61
Keiji Sawada and Shinichi Hidaka Shinshu University, Japan Motoshi Goto NIFS, Japan 2016.3 IAEA Collisional-Radiative Model of Molecular Hydrogen

Collisional-Radiative Model of Molecular Hydrogen...H 2 and D 2 Collisional-Radiative Model (EvJ model) Electronic, vibrational, and rotational states are included. 15 10 5 0) E B

  • Upload
    others

  • View
    14

  • Download
    0

Embed Size (px)

Citation preview

  • Keiji Sawada and Shinichi Hidaka Shinshu University, Japan

    Motoshi Goto NIFS, Japan

    2016.3 IAEA

    Collisional-Radiative Model of

    Molecular Hydrogen

  • Neutral-Transport Code

    Introduction : Our models

    ・Hydrogen atom

    ・Hydrogen molecule

    (H2 and D2 )

    ・Helium atom (M. Goto) elastic collision

    Collisional–Radiative Models

  • H2 and D2 Collisional-Radiative Model (EvJ model)

    Electronic, vibrational, and rotational states are included.

    15

    10

    5

    0

    En

    erg

    y (

    eV)

    E

    B

    H

    C

    B'D G J 3 3

    3 3 33

    22

    2

    1g

    +

    ns np np nd nd nd

    1u

    + 1u

    1g

    + 1g

    1g

    ns np np nd nd nd

    3

    3

    3 3 3 3

    2 2a c

    he

    d g i j

    Singlet TripletX

    1

    b2

    3g

    + 3u

    + 3u

    3g

    + 3g

    3g

    O B'' D' P R S fk p r s4

    4 4 4 4 4 44 4 4 4

    I

    H2+

    repulsive

    metastable(v=0) Hund’s case (b)

    n < 7

    H2 4133 , D2 7817

    levels are included.

  • Spectroscopic diagnostic ne, Te , Tvib , Trot , nH2

    H2 and D2 Collisional-Radiative Model (EvJ model)

    Electronic, vibrational, and rotational states are included.

  • H2 Collisional-Radiative Model

    Electronic, vibrational, and rotational

    states are included.

    J. Horacek et al., NIFS-DATA-73 (Feb. 2003)

    10-15

    10-14

    10-13

    10-12

    10-11

    10-10

    10-9

    10-8

    10-7

    MA

    R

    RA

    TE

    CO

    EF

    FIC

    IEN

    T

    (cm

    3/s

    )

    14121086420

    v

    H2(v) + e -> H- + H

    H- + H

    + -> H + H

    *

    H*-> H

    H2(v) + H+ -> H2

    + + H

    H2+ + e -> H + H

    *

    H*-> H

    Te 2eV

    ne 1014

    cm-3

    CX

    DAEffective rate coefficients

    for neutral transport code

  • Table of Contents

    2. Test for the spectroscopic diagnostic using RF plasmas

    1. Introduction of CR model : H CR model

    : H2 (D2 ) CR model

    3. Calculation of effective rate coefficients

  • Collisional-Radiative Model of

    Atomic Hydrogen

  • H Collisional-Radiative Model

    ieie

    pq pq

    ee nnpnnpqnpqAnpqFqnnpqCdt

    pdn)()()()},(),({)(),(

    )(2

    pq

    e

    pq pq

    pnqpAnpSqpCqpF )()],(})(),(),([{

    )(),( qnnpqF e

    )(),( pnnqpC e

    q

    i

    p

    de-excitation spontaneous transition

    Ionization

    3-body rec. radiative rec.

    ie nnp2)(

    )(),( qnpqA

    )()( pnnpS e

    iennp)(

    excitation

    inflow

    outflow

    PLASMA

    e H+ H

  • eei

    e

    e

    nn

    C

    Cnn

    n

    n

    n

    n

    n

    ndt

    d)1(

    )2,1(

    )3,1(

    .

    .

    ).2()2(

    )3()3(

    .

    .

    )2(

    )3(

    .

    .

    ....

    ....

    ....

    ....

    )2(

    )3(

    .

