160
Resistive switching materials and devices for future memory applications Dirk Wouters Principal Scientist Memory Tutorial SISC San Diego, 5 December 2012 43 rd IEEE Semiconductor Interface Specialists Conference IMEC 2012

Resistive switching devices and materials for future memory - SISC

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

© IMEC 2010 / CONFIDENTIAL

Resistive switching materials and devices for future memory applications

Dirk Wouters

Principal Scientist Memory

Tutorial SISC San Diego, 5 December 2012

43rd IEEE Semiconductor

Interface Specialists

Conference

IMEC 2012

© IMEC 2010 / CONFIDENTIAL

Outline

D.WOUTERS SISC 2012 2

RRAM : Classification

Need for new Non Volatile Memory?

RRAM : Memory Structure

Resistive Switching Behavior

RRAM: Status

Materials

Device

IMEC 2012

© IMEC 2010 / CONFIDENTIAL

Outline

D.WOUTERS SISC 2012 3

RRAM : Classification

Need for new Non Volatile Memory?

RRAM : Memory Structure

Resistive Switching Behavior

RRAM: Status

Materials

Device

IMEC 2012

© IMEC 2010 / CONFIDENTIAL

Need for new Non-Volatile Memory ?

▸ Growing NVM market

▸ Flash scaling issues

▸ New opportunities?

D.WOUTERS SISC 2012 4 IMEC 2012

© IMEC 2010 / CONFIDENTIAL D.WOUTERS SISC 2012

NVM market is growing exponentially

5 IMEC 2012

© IMEC 2010 / CONFIDENTIAL D.WOUTERS SISC 2012

Smartphones Tablets

PC SSD Enterprise SSD

NVM Growth drivers

Slide courtesy G.Jurczak, imec 6 IMEC 2012

© IMEC 2010 / CONFIDENTIAL

Main Non-Volatile Memory = FLASH

▸ Operation based on floating gate transistor

- threshold voltage is shifted by putting (PROGRAM) or

removing (ERASE) charge from the floating gate (by hot

carrier injection or tunneling)

- READ-OUT by selecting element and current sensing

- mainstream nonvolatile memory technology of today due to

high CMOS compatibility and high quality of silicon dioxide

▸ NOR and NAND type

D.WOUTERS SISC 2012

S D

Gate

Floating Gate

VG

ID

ID

OFF ON

VT1 < VGprobe < VT2 VG

ID

ID

OFF ON

VT1 < VGprobe < VT2

7 IMEC 2012

© IMEC 2010 / CONFIDENTIAL 8

Cell configurations : NOR

▸ NOR : ½ drain (BL) contact/cell

- fast random access, fast programming, robust code (Cellular)

- Larger cell size ~10F2

Source

Bit line

Word line

Source

Bit line

Word line

basic layout y-pitch cross-sectionx

y

x-pitch cross-sectionarray equivalent circuit

Source

Bit line

Word line

Source

Bit line

Word line

basic layout y-pitch cross-sectionx

y

x

y

x-pitch cross-sectionarray equivalent circuit

WL1

BL

Vpp=12V

5V

WL2 0

D.WOUTERS SISC 2012 IMEC 2012

© IMEC 2010 / CONFIDENTIAL 9

Cell configurations : NAND

▸ NAND : contactless:

- slow access (but fast burst read), low program power data

- Smallest cell size : ~4F2

Source

Bit line

W .L.

Bit line sel.

B it line sel.

Source

Bit line

W .L.

Bit line sel.

B it line sel.

basic layout y-pitch cross-sectionx

y

x-pitch cross-sectionarray equivalent circuitSource

Bit line

W .L.

Bit line sel.

B it line sel.

Source

Bit line

W .L.

Bit line sel.

B it line sel.

basic layout y-pitch cross-sectionx

y

x

y

x-pitch cross-sectionarray equivalent circuit

WL

BL

Vselect

Vpp= 18V

0

0

D.WOUTERS SISC 2012 IMEC 2012

© IMEC 2010 / CONFIDENTIAL

NAND = minimal cell size memory !!!

NAND Flash is TRUE Cross-Point (XP)

memory !

D.WOUTERS SISC 2012 10

Cell size = 4F2

IMEC 2012

© IMEC 2010 / CONFIDENTIAL 11

Success of FLASH = small 1T cell &

scalability

From IMST Whitebook 2007

D.WOUTERS SISC 2012 IMEC 2012

© IMEC 2010 / CONFIDENTIAL

FLASH scaling trends and limits

10

100 H

alf pitch

[nm

]

128Gb 64Gb 32Gb 16Gb 8Gb 4Gb

20nm

D.WOUTERS SISC 2012 Slide courtesy G.Jurczak, imec

SLC

MLC

TLC

12 IMEC 2012

© IMEC 2010 / CONFIDENTIAL

NAND Flash scaling issues

D.WOUTERS SISC 2012 13

Scaling limitations

▸ Reduced FG coupling of scaled device

▸ Limit of tunnel ox scaling - No further voltage scaling

▸ Electrostatic interaction between

neighboring cells

▸ Dense patterning requirements

ahead of advanced litho - Dual patterning developments

IMEC 2012

© IMEC 2010 / CONFIDENTIAL

Charge = quantized !

