92,

    888-922, (2002).

    [3] S.A.Astashkevich and B.P.Lavrov,

    Tables of the lifetimes for excited

    electronic-vibro-rotational

    states of isotopomers of diatomic

    hydrogen, (2008).

    http://arxiv.org/html/0812.4573v1

    15

    10

    5

    0E

    nerg

    y (e

    V)

    E

    B

    H

    C

    B'D G J 3 3

    3 3 33

    22

    2

    1g

    +

    ns np np nd nd nd

    1u

    + 1u

    1g

    + 1g

    1g

    ns np np nd nd nd

    3

    3

    3 3 3 3

    2 2a c

    he

    d g i j

    Singlet TripletX

    1

    b2

    3g

    + 3u

    + 3u

    3g

    + 3g

    3g

    O B'' D' P R S fk p r s4

    4 4 4 4 4 44 4 4 4

    I

    H2+

    repulsive

    metastable(v=0)

  • H2(X) + e -> H2* + e

    15

    10

    5

    0

    En

    erg

    y (e

    V)

    E

    B

    H

    C

    B'D G J 3 3

    3 3 33

    22

    2

    1g

    +

    ns np np nd nd nd

    1u

    + 1u

    1g

    + 1g

    1g

    ns np np nd nd nd

    3

    3

    3 3 3 3

    2 2a c

    he

    d g i j

    Singlet TripletX

    1

    b2

    3g

    + 3u

    + 3u

    3g

    + 3g

    3g

    O B'' D' P R S fk p r s4

    4 4 4 4 4 44 4 4 4

    I

    H2+

    repulsive

    metastable(v=0)

    X -> B, B, B, C, D, D

    R.CELIBERTO, R.K.JANEV et al.

    Atomic Data and Nuclear Data Tables 77, 161-213 (2001).

  • H2(X) + e -> H2* + e

    W.T. Miles, R. Thompson, and A.E.S. Green,

    J. Appl. Phys. 43, 678 (1972).

    Born-Bethe approximation modified at low

    energies by phenomenological techniques

    All cross sections are given for n

  • [1] R.K.Janev, D.Reiter, U.Samm,

    Collision Processes in Low-Temperature

    Hydrogen Plasmas,

    http://www.eirene.de/report_4105.pdf

    [2] W.T. Miles, R. Thompson, and A.E.S. Green,

    J. Appl. Phys. 43, 678 (1972).

    [3] G.R.Mhlmann and F.J.De Heer,

    Chem.Phys.Letters 43,240 (1976).

    X -> d electron impact excitation rate coefficient

  • Vibrationally and rotationally resolved rate coefficient X -> d

    Proceedings of the Lebedev Physics Institute

    Academy of Sciences of the USSR Series,

    Editor N.G.Basov, Volume 179 Supplemental

    Volume 2,

    ELECTRON-EXCITED MOLECULES IN

    NONEQUILIBRIUM PLASMA

    Edited by N.N.Sobolev

    15

    10

    5

    0

    Po

    ten

    tia

    l e

    ne

    rg

    y (

    eV

    )

    3.02.52.01.51.00.50.0

    Internuclear distance (A)

    X1g

    +

    d3u

    +

    a3g

    +

    v=0

    v=13

    v '=0

    v '=3

    v ''=0

    v ''=5

    H2

    Adiabatic Approximation

  • Vibrationally and rotationally resolved rate coefficient

    X->

    15

    10

    5

    0

    En

    erg

    y (e

    V)

    E

    B

    H

    C

    B'D G J 3 3

    3 3 33

    22

    2

    1g

    +

    ns np np nd nd nd

    1u

    + 1u

    1g

    + 1g

    1g

    ns np np nd nd nd

    3

    3

    3 3 3 3

    2 2a c

    he

    d g i j

    Singlet TripletX

    1

    b2

    3g

    + 3u

    + 3u

    3g

    + 3g

    3g

    O B'' D' P R S fk p r s4

    4 4 4 4 4 44 4 4 4

    I

    H2+

    repulsive

    metastable(v=0)

    Optically allowed

    Rate coefficient Franck-Condon factor

    and

    Hnl-London Factor

    Optically forbidden

    Rate coefficient Franck-Condon factor

    and

    Evenly divided for J

  • a c : C. S. Sartori et al., Phys. Rev A. 58, 2857-2863 (1998).

    a - d, c - g, c h : R. Celiberto et al., J. Plasma Fusion Res. SERIES, Vol.7, 207-209 (2006).