    .

    ieie

    pq pq

    ee nn)p(nn)p()q(n)}p,q(An)p,q(F{)q(nn)p,q(Cdt

    )p(dn

    2

    pq

    e

    pq pq

    pnqpAnpSqpCqpF )()],(})(),(),([{

    eei nnpRnnpRpn )1()()()( 10

    ee nnnnSdt

    dnH

    CRCR

    )1()1(

    Solving Rate equations

    0

    p>=2

    quasi-steady-

    state

    approximation

    (QSS)

    p=1

    Recombining

    component

    unknown

    SCR effective ionization rate coefficient

    αCR effective recombination rate coefficient

    Ionizing

    component

  • Effective Ionization and Recombination Rate coefficients

    10-16

    10-15

    10-14

    10-13

    10-12

    10-11

    10-10

    10-9

    10-8

    10-7

    SC

    R an

    d

    CR

    (

    cm

    3/s

    )

    0.1 1 10 100 1000

    electron temperature (eV)

    SCR

    CR

    ne=108cm

    -3

    ne=1015

    cm-3

    ne=108cm

    -3

    1012

    cm-3

    1011

    cm-3

    1010

    cm-3

    109cm

    -3

    1013

    cm-3

    1014

    cm-3

    1015

    cm-3

    ee nnnnSdt

    dnH

    CRCR

    )1()1(

    SCR Effective Ionization Rate Coefficient

    αCR Effective Recombination Rate Coefficient

  • Ionizing component Te=10eV ne=1010cm-3

    n(1)=1cm-3

    10-12

    10-11

    10-10

    10-9

    10-8

    10-7

    10-6

    10-5

    10-4

    10-3

    n(p

    )/g

    (p)

    (

    cm

    -3)

    2 3 4 5 6 7 8 9

    102

    principal quantum number

    Ionizing plasma

    Te=10eV

    ne=108cm

    -3

    1010

    cm-3

    1012

    cm-3

    1014

    cm-3

    ex. “1.27E2” denotes 1.27x102 [1/(cm3・s)]

    Griem’s

    boundary

    S(1)n(1)ne=6.92E1 [1/(cm3・s)]

    blue : electron impact

    red : spontaneous transition

  • 10-14

    10-12

    10-10

    10-8

    10-6

    10-4

    n(p

    )/g

    (p)

    (

    cm

    -3)

    2 3 4 5 6 7 8 9

    102

    principal quantum number

    Recombining plasma

    Te=0.1eV

    ne=108cm

    -3

    1010

    cm-3

    1012

    cm-3

    1014

    cm-3

    Byron’s

    boundary

    Griem’s

    boundary

    ( (1)ne+β(1))nzne=4.69E-1 [1/(cm3・s)]

    Recombining component

    Te=0.1eV ne=1012cm-3 ni=1cm-3

  • Recombining RF plasma at Hokkaido University

    K. Sasaki and S. Nishiyama

    40x103

    30

    20

    10

    0

    Sign

    al (

    not c

    alib

    rate

    d)

    600550500450400350

    Wavelength (nm)

  • Collisional-Radiative Model of

    Molecular Hydrogen

  • Electronic states 18

    17

    16

    15

    14

    13

    12

    11

    Po

    ten

    tia

    l e

    ne

    rgy

    [e

    V]

    6543210

    Internuclear distance [Å]

    X1g

    + 1s

    O1g

    + 4s

    C1u 2p

    D1u 3p

    D'1u 4p

    V1u 4f

    GK1g

    + 3d

    I1g 3d

    R1g 4d

    J1g 3d

    P1g

    + 4d

    B1u

    + 2p

    B,1u

    + 3p

    B''1u

    + 4p

    EF1g

    + 2s

    H2+

    Singletb

    3u

    + 2p

    18

    17

    16

    15

    14

    13

    12

    11

    Po

    ten

    tial en

    erg

    y [

    eV

    ]

    6543210

    Internuclear distance [Å]

    b3u

    + 2p

    c3u 2p

    a3g

    +2s

    e3u

    + 3p

    h3g

    + 3s

    i3g 3d

    r3g 4d

    f3u

    + 4p

    g3g

    + 3d

    k3u 4p

    j3g 3d

    s3g 4d

    d3u 3p

    m3u

    + 4f

    4s3g

    +

    H2+

    X1g

    + 1s Triplet

    35

    30

    25

    20

    15

    10

    5

    0

    Po

    ten

    tia

    l E

    ne

    rgy

    (e

    V)

    43210Internuclear Distance (Å)

    H2

    X1

    g

    +

    b3

    u

    +

    X2

    g

    +

    H2+

    n=3

    n=4

    E,F1

    g

    +

    a3

    g

    +

    B1

    u

    +C

    1

    u

    c3

    u

    H++ H

    H + H

  • Transition Probability

    [1] S.A.Astashkevich et al. ,

    J. Quant. Spectrosc. Radiat. Transfer 56,

    725-751 (1996).

    e->a, d->a, i->c, j->c, I->C, J->C

    [2] S.A.Astashkevich and B.P.Lavrov,

    Lifetimes of the electronic-vibro-rotational

    states of hydrogen molecule (review),

    Optics and Spectroscopy 92,

    888-922, (2002).