D.WOUTERS SISC 2012 14

Flash scalability based on charge density <> total charge DRAM

Hower, ultimately charge is made up from electrons...

▸ At 20nm, less than 100 electrons are present on the FG for Vt=1

▸ If 20% charge loss is the spec, we talk about ~10 electrons…

▸ for 10 yrs retention, Ileak<<1e/yr…

K.Prall, NVSMW, 2007

IMEC 2012

Scaling advantage of new non-charge based memories concepts ?

© IMEC 2010 / CONFIDENTIAL

Flash explores other scaling routes

▸ Multi-level programming

- 2-3-4 bits/cell

- Currently implemented

▸ Planar 3D Flash

- Effective cell area : divided by number of layers!

- Cost-effective integration to stack bits vertically

- Different 3D concepts (BICS, TCAT,VSAT )

- Not (yet) in production

D.WOUTERS SISC 2012 15 Bit Cost Scaling FLASH, Toshiba IEDM 2007 IMEC 2012

© IMEC 2010 / CONFIDENTIAL

Flash BIT scaling

D.WOUTERS SISC 2012 16

Bit S

ize (

mm

2)

Year of Production

1

0.1

0.01

0.001

0.0001

NAND

6T-SRAM

DRAM

2b MLC-NAND

2002 2004 2006 2008 2010 2012 2014 2016

3D-NAND

Same bit size for

larger node

After H.E. Maes and J. Van Houdt,

keynote @IEEE NVSMW 2003

Any new technology competing with Flash should enable all scaling routes

right metric

= F2/bit

IMEC 2012

© IMEC 2010 / CONFIDENTIAL

Performance degradation of scaled Flash

NA

ND

Perf

orm

ance

& R

elia

bili

ty

time

Consumer

electronics

Mobile

Storage

Consumer

SSD

Enterprise

storage

Perf

orm

ance

gap

D.WOUTERS SISC 2012

Slide courtesy G.Jurczak, imec

With increasing density and MLC,

NAND performance degrades

17 IMEC 2012

© IMEC 2010 / CONFIDENTIAL

Latency GAP between DRAM and NAND

Opportunity for new class of (NV) memories :

Storage Class Memory (SCM)

~ “performant FLASH”

D.WOUTERS SISC 2012 18 IMEC 2012

© IMEC 2010 / CONFIDENTIAL

DIFFERENT CLASSES OF SCM

Storage type SCM : (close to HDD)

▸ a high-performance solid-state drive, accessed

by the system I/O controller much like an HDD

Memory type SCM: (close to DRAM)

▸ should offer a read/write latency of less than 1

ms. These specifications would allow it to remain

synchronous with a memory system, allowing direct

connection from a memory controller and bypassing

the inefficiencies of access through the I/O controller.

D.WOUTERS SISC 2012 19

ERD ITRS meeting Potsdam 2011

IMEC 2012

© IMEC 2010 / CONFIDENTIAL

Outline

D.WOUTERS SISC 2012 20

RRAM : Classification

Need for new Non Volatile Memory?

RRAM : Memory Structure

RRAM: Status

Materials

Device

IMEC 2012

Resistive Switching Behavior

© IMEC 2010 / CONFIDENTIAL

RRAM : classification & materials

▸ RRAM : general definitions & history...

▸ Classification

▸ Filamentary switching

- Properties of filamentary switching

- Thermo-chemical RRAM

- Bipolar “oxygen vacancy drift” RRAM

- Electro-chemical CBRAM

▸ Interfacial switching

D.WOUTERS SISC 2012 21 IMEC 2012

© IMEC 2010 / CONFIDENTIAL

Resistive Switching Memories

▸ Memory element is R (MIM-type 2-terminal)

- r can be altered by applying V/I on R

- readout R at low voltage

▸ Bipolar or Unipolar Switching depending on mechanism

D.WOUTERS SISC 2012

Kawai et al., 2nd RRAM workshop Oct 2012

V

I Low R

High R

22 IMEC 2012

© IMEC 2010 / CONFIDENTIAL

Resistive Switching Memories

▸ A 2-terminal resistor element with electrically alterable

resistivity

- typically a low and high conductive state, although (controllable)

multi conductive states would be an asset (MLC)

- focus on programming with an electrical signal (e.g. not magnetic)

▸ Focus on non-volatile resistivity change

- Different from Ovonic switching

(electronic switching from low to high-conductive state,

but requiring a hold current to remain in high-conductive state),

and also of typical Mott transition element (as VO2)

▸ Focus on elements that can switch repeatedly from low to

high conductive state.