    B I : R. Celiberto et al., Atomic Data and Nuclear Data Tables 77, 161-213 (2001).

    H2 electron impact excitation among excited levels

    He He

  • H2 CORRELATION DIAGRAM, T.E SHARP,

    ATOMIC DATA 2, 119-169(1971)

    H2 electron impact excitation among excited levels

    He data are used.

    Energy difference is

    taken into account.

    He data labeled by

    magnetic sublevel are

    necessary.

    We need H2 data.

  • H2(v,J=1) + H+ -> H + H2+

    H2(v,J) + e -> H + H-

    H2(v=0,J) + H2 -> H2(v=0,J) + H2

    H2 (X) -> cross sections

    J. Horacek et al.,

    Rate Coefficients for Low-Energy Electron

    Dissociative Attachment to Molecular Hydrogen,

    NIFS-DATA-73 (Feb. 2003)

    A.Ichihara et al.,

    J. Phys. B 33 4747-4758 (2000)

    S. Green et al., The Astrophysical Journal

    Supplement Series, 36, 483-496 (1978).

    H2(,v,J) + e -> H2(,v,J) + e

    under examination

  • X 1

    E 302

    B 334

    C- 424

    C+ 455

    H 471

    B* 485

    D- 513

    D+ 531

    G 543

    I- 578

    I+ 598

    J- 618

    J+ 633

    O 642

    B** 662

    D*- 677

    D*+ 693

    P 709

    R- 717

    R+ 726

    S- 728

    S+ 731

    a 734

    c- 882

    c+ 969

    h 1050

    e 1094

    d- 1244

    d+ 1373

    g 1439

    i- 1524

    i+ 1599

    j- 1662

    j+ 1725

    f 1785

    k- 1811

    k+ 1913

    r- 1931

    r+ 2000

    s- 2063

    s+ 2099

    H2 population

    15

    10

    5

    0

    En

    erg

    y (e

    V)

    E

    B

    H

    C

    B'D G J 3 3

    3 3 33

    22

    2

    1g

    +

    ns np np nd nd nd

    1u

    + 1u

    1g

    + 1g

    1g

    ns np np nd nd nd

    3

    3

    3 3 3 3

    2 2a c

    he

    d g i j

    Singlet TripletX

    1

    b2

    3g

    + 3u

    + 3u

    3g

    + 3g

    3g

    O B'' D' P R S fk p r s4

    4 4 4 4 4 44 4 4 4

    I

    H2+

    repulsive

    metastable(v=0)

    Te=3.0eV, ne=2x1010cm-3

    Tv=4200K, Trot=350K

  • Calculated spectra of H2

    Te=3.0eV, ne=2x1010cm-3, Tv=4200K, Trot=350K

  • H emission line intensity diagnostics

    (1) H(n,l) + e -> H(n,l) + e (n>5, Te>25eV)

    (2) H2(X,v,J) + e -> H + H(n,l) + e

    (3) H2+(X,v,J) + e -> H+ + H(n,l) + e

    (4) H3+ + e -> H2 + H

    -> H + H + H H(n,l) ?

    H2 CR model

    (5) H2(,v,J) + e -> H2(,v,J) + e

    (6) H2(X,v,J) + H+ -> H2

    + (X,v,J) + H

    (7) H2(,v,J) + H2 -> H2(,v,J) + H2

    (8) H2(,v,J) + e -> H2(,v,J) + e

    Summary : Help !