    [3] S.A.Astashkevich and B.P.Lavrov,

    Tables of the lifetimes for excited

    electronic-vibro-rotational

    states of isotopomers of diatomic

    hydrogen, (2008).

    http://arxiv.org/html/0812.4573v1

    15

    10

    5

    0E

    nerg

    y (e

    V)

    E

    B

    H

    C

    B'D G J 3 3

    3 3 33

    22

    2

    1g

    +

    ns np np nd nd nd

    1u

    + 1u

    1g

    + 1g

    1g

    ns np np nd nd nd

    3

    3

    3 3 3 3

    2 2a c

    he

    d g i j

    Singlet TripletX

    1

    b2

    3g

    + 3u

    + 3u

    3g

    + 3g

    3g

    O B'' D' P R S fk p r s4

    4 4 4 4 4 44 4 4 4

    I

    H2+

    repulsive

    metastable(v=0)

  • H2 Transition Probability

    Hönl-London

    factor

    Transition moment

    25

    20

    15

    10

    5

    0

    Po

    ten

    tial en

    erg

    y (e

    V)

    6543210

    Internuclear distance (Å)

    B,1u

    + 3p

    G1g

    + 3d

    H1g

    + 3s

    i3g 3d

    I1g 3d

    h3g

    + 3s

    g3g

    + 3d

    e3u

    + 3p

    B1u

    + 2p

    d3u 3p

    X1g

    + 1s

    E1g

    + 2s

    c3u 2p

    C1u 2p

    a3g

    + 2s

    b3u

    + 2p

    D1u 3p

    j3g 3d

    J1g 3d

    Re(R)

    Kolos and Wolniewicz et al.

    SJ’J’’

    Annie Hansson and James

    K.G. Watson, Journal of

    Molecular Spectroscopy 233

    (2005) 169-173

  • 25

    20

    15

    10

    5

    0

    Po

    ten

    tial en

    erg

    y (e

    V)

    6543210

    Internuclear distance (Å)

    B,1u

    + 3p

    G1g

    + 3d

    H1g

    + 3s

    i3g 3d

    I1g 3d

    h3g

    + 3s

    g3g

    + 3d

    e3u

    + 3p

    B1u

    + 2p

    d3u 3p

    X1g

    + 1s

    E1g

    + 2s

    c3u 2p

    C1u 2p

    a3g

    + 2s

    b3u

    + 2p

    D1u 3p

    j3g 3d

    J1g 3d

    H2 Transition Probability to Continuum states

  • H2(X) + e → H2* + e

    W.T. Miles, R. Thompson, and A.E.S. Green,

    J. Appl. Phys. 43, 678 (1972).

    Born-Bethe approximation modified at low

    energies by phenomenological techniques

    All cross sections are given for n

  • H2(X1+g) + e → H2(d3u ) + e

    W.T. Miles, R. Thompson, and A.E.S Green, J. Appl. Phys.43, 678 (1972).

    R.K.Janev, D.Reiter, U. Samm, http:/www.Eirene.de/report_4105.pdf G.R.Möhlmann and F.J.De Heer, Chem.Phys.Letters 43,240 (1976).

    18

    17

    16

    15

    14

    13

    12

    11

    Po

    ten

    tial en

    erg

    y [

    eV

    ]

    6543210

    Internuclear distance [Å]

    b3u

    + 2p

    c3u 2p

    a3g

    +2s

    e3u

    + 3p

    h3g

    + 3s

    i3g 3d

    r3g 4d

    f3u

    + 4p

    g3g

    + 3d

    k3u 4p

    j3g 3d

    s3g 4d

    d3u 3p

    m3u

    + 4f

    4s3g

    +

    H2+

    X1g

    + 1s Triplet

    d3u − a

    3

    +g

  • a – c : C. S. Sartori et al., Phys. Rev A. 58, 2857-2863 (1998).

    a - d, c - g, c – h : R. Celiberto et al., J. Plasma Fusion Res. SERIES, Vol.7, 207-209 (2006).

    B – I : R. Celiberto et al., Atomic Data and Nuclear Data Tables 77, 161-213 (2001).

    H2 electron impact excitation among excited levels

    He He

  • T.E Sharp, Atomic Data and Nuclear Data Tables 2, 119-169 (1970) H2 electron impact

    excitation among

    excited levels

    He data are used.

    Energy difference is

    taken into account.