- Different from typical Fuse or anti-Fuse element (limited application

to OTP)

D.WOUTERS SISC 2012 23 IMEC 2012

© IMEC 2010 / CONFIDENTIAL

The Time-Voltage Dilemma

Fast programming

▸ At ~1V, need programming in ~10nsec

Good retention

▸ At ~0.1V, need stable read for ~ 10 years

D.WOUTERS SISC 2012 24

Need operation mechanism with extreme non-linear behavior:

>15 orders of magnitude in time over 1 decade in voltage

R.Waser (RWTH/Julich)

IMEC 2012

How can we make a 2-terminal NVM ?

© IMEC 2010 / CONFIDENTIAL 25

Discovery resistive switching in oxides : 1960’s !

Vol 11, May 1964, p. 243 Au/SiO/Au structure

SiO !

D.WOUTERS SISC 2012 25 IMEC 2012

© IMEC 2010 / CONFIDENTIAL

Resistive switching effect in Transition Metal

Oxides

▸ First switching of NiO was already reported in 1964!

D.WOUTERS SISC 2012 27 IMEC 2012

© IMEC 2010 / CONFIDENTIAL

Whatever happened to….

▸ Resisitive switching memories based on these

concepts eventually never developed :

- problems of stability

- scaling questioned

- emergence & rapid successful development of Si-

based memories !

D.WOUTERS SISC 2012 28 IMEC 2012

© IMEC 2010 / CONFIDENTIAL

Recent surge of interest

5 important events that put oxide RRAM again in the

picture :

1. A.Beck, B.J.Bednorz et al, IBM Zurich, APL 2000

2. W.Zhuang et al, Sharp/Univ Houston, IEDM 2002

3. I.G.Baek et al., Samsung, IEDM 2004

4. D.B.Strukov et al, HP labs, Nature 2008

5. H.Y.Lee et al, ITRI, IEDM, Tech. Dig., p. 297 2008

29 IMEC 2012

© IMEC 2010 / CONFIDENTIAL

1. A.Beck, B.J.Bednorz et al, IBM Zurich, APL

2000

• Thin oxide films for memory are back !

D.WOUTERS SISC 2012 30 IMEC 2012

© IMEC 2010 / CONFIDENTIAL

2. W.Zhuang et al, Sharp/Univ Houston, IEDM 2002

• coined the term RRAM

• realization 1D1R array

Principle on bulk crystals published by A.Asamitsu et al., Nature, 1997

D.WOUTERS SISC 2012 31 IMEC 2012

© IMEC 2010 / CONFIDENTIAL

3. I.G.Baek et al., Samsung, IEDM 2004

IEDM 2004

• 1st advanced work (integrated device) with simple binary oxide (NiO)

• Coined the term OxRRAM (switching in TMO)

D.WOUTERS SISC 2012 32 IMEC 2012

© IMEC 2010 / CONFIDENTIAL

4. D.B.Strukov et al.,HP labs,Nature2008

• Memristor concept applied to RRAM

• Triggered a lot of interest, especially in EE (design) world

D.WOUTERS SISC 2012 33 IMEC 2012

© IMEC 2010 / CONFIDENTIAL

5. H.Y.Lee et al, ITRI, IEDM 2008

D.WOUTERS SISC 2012 34

• First RRAM cell using all excellent CMOS compatible materials:

- HfO2 as switching oxide; TiN/Ti as electrode materials

• High cyclability, bipolar switching

IEDM 2008

IMEC 2012

© IMEC 2010 / CONFIDENTIAL

RRAM : classification & materials

▸ RRAM : general definitions & history...