  • Vibrationally and rotationally resolved rate coefficient X -> B, C, d

    Proceedings of the Lebedev Physics Institute

    Academy of Sciences of the USSR Series,

    Editor N.G.Basov, Volume 179 Supplemental

    Volume 2,

    ELECTRON-EXCITED MOLECULES IN

    NONEQUILIBRIUM PLASMA

    Edited by N.N.Sobolev

    15

    10

    5

    0

    Po

    ten

    tia

    l e

    ne

    rg

    y (

    eV

    )

    3.02.52.01.51.00.50.0

    Internuclear distance (A)

    X1g

    +

    d3u

    +

    a3g

    +

    v=0

    v=13

    v '=0

    v '=3

    v ''=0

    v ''=5

    H2

    “Adiabatic Approximation”

  • Vibrationally and rotationally resolved rate coefficient

    15

    10

    5

    0

    En

    erg

    y (e

    V)

    E

    B

    H

    C

    B'D G J 3 3

    3 3 33

    22

    2

    1g

    +

    ns np np nd nd nd

    1u

    + 1u

    1g

    + 1g

    1g

    ns np np nd nd nd

    3

    3

    3 3 3 3

    2 2a c

    he

    d g i j

    Singlet TripletX

    1

    b2

    3g

    + 3u

    + 3u

    3g

    + 3g

    3g

    O B'' D' P R S fk p r s4

    4 4 4 4 4 44 4 4 4

    I

    H2+

    repulsive

    metastable(v=0)

    Rate coefficient ∝ Franck-Condon factor

    ΔN = 0 or ΔN = ±1

    “a” and “s” symmetry does not change

  • H2(X,v,J) + H+ → H + H2

    +

    H2(X,v,J) + e → H + H-

    H2(X,v=0,J) + H2 → H2(X,v=0,J’) + H2

    H2 (X,v,J) → cross sections

    J. Horacek et al.,

    Rate Coefficients for Low-Energy Electron

    Dissociative Attachment to Molecular

    Hydrogen, NIFS-DATA-73 (Feb. 2003).

    A.Ichihara et al.,

    J. Phys. B 33 4747-4758 (2000).

    H2(X,v,J) + e → H2(X,v’,J’) + e

    T.-G.LEE et al., The Astrophysical Journal ,

    689:1105-1111 (2008).

    J. Horacek et al., Nukleonika 48, 109-112 (2003).

    M.A.Morrison and B.C.Saha, Phys. Rev. A 34, 2786-2797 (1986).

  • Table of Contents

    2. Test for the spectroscopic diagnostic using RF plasmas

    1. Introduction of CR model : H CR model

    : H2 (D2 ) CR model

    3. Calculation of effective rate coefficients

  • D2 + He RF plasma (He 0.064 torr,D2 0.008 torr )

    RF power 500 W

    4

    3

    2

    1

    0

    Te (

    eV

    )

    2.52.01.51.00.50.0

    R (cm)

    109

    2

    4

    1010

    2

    4

    1011

    2

    4

    1012

    ne (c

    m-3)

    ne

    Te

  • He Collisional-Radiative Model

    Determination of Te , ne , n(21S) , n(23S) , I31p , I41P

    25

    20

    15

    10

    5

    0

    En

    erg

    y (

    eV

    )

    1S

    3S

    1P

    3P

    1D

    3D

    1F

    3F

    1

    2

    2

    43 3

    3 33

    22

    3

    4 4 4 4 4 44

    Singlet Triplet

    4Photon absorption is considerd

    4

    3

    2

    1

    0

    Te (

    eV

    )

    2.52.01.51.00.50.0

    R (cm)

    109

    2

    4

    1010

    2

    4

    1011

    2

    4

    1012

    ne (c

    m-3)

    ne

    Te

  • d3u − a

    3

    +g → Tvib = 3000 K , Trot = 500 K

    Experiment and Calculation

  • Experiment and Calculation

    Blue : calculation (Te, ne, Tvib, Trot are used) Red : experiment

  • Experiment and Calculation ( 458.5 nm - 469.6 nm )

  • Experiment and Calculation ( 599.1 nm – 617.9 nm )

  • Experiment and Calculation ( 762.9 nm – 800.2 nm )

  • Correction factors for excitation rate coefficients X →

    ug IX11 ug EX

    11

    D2 2.9eV

    n Singlet Triplet

    2 E 4.35E+00 a 3.95E-01

    3

    H 1.98E+01 h 7.91E-01

    B' 1.19E+01 e 3.95E-01

    D- 3.95E+00 d- 3.95E-01

    D+ 2.37E+01 d+ 3.95E-01

    G 2.77E+01 g 5.93E-01

    I- 2.57E+01 i- 4.74E-01

    I+ 2.57E+01 i+ 4.74E-01

    J- 7.91E+00 j- 2.77E-01

    J+ 7.91E+00 j+ 2.77E-01

    4

    O 1.19E+00 f 1.19E+00

    B" 5.93E+00 k- 1.19E+00

    D'- 3.95E+00 k+ 1.58E+00

    D'+ 3.10E+01 p 1.19E+00

    P 5.53E+01 r- 9.88E-01

    R- 1.58E+01 r+ 3.16E+00

    R+ 2.37E+01 s- 7.91E-01

    S- 3.95E-01 s+ 1.98E-01

    S+ 3.95E-01

  • Calculated emission intensity (for each upper level)

  • After correction

  • After correction ( 762.9 nm – 800.2 nm ) good !

    before

    after

  • After correction ( 458.5 nm – 469.6 nm ) ???

    before

    after

  • Correction of excitation rate coefficients

    and

    estimation of cross section

    ug EX11

    Cross section Rate coefficient

  • Estimated rate coefficient and cross section

    ug EX11

    Rate coefficient Cross section

  • Cross section fitting parameters

  • Singlet ??? H2(X) + e → H2* + e ?

    D2 2.9eV

    n Singlet Triplet

    2 E 4.35E+00 a 3.95E-01

    3

    H 1.98E+01 h 7.91E-01

    B' 1.19E+01 e 3.95E-01

    D- 3.95E+00 d- 3.95E-01

    D+ 2.37E+01 d+ 3.95E-01

    G 2.77E+01 g 5.93E-01

    I- 2.57E+01 i- 4.74E-01

    I+ 2.57E+01 i+ 4.74E-01

    J- 7.91E+00 j- 2.77E-01

    J+ 7.91E+00 j+ 2.77E-01

    4

    O 1.19E+00 f 1.19E+00

    B" 5.93E+00 k- 1.19E+00

    D'- 3.95E+00 k+ 1.58E+00

    D'+ 3.10E+01 p 1.19E+00

    P 5.53E+01 r- 9.88E-01

    R- 1.58E+01 r+ 3.16E+00

    R+ 2.37E+01 s- 7.91E-01

    S- 3.95E-01 s+ 1.98E-01

    S+ 3.95E-01

    After correction ( 458.5 nm – 469.6 nm ) ???

  • Singlet ???

    D2 2.9eV

    n Singlet Triplet

    2 E 4.35E+00 a 3.95E-01

    3

    H 1.98E+01 h 7.91E-01

    B' 1.19E+01 e 3.95E-01

    D- 3.95E+00 d- 3.95E-01

    D+ 2.37E+01 d+ 3.95E-01

    G 2.77E+01 g 5.93E-01

    I- 2.57E+01 i- 4.74E-01

    I+ 2.57E+01 i+ 4.74E-01

    J- 7.91E+00 j- 2.77E-01

    J+ 7.91E+00 j+ 2.77E-01

    4

    O 1.19E+00 f 1.19E+00

    B" 5.93E+00 k- 1.19E+00

    D'- 3.95E+00 k+ 1.58E+00

    D'+ 3.10E+01 p 1.19E+00

    P 5.53E+01 r- 9.88E-01

    R- 1.58E+01 r+ 3.16E+00

    R+ 2.37E+01 s- 7.91E-01

    S- 3.95E-01 s+ 1.98E-01

    S+ 3.95E-01

    After correction ( 458.5 nm – 469.6 nm ) ???

    (1) H2(X) + e → H2* + e ?

    (2) Electron impact excitation from metastable ?

    (3) Radiation rapping (Photon absorption) ?

    (4) H3+ + e -> H2* + H ?

    (5) Non Maxwell distribution of electron kinetic energy ?

  • Electron impact excitation from metastable ?

    15

    10

    5

    0

    En

    erg

    y (

    eV)

    E

    B

    H

    C

    B'D G J 3 3

    3 3 33

    22

    2

    1g

    +

    ns np np nd nd nd

    1u

    + 1u

    1g

    + 1g

    1g

    ns np np nd nd nd

    3

    3

    3 3 3 3

    2 2a c

    he

    d g i j

    Singlet TripletX

    1

    b2

    3g

    + 3u

    + 3u

    3g

    + 3g

    3g

    O B'' D' P R S fk p r s4

    4 4 4 4 4 44 4 4 4

    I

    H2+

    repulsive

    metastable(v=0)

    After correction ( 458.5 nm – 469.6 nm ) ???