▸ Classification

▸ Filamentary switching

- Properties of filamentary switching

- Thermo-chemical RRAM

- Bipolar “oxygen vacancy drift” RRAM

- Electro-chemical CBRAM

▸ Interfacial switching

D.WOUTERS SISC 2012 35 IMEC 2012

© IMEC 2010 / CONFIDENTIAL

Taxonometry of Resistive Switching

Memories : based on Mechanism

Resistive Switching N

an

om

ech

an

ical

Mem

ory

N

an

om

ech

an

ical

Me

mo

ry

Na

no

me

ch

an

ical

Me

mo

ry

Ele

ctro

sta

tic

Effe

cts

E

lectro

sta

tic

Effe

cts

Ph

ase

Ch

an

ge

M

em

ory

Effe

ct

Ph

ase

Ch

an

ge

M

em

ory

Effe

ct

Effe

ct

Re

do

x - b

ase

d

Me

mo

ry E

ffect

Re

do

x - b

ase

d

Me

mo

ry E

ffect

Re

do

x - b

ase

d

Me

mo

ry E

ffect

Ele

ctro

chem

ical

Me

mo

ry E

ffect

Ele

ctro

chem

ical

Mem

ory

Effe

ct

Ele

ctro

chem

ical

Mem

ory

Effe

ct

Mo

lecu

lar

Sw

itch

ing E

ffects

M

ole

cu

lar

Sw

itch

ing E

ffects

M

ole

cu

lar

Sw

itch

ing E

ffects

Ma

gn

eto

resis

tive

Me

mo

ry E

ffects

M

ag

ne

tore

sis

tive

Mem

ory

Effe

cts

M

ag

ne

tore

sis

tive

Mem

ory

Effe

cts

Fe

rroe

lectric

T

unn

elin

g

Ferro

ele

ctric

T

unn

elin

g

Thermo - and electro - chemical switching

phenomena in oxides T

he

rmo

ch

em

ica

l M

em

ory

Effe

ct

Th

erm

och

em

ica

l M

em

ory

Effe

ct

Th

erm

och

em

ica

l M

em

ory

Effe

ct

Ele

ctro

sta

tic

Effe

cts

Ph

ase

Ch

an

ge

M

em

ory

Ferro

ele

ctric

T

unn

elin

g

Adapted from R.Waser, IEDM 2008

(Mott)

“ReRAM”

“MRAM” “PRAM” PCRAM MRAM

RRAM

D.WOUTERS SISC 2012 36 IMEC 2012

© IMEC 2010 / CONFIDENTIAL

Resistance Modulation Geometry

Electronic MIT

(Mott)

Electro- chemical

3D

Bulk Transition

Cation Source (Ag+, Cu+ or...)

Cu+

Ag+

BE

ME

TA

LIC

FIL

AM

EN

T

Schottky barrier

2D

Interfacial

TE

BE

MIT

TE

BE

exchange layer

O vacancy,...

perovskite

1D Filamentary

Phase change

Tunnel Magneto

resistance

Thermo- Chemical

Fuse/ antifuse

TE

BE

metaloxide

reduced

TE

BE

MIT

amorphous

Poly-

crystaline

TE

BE

MITTunnel barrier

Free layer

Pinned layer

UNIPOLAR BIPOLAR BIPOLAR BIPOLAR UNIPOLAR UNIPOLAR

RRAM D.WOUTERS SISC 2012

PCRAM MRAM ?

Oxygen vacancy migration

TE

BE

MIT

BIPOLAR

37 IMEC 2012

© IMEC 2010 / CONFIDENTIAL

RRAM : classification & materials

▸ RRAM : general definitions & history...

▸ Classification

▸ Filamentary switching - Properties of filamentary switching

- Thermo-chemical RRAM

- Bipolar “oxygen vacancy drift” RRAM

- Electro-chemical CBRAM

▸ Interfacial switching

D.WOUTERS SISC 2012 38 IMEC 2012

© IMEC 2010 / CONFIDENTIAL

1D Filamentary switching

D.WOUTERS SISC 2012 39

Electro- chemical

Cation Source (Ag+, Cu+ or...)

Cu+

Ag+

BE

ME

TA

LIC

FIL

AM

EN

T

1D Filamentary

Thermo- Chemical

Fuse/ antifuse

TE

BE

metaloxide

reduced

UNIPOLAR BIPOLAR

Oxygen vacancy migration

TE

BE

MIT

BIPOLAR

?

IMEC 2012

© IMEC 2010 / CONFIDENTIAL

Indications for filamentary switching

D.WOUTERS SISC 2012 40

R. Münstermann et al.,

PSS RRL4 (2010) 16-18

K. Szot, Phys. stat. sol. (RRL) 1, No. 2, R86–R88 (2007) / DOI 10.1002

IMEC 2012

From physico-chemical analysis

© IMEC 2010 / CONFIDENTIAL

Indications for filamentary switching

Electrical fingerprint from device characteristics

- Area (in)dependence of LRS/HRS and switching voltages

D.WOUTERS SISC 2012 41

F.Nardi et al, IEEE Trans. El.Dev. 59(9). 2661 (2012)

IMEC 2012

© IMEC 2010 / CONFIDENTIAL

Different steps in a filamentary

switching process

▸ Forming

▸ RESET

▸ SET

D.WOUTERS SISC 2012 42

Akihito Sawa, materialstoday, Vol11(6), 2008

1.E-09

1.E-07

1.E-05

1.E-03

0 0.5 1 1.5

forming

set

reset

Voltage

Cu

rren

t

real switching curves

L.Goux (imec), NiO/Ni RRAM cell

C.Cagli, IEDM 2008

IMEC 2012

© IMEC 2010 / CONFIDENTIAL

Forming: creating a conduction path by

“breakdown”