    D2 2.9eV

    n Singlet Triplet

    2 E 4.35E+00 a 3.95E-01

    3

    H 1.98E+01 h 7.91E-01

    B' 1.19E+01 e 3.95E-01

    D- 3.95E+00 d- 3.95E-01

    D+ 2.37E+01 d+ 3.95E-01

    G 2.77E+01 g 5.93E-01

    I- 2.57E+01 i- 4.74E-01

    I+ 2.57E+01 i+ 4.74E-01

    J- 7.91E+00 j- 2.77E-01

    J+ 7.91E+00 j+ 2.77E-01

    4

    O 1.19E+00 f 1.19E+00

    B" 5.93E+00 k- 1.19E+00

    D'- 3.95E+00 k+ 1.58E+00

    D'+ 3.10E+01 p 1.19E+00

    P 5.53E+01 r- 9.88E-01

    R- 1.58E+01 r+ 3.16E+00

    R+ 2.37E+01 s- 7.91E-01

    S- 3.95E-01 s+ 1.98E-01

    S+ 3.95E-01

    He

  • Radiation rapping (Photon absorption) ?

    15

    10

    5

    0

    En

    erg

    y (

    eV)

    E

    B

    H

    C

    B'D G J 3 3

    3 3 33

    22

    2

    1g

    +

    ns np np nd nd nd

    1u

    + 1u

    1g

    + 1g

    1g

    ns np np nd nd nd

    3

    3

    3 3 3 3

    2 2a c

    he

    d g i j

    Singlet TripletX

    1

    b2

    3g

    + 3u

    + 3u

    3g

    + 3g

    3g

    O B'' D' P R S fk p r s4

    4 4 4 4 4 44 4 4 4

    I

    H2+

    repulsive

    metastable(v=0)

    After correction ( 458.5 nm – 469.6 nm ) ???

    D2 2.9eV

    n Singlet Triplet

    2 E 4.35E+00 a 3.95E-01

    3

    H 1.98E+01 h 7.91E-01

    B' 1.19E+01 e 3.95E-01

    D- 3.95E+00 d- 3.95E-01

    D+ 2.37E+01 d+ 3.95E-01

    G 2.77E+01 g 5.93E-01

    I- 2.57E+01 i- 4.74E-01

    I+ 2.57E+01 i+ 4.74E-01

    J- 7.91E+00 j- 2.77E-01

    J+ 7.91E+00 j+ 2.77E-01

    4

    O 1.19E+00 f 1.19E+00

    B" 5.93E+00 k- 1.19E+00

    D'- 3.95E+00 k+ 1.58E+00

    D'+ 3.10E+01 p 1.19E+00

    P 5.53E+01 r- 9.88E-01

    R- 1.58E+01 r+ 3.16E+00

    R+ 2.37E+01 s- 7.91E-01

    S- 3.95E-01 s+ 1.98E-01

    S+ 3.95E-01

    He

  • 15

    10

    5

    0

    En

    erg

    y (e

    V)

    E

    B

    H

    C

    B' D G J 3 33 3

    3 3

    22

    2

    1g

    +

    ns npnp ndndnd1u

    + 1u

    1g

    + 1g

    1g

    ns npnp ndndnd

    3 3

    3

    3 3 3

    2 2a c

    h

    ed g i j

    H2 Singlet

    H2 Triplet

    X1

    b2

    3g

    + 3u

    + 3u

    3g

    + 3g

    3g

    O B'' D' P R S fk p r s4 4 4 4 4 4

    44 4 4 4

    I

    H2+

    repulsive

    metastable(v=0)

    V4

    nf

    1u

    nf

    m4

    3u

    +

    H2(X) + H(1s)

    H3+

    3H(1s)

    2H(1s) + H+

    2H(1s) + H(2s)

    H3+ ?