D.WOUTERS SISC 2012 43

NiO by MOCVD imec

0

1

2

3

4

5

6

7

8

0.0 5.0 10.0 15.0 20.0 25.0 30.0

Thickness (nm)

V f

orm

ing

(V

)

Similar to (soft) breakdown in dielectrics (defect &

percolation path generation)

Forming

voltage scales

with thickness

IMEC 2012

© IMEC 2010 / CONFIDENTIAL

Maximum current during Forming(/SET)

controls filament “Strength”

D.WOUTERS SISC 2012 44

Y.Satoet al, Trans.El.Dev. 2008 D.Ielmini et al, Trans.El.Dev. 58(12), p.4309, 2011

IMEC 2012

© IMEC 2010 / CONFIDENTIAL

“Scaling of filamentary switching”

▸ 2D and 3D switching:

- Current levels scale with area of the cell ~ F2

▸ 1D switching:

- Current levels independent of cell area

- Current level determined by filament “diameter”

Determined by operation conditions (Forming/SET CC)

We can have small current even in large device

- Limitations ?

Cell area ~ filament size..

Smallest filament size ?

• ~ nm ??

D.WOUTERS SISC 2012 45

F.Nardi et al, Trans.El.Dev. 59(9), p.2461,2012

IMEC 2012

© IMEC 2010 / CONFIDENTIAL

Influence of spike currents

D.WOUTERS SISC 2012 46

Ireset=Icomp

Iset CC

Expected

Ireset

Cp

discharging

current

True Ireset

L.Goux et al, IEEE TED 2009 (sept 09)

IMEC 2012

© IMEC 2010 / CONFIDENTIAL

1T1R integrated teststructure for stable

current control

D.WOUTERS SISC 2012 47

Kinoshita et al, APL vol. 93

IMEC 2012

© IMEC 2010 / CONFIDENTIAL 48 2012 / imec

Intrinsic Forming voltage scaling

D.WOUTERS SISC 2012

B.Govoreanu, IEDM 2011

IMEC 2012

© IMEC 2010 / CONFIDENTIAL

Area dependence of Forming voltage

D.WOUTERS SISC 2012 49

1 2 3 4 5 6-10

-8

-6

-4

-2

0

2

Forming voltage, VF [V]

We

ibit,

ln(-

ln(1

-F))

Cell 1

Cell 2

Cell 3

Cell 4

1 2 3 4 5 6

Forming voltage, VF [V]

Cell 1

Cell 2

Cell 3

Cell 4

Cell 5

5 nm 10 nmNP P 5 nm

10 nm

1 2 3 4 5 6-10

-8

-6

-4

-2

0

2

Forming voltage, VF [V]

We

ibit,

ln(-

ln(1

-F))

Cell 1

Cell 2

Cell 3

Cell 4

1 2 3 4 5 6

Forming voltage, VF [V]

Cell 1

Cell 2

Cell 3

Cell 4

Cell 5

5 nm 10 nmNP P 5 nm

10 nm

B.Govoreanu, SSDM 2011

Due to defect distribution statistics

▸ Fitting single area-scaled Weibull plot

IMEC 2012

© IMEC 2010 / CONFIDENTIAL

Area dependence of Forming

Due to defect distribution statistics

▸ Difference between amorphous and crystalline

VFORMING : linked to different leakage current tails

D.WOUTERS SISC 2012

B.Govoreanu, IEDM 2011

50 IMEC 2012

© IMEC 2010 / CONFIDENTIAL

Switching during SET/RESET:

SET = Forming

D.WOUTERS SISC 2012 51

0

0.2

0.4

0.6

0.8

1

RE

Se

t vo

lta

ge

, V

S [

V]

1mm 100nm 10nm 10nmCell size

5nm HfOx10nm HfOx

10nm-size cells0

0.2

0.4

0.6

0.8

1

RE

Re

se

t vo

lta

ge

, V R

[V

]

1mm 100nm 10nm 10nmCell size

5nm HfOx10nm HfOx

10nm-size cells

B.Govoreanu, IEDM2011

Absence of oxide thickness effect on

VSET/RESET indicative of LOCAL

filament switching

IMEC 2012

© IMEC 2010 / CONFIDENTIAL

Forming free for thin films ?

▸ Linear scaling with

oxide thickness:

- Field driven

▸ Predicts “forming-

free” behavior if

tox<2.5 nm

- limitation ?

new filament creation

@ each Set ?

D.WOUTERS SISC 2012

B.Govoreanu et al, IEDM 2011

52 IMEC 2012

© IMEC 2010 / CONFIDENTIAL

Single or multiple filaments ?

D.WOUTERS SISC 2012 53

J.Y.Son, Y.-H.Shin, Appl.Phys.Lett. 2008,92,222106 R.Degraeve et al., IEDM 2010

Indications of multi-filaments? IMEC 2012

© IMEC 2010 / CONFIDENTIAL

“Forming” at lower voltage...

D.WOUTERS SISC 2012 54

R.Degraeve et al., IEDM 2010

BD theory predicts possible activation of new

filaments even at lower SET voltage..

IMEC 2012

© IMEC 2010 / CONFIDENTIAL

The winner takes it all ?

D.WOUTERS SISC 2012 55

Ch. Lenser et al., J. Appl. Phys. 111, 076101 (2012);

Most models assume

single filament

IMEC 2012

© IMEC 2010 / CONFIDENTIAL

RRAM : classification & materials

▸ RRAM : general definitions & some history...

▸ Classification

▸ Filamentary switching

- Properties of filamentary switching

- Thermo-chemical RRAM

- Bipolar “oxygen vacancy drift” RRAM

- Electro-chemical CBRAM

▸ Interfacial switching

D.WOUTERS SISC 2012 56 IMEC 2012

© IMEC 2010 / CONFIDENTIAL

Unipolar Switching OxRRAM :

“Thermo-Chemical Fuse/antifuse”

D.WOUTERS SISC 2012 57

Top Electrode

Bottom Electrode

NiO

Low R High R

Set state Reset state Conductive

filament (CF)

Material : Transition Metal-Oxides, e.g. NiO, HfO,..

1D Filamentary

Thermo- Chemical

Fuse/ antifuse

TE

BE

metaloxide

reduced

UNIPOLAR

IMEC 2012

© IMEC 2010 / CONFIDENTIAL

Role of oxygen / oxygen vacancy defects

in OxRRAM memories

▸ Filament switching involves oxygen transport

▸ Filament observations indicate local lower O concent

- Magnelli phase of Ti4O7 or Ti5O9 , essentially TiO2-x

Oxygen vacancy defects

D.WOUTERS SISC 2012 58

Szot et al., Nature materials (2006)

Bubbles < O2 released to the gas phase or adsorbed by the grainboundaries

of the Pt electrode

D. H. Kwon et al., Nature Nano technology(2010) IMEC 2012

© IMEC 2010 / CONFIDENTIAL

Oxygen vacancy filament conduction

▸ Oxygen vacancies influence conduction

- Electron hopping from one vacancy to another

- Act as local “doping” thermally activated conduction

- Create conductive defect band in Metal Oxide (e.g. at GB)

Metallic conduction

D.WOUTERS SISC 2012

S.Larentis et al,

Trans. El.Dev. 59(9), 2012, p. 2468 G.Bersuker et al.,

J. Appl. Phys. 110, 124518 (2011)

N.Xu et al,

VLSI Technology, 2008

59 IMEC 2012 IMEC 2012

© IMEC 2010 / CONFIDENTIAL

Why Transition Metal Oxides?

▸ Transition metals, have 2 or multiple oxidation states

▸ Transition metal oxides are good ionic conductors.

(Used in fuel cells for that reason)

D.WOUTERS SISC 2012 60

S.Muraoka et al., IEDM 2007

IMEC 2012

© IMEC 2010 / CONFIDENTIAL

Switching Process

▸ Forming creates filament consisting of oxygen vacancies

▸ RESET: local oxidation ; (Forming/)SET: local reduction

▸ How to explain process and unipolar character ?

D.WOUTERS SISC 2012 61

O2

O2

O2

O2

O2

O2

O2

O2

O2

O2

= oxygen vacancy

IMEC 2012

© IMEC 2010 / CONFIDENTIAL

Unipolar SET process

D.WOUTERS SISC 2012 62

Stage 1: high-field threshold switching high current path

Stage 2: high current also induces Joule heating

High Field + high T: damage MOx (bond breaking/reduction)

permanent conductive path

SET

C.Cagli et al, IEDM 2008

O2

O2

O2

O2

O2

IMEC 2012

© IMEC 2010 / CONFIDENTIAL

Unipolar RESET process

D.WOUTERS SISC 2012 63

RESE

T

High (ON) current induces high T by Joule heating

Thermal oxidation “dissolves” of the filament

M (conducting)+O MO (insulating)

U.Russo et al, IEDM 2007

O2

O2

O2

O2

O2

IMEC 2012

© IMEC 2010 / CONFIDENTIAL

Why unipolar ?

Non-directional mechanisms:

- temperature

- “BD” field

D.WOUTERS SISC 2012 64

© IMEC 2010 / CONFIDENTIAL

Anodic Oxidation @ “active” electrode

▸ Previous model does not take effect of electrodes

into account

▸ Actual switching requires “active” electrode

- Pt, Ni, ...