    D2 2.9eV

    n Singlet Triplet

    2 E 4.35E+00 a 3.95E-01

    3

    H 1.98E+01 h 7.91E-01

    B' 1.19E+01 e 3.95E-01

    D- 3.95E+00 d- 3.95E-01

    D+ 2.37E+01 d+ 3.95E-01

    G 2.77E+01 g 5.93E-01

    I- 2.57E+01 i- 4.74E-01

    I+ 2.57E+01 i+ 4.74E-01

    J- 7.91E+00 j- 2.77E-01

    J+ 7.91E+00 j+ 2.77E-01

    4

    O 1.19E+00 f 1.19E+00

    B" 5.93E+00 k- 1.19E+00

    D'- 3.95E+00 k+ 1.58E+00

    D'+ 3.10E+01 p 1.19E+00

    P 5.53E+01 r- 9.88E-01

    R- 1.58E+01 r+ 3.16E+00

    R+ 2.37E+01 s- 7.91E-01

    S- 3.95E-01 s+ 1.98E-01

    S+ 3.95E-01

  • Singlet ? H2(X) + e → H2* + e

    D2 2.9eV

    n Singlet Triplet

    2 E 4.35E+00 a 3.95E-01

    3

    H 1.98E+01 h 7.91E-01

    B' 1.19E+01 e 3.95E-01

    D- 3.95E+00 d- 3.95E-01

    D+ 2.37E+01 d+ 3.95E-01

    G 2.77E+01 g 5.93E-01

    I- 2.57E+01 i- 4.74E-01

    I+ 2.57E+01 i+ 4.74E-01

    J- 7.91E+00 j- 2.77E-01

    J+ 7.91E+00 j+ 2.77E-01

    4

    O 1.19E+00 f 1.19E+00

    B" 5.93E+00 k- 1.19E+00

    D'- 3.95E+00 k+ 1.58E+00

    D'+ 3.10E+01 p 1.19E+00

    P 5.53E+01 r- 9.88E-01

    R- 1.58E+01 r+ 3.16E+00

    R+ 2.37E+01 s- 7.91E-01

    S- 3.95E-01 s+ 1.98E-01

    S+ 3.95E-01

    After correction ( 458.5 nm – 469.6 nm ) ???

  • Calculation of

    effective rate coefficient

    Rate coefficient correction off

    Rate coefficient correction on

    15

    10

    5

    0

    En

    erg

    y (

    eV)

    E

    B

    H

    C

    B'D G J 3 3

    3 3 33

    22

    2

    1g

    +

    ns np np nd nd nd

    1u

    + 1u

    1g

    + 1g

    1g

    ns np np nd nd nd

    3

    3

    3 3 3 3

    2 2a c

    he

    d g i j

    Singlet TripletX

    1

    b2

    3g

    + 3u

    + 3u

    3g

    + 3g

    3g

    O B'' D' P R S fk p r s4

    4 4 4 4 4 44 4 4 4

    I

    H2+

    repulsive

    metastable(v=0)

    Effect of the “correction” is small.

    In calculating effective rate coefficients

    the “correction” is not applied.

    H2(X) → H

  • Table of Contents

    2. Test for the spectroscopic diagnostic using RF plasmas

    1. Introduction of CR model : H CR model

    : H2 (D2 ) CR model

    3. Calculation of effective rate coefficients

    X(v,J) population (time dependent solution)

    Examples

  • Time dependent population X(v,J)

    Initial condition (at wall) 300 K equilibrium

    Plasma Te = 2 eV , ne =1016 cm-3

    TH2 = 300 K , nH2 =1015 cm-3

    v=0-4

    v=5-9

    v=10-14

    10-12

    10-10

    10-8

    10-6

    10-4

    10-2

    Po

    pu

    lati

    on

    / (

    Sta

    tisti

    cal

    weig

    ht)

    (

    m-3

    )

    10-9

    2 4 6 8

    10-8

    2 4 6 8

    10-7

    2 4 6 8

    10-6

    Time (sec)

    10-6

    10-5

    10-4

    10-3

    Distance from wall (m)

    v=0 v=1 v=2 v=3 v=4

    10-12

    10-10

    10-8

    10-6

    10-4

    10-2

    Po

    pu

    lati

    on

    / (

    Sta

    tisti

    cal

    weig

    ht)

    (

    m-3

    )

    10-9

    2 4 6 8

    10-8

    2 4 6 8

    10-7

    2 4 6 8

    10-6

    Time (sec)

    10-6

    10-5

    10-4

    10-3

    Distance from wall (m)

    v=5 v=6 v=7 v=8 v=9

    10-12

    10-10

    10-8

    10-6

    10-4

    10-2

    Po

    pu

    lati

    on

    / S

    tati

    sti

    cal

    weig

    ht

    (m

    -3)

    10-9

    2 4 6 8

    10-8

    2 4 6 8

    10-7

    2 4 6 8

    10-6

    Time (sec)

    10-6

    10-5

    10-4

    10-3

    Distance from wall (m)

    v=10 v=11 v=12 v=13 v=14

  • Time dependent calculation Plasma

    Te = 2 eV

    ne =1016 cm-3

    TH2 = 300 K

    nH2 =1015 cm-3

    time = 0 sec

    10-12

    10-10

    10-8

    10-6

    10-4

    10-2

    Po

    pu

    lati

    on

    / (

    Sta

    tis

    tic

    al

    we

    igh

    t)