- Active electrode catalyses anodic oxidation reaction during

RESET

- Filament “rupture” at active electrode interface and not at

center as deduced from pure thermal simulations

D.WOUTERS SISC 2012 65

+ +

+

++

++ ++

+

+ +

++

+++

++

++ +

++

+

+

Ni or Pt

TiN

+ +

+

++

++ ++

+

+ +

++

+++

++

++ +

++

+

+

Ni or Pt

TiN

(a) (b) (c)

dx

Ni or Pt

NiO1-x

NiOdy dy

Ni or Pt

NiO1-x

NiO

(d)+VRESET+VRESET

+ +

+

++

++ ++

+

+ +

++

+++

++

++ +

++

+

+

Ni or Pt

TiN

+ +

+

++

++ ++

+

+ +

++

+++

++

++ +

++

+

+

Ni or Pt

TiN

(a) (b) (c)

dx

Ni or Pt

NiO1-x

NiOdy dy

Ni or Pt

NiO1-x

NiO

(d)+VRESET+VRESET

L.Goux et al,VLSI Technology 2011

IMEC 2012

© IMEC 2010 / CONFIDENTIAL

A-polar and Uni-polar switching

▸ Unipolar switching:

- SET and RESET at SAME polarity

- However, RESET needs specific

polarity due to anodic oxidation

▸ Apolar switching:

- Only in symmetric structure :

Active electrode as both bottom and top electrode

D.WOUTERS SISC 2012 66

A.Cagli et al, IEDM 2011

1.E-08

1.E-06

1.E-04

1.E-02

0 0.5 1

LRS

HRS

1 Voltage to Ni (V)

Cu

rre

nt (

A) 2

83

4 ...

0

5

10

0 20 40

~1.5MV/cm

tox (nm)

VF (V)

L.Goux et al,VLSI Technology 2011

IMEC 2012

© IMEC 2010 / CONFIDENTIAL

PRO/CON Unipolar switching

▸ Unipolar switching mechanism:

FORMING/SET : High Field activated reduction

RESET : High T induced local re-oxidation (Joule heating)

Oxygen diffuses “locally”

▸ High energy (thermal activated process, breakdown)

High V, I

Stronger filament “break” : higher R-window

▸ Loss of oxygen : diffusion is not very directional

Limited cyclability

▸ 1 voltage polarity :

use of simple DIODE as selector : 1D1R cell

D.WOUTERS SISC 2012 67 IMEC 2012

© IMEC 2010 / CONFIDENTIAL

State of the art.../1 typical results

D.WOUTERS SISC 2012 68

“High Performance Unipolar AlOy/HfOx/Ni based RRAM Compatible with Si Diodes for 3D Application”,

X.A. Tran, VLSI Technology 2011

IMEC 2012

© IMEC 2010 / CONFIDENTIAL

State of the art.../2. low current results

D.WOUTERS SISC 2012 69

Y.-H.Tseng et al, IEDM 2009

Low current but at expense

of window and extreme

poor cyclability

IMEC 2012

© IMEC 2010 / CONFIDENTIAL

NTHU/TSMC ISSCC 2012 1T1R

D.WOUTERS SISC 2012

Unipolar

NTHU/TSMC ISSCC 2012

70 IMEC 2012

© IMEC 2010 / CONFIDENTIAL

RRAM : classification & materials

▸ RRAM : general definitions & some history...

▸ Classification

▸ Filamentary switching

- Properties of filamentary switching

- Thermo-chemical RRAM

- Bipolar “oxygen vacancy drift” RRAM

- Electro-chemical CBRAM

▸ Interfacial switching

D.WOUTERS SISC 2012 71 IMEC 2012

© IMEC 2010 / CONFIDENTIAL

Bipolar Switching OxRRAM :

“Oxygen Vacancy Migration”

D.WOUTERS SISC 2012 72

1D Filamentary

Oxygen vacancy migration

TE

BE

MIT

BIPOLAR

Material : TMO’s , e.g. HfO,TiO,TaO..

H.Y.Lee et al, “Low Power

and High Speed Bipolar

Switching with A Thin

Reactive Ti Buffer Layer in

Robust HfO2 Based

RRAM”, IEDM, Tech. Dig.,

pp. 297, 2008

IMEC 2012

© IMEC 2010 / CONFIDENTIAL

Bipolar vs unipolar switching OxRRAM

▸ Same TMO-based RRAM cells ?

- Requirement for bipolar switching = asymmetric structure

▸ Type I : cells with one “active” electrode :

- Show both unipolar and bipolar switching

▸ Type II: cells with asymmetrically built-in oxygen

vacancies

- Cells show bipolar switching

Mechanism ?