    (

    m-3

    )

    10-9

    2 4 6 8

    10-8

    2 4 6 8

    10-7

    2 4 6 8

    10-6

    Time (sec)

    10-6

    10-5

    10-4

    10-3

    Distance from wall (m)

    v=0 v=1 v=2 v=3 v=4

    10-36

    10

    -32 10

    -28 10

    -24 10

    -20 10

    -16 10

    -12 10

    -8 10

    -4 100

    H2(X

    ,v,J

    ) p

    op

    ula

    tio

    n (m

    -3)

    43210

    Level energy (eV)

    v=0 v=1 v=2 v=3 v=4

    t=0 sec

    Initial condition (at wall) 300 K equilibrium

  • Time dependent calculation Plasma

    Te = 2 eV

    ne =1016 cm-3

    TH2 = 300 K

    nH2 =1015 cm-3

    time = 10-9 sec

    10-12

    10-10

    10-8

    10-6

    10-4

    10-2

    Po

    pu

    lati

    on

    / (

    Sta

    tis

    tic

    al

    we

    igh

    t)

    (

    m-3

    )

    10-9

    2 4 6 8

    10-8

    2 4 6 8

    10-7

    2 4 6 8

    10-6

    Time (sec)

    10-6

    10-5

    10-4

    10-3

    Distance from wall (m)

    v=0 v=1 v=2 v=3 v=4

    10-36

    10

    -32 10

    -28 10

    -24 10

    -20 10

    -16 10

    -12 10

    -8 10

    -4 100

    H2(X

    ,v,J

    ) p

    op

    ula

    tio

    n

    (m-3

    )

    43210

    Level energy (eV)

    t=1.0x10-9

    sec

    v=0 v=1 v=2 v=3 v=4 v=5 v=6 v=7 v=8 v=9 v=10 v=11 v=12 v=13 v=14

  • Time dependent calculation Plasma

    Te = 2 eV

    ne =1016 cm-3

    TH2 = 300 K

    nH2 =1015 cm-3

    time = 10-8 sec

    10-12

    10-10

    10-8

    10-6

    10-4

    10-2

    Po

    pu

    lati

    on

    / (

    Sta

    tis

    tic

    al

    we

    igh

    t)

    (

    m-3

    )

    10-9

    2 4 6 8

    10-8

    2 4 6 8

    10-7

    2 4 6 8

    10-6

    Time (sec)

    10-6

    10-5

    10-4

    10-3

    Distance from wall (m)

    v=0 v=1 v=2 v=3 v=4

    10-36

    10-33

    10-30

    10-27

    10-24

    10-21

    10-18

    10-15

    10-12

    10-9 10

    -6 10

    -3 100

    H2(X

    ,v,J

    ) p

    op

    ula

    tio

    n

    (m-3

    )

    4321

    Level energy (eV)

    t=1.0x10-8

    sec

    v=0 v=1 v=2 v=3 v=4

  • Table of Contents

    2. Test for the spectroscopic diagnostic using RF plasmas

    1. Introduction of CR model : H CR model

    : H2 (D2 ) CR model

    3. Calculation of effective rate coefficients

    Time dependent solution

    Examples Fixed Trot is used.

  • 10-13

    10-12

    10-11

    10-10

    10-9

    10-8

    Ra

    te c

    oe

    ffic

    ien

    t

    (cm

    3/s

    )

    1012

    1013

    1014

    1015

    1016

    1017

    Electron Density (cm-3

    )

    from H2(X,v=0)

    H2(X,v=0) depletion

    v=1

    v=14

    v=2

    v=13Te = 2 eV

    Trot = 300 K

    v=3

    v=4

    H2(X,v) + e → H2(X,v’) + e : v=0 →

    Trot = 300 K , Te =2 eV

  • H2(X,v) → H : v=0

    Trot = 300 K , Te =2 eV

  • H2(X,v) → H : v=0

    Trot = 300 K , Te =10 eV

  • H2(X,v) → H : v=4

    Trot = 300 K , Te =2 eV

  • H2(X,v) → H+ : v=0

    Trot = 300 K , Te =2 eV

  • H2(X,v) → H+ : v=4

    Trot = 300 K , Te =2 eV

  • Summary List of what we did

    2. Test of the models using RF plasmas

    3. Calculation of effective rate coefficients

    1. Construction of

    H2, D2 EvJ collisional-radiative models