▸ Focus here on HfO2 based RRAM

D.WOUTERS SISC 2012 73

TE

BE

HfO2

IMEC 2012

© IMEC 2010 / CONFIDENTIAL

1. “Active electrode” based HfO2 RRAM

▸ Structure:

- Stoechiometric HfO2 with one catalytic active

electrode (e.g., Pt), and one neutral electrode

(e.g., TiN)

▸ Forming:

- BOTH generation of oxygen vacancies AND

filament formation

- High forming voltage (>3V, 5nm HfO2 films)

D.WOUTERS SISC 2012

TiN

Pt

L.Goux et al., On the Gradual Unipolar and Bipolar Resistive Switching

of TiN\HfO2\Pt Memory Systems, Electrochemical and Solid-State Letters, 13 6 G54-G56 2010

HfO2

74 IMEC 2012

© IMEC 2010 / CONFIDENTIAL

1. “Active electrode” based HfO2 RRAM

D.WOUTERS SISC 2012

[1] L.Goux et al., Electrochemical and Solid-State Letters, 13 6 G54-G56 2010

[2] L.Goux et alAPPLIED PHYSICS LETTERS 97, 243509 2010

▸ Reset : anodic oxidation

- Requires positive voltage at active electrode

re-oxidation of filament at Pt anode interface [1]

Oxygen supply from active electrode

▸ Set :

- Vacancy creation + thermal assisted outdiffusion

& drift of oxygen

▸ No closed system:

- Generation/recombination of oxygen vacancies

Main mechanism = transport of Oxygen

atmosphere effects [2]

▸ Main difference with unipolar operation

- Drift-assisted motion of charged oxygen species

results in improved cyclability

O2

75 IMEC 2012

© IMEC 2010 / CONFIDENTIAL

M-cap HfO2

2. “Oxygen vacancy drift” based RRAM

D.WOUTERS SISC 2012

After

processing

oxygen vacancy reservoir excess oxygen

▸ Controlled introduction of oxygen

vacancy by process

- Oxygen scavenging metal cap layer on top

of stoechiometric HfO2 (ALD)

Ti, Hf, Ta,....

Local formation of HfO2-d

- Deposition of substoichiometric HfOx

(PVD)

▸ Need for asymmetric profile of

oxygen vacancies

- Otherwise competing switching layers [1]

Stack M-

Cap HfO2

TE

BE

76 IMEC 2012

F.Nardi et al, “Complementary switching in metal oxides: toward diode-less Xbad RRAMs”, IEDM 2011

© IMEC 2010 / CONFIDENTIAL 77 2012 / imec

Evidence of O migration in Hf CAP

D.WOUTERS SISC 2012

5.5 4.8 5.0

10.7 11.0 10.1

26.7 27.8 28.3

(5nm) HfOx

(10nm) Hf

[Govoreanu et al, SSDM2011]

Amorphous Hafnia B.Govoreanu et al, IEDM 2011

IMEC 2012

© IMEC 2010 / CONFIDENTIAL

▸ Difference in TE/BE

barrier height depending

on local [VO]

▸ Difference in positive Forming voltage and negative

Breakdown voltage

D.WOUTERS SISC 2012

Internal Photoemission measurements –

L. Pantisano et al., Microel. Eng. 88(2011)

L.Goux et al, VLSI 2012

Evidence for asymmetric VO profile

78 IMEC 2012

© IMEC 2010 / CONFIDENTIAL

M-cap HfO2

2. “Oxygen vacancy drift” based RRAM

D.WOUTERS SISC 2012

After processing

oxygen vacancy reservoir excess oxygen reservoir

After forming

M-cap HfO2

oxygen vacancy reservoir excess oxygen reservoir

conducting filament

▸ Forming:

- Main effect = filament formation ONLY

(limited creation of additional VO)

- Reduced forming conditions (<2V for 5nm

HfO2 films)

- Polarity effect

79 IMEC 2012

© IMEC 2010 / CONFIDENTIAL 80 2012 / imec

2. “Oxygen vacancy drift” based RRAM

D.WOUTERS SISC 2012

▸ Reset/Set :

- Transport = drift of oxygen vacancies

- Filament constriction shrinks/expands with

drift of oxygen vacancies up/down

▸ Closed system:

- NO Generation/Recombination of VO

Above is “intuitive model”

more detailed discussion of

operation mechanisms follows later !

IMEC 2012

© IMEC 2010 / CONFIDENTIAL

Comparison

D.WOUTERS SISC 2012

Active Electrode VO Drift

Filament Oxygen Vacancies Oxygen Vacancies

Generation of VO Forming Process

Forming (5nm

HfO2)

High V (>3V) Low V (<3V), tunable

Reset Catalytic oxidation

of filament

Filament narrowing

Defect model Oxygen diffusion &

drift

Generation/

Recombination of VO

Drift of VO

System Open (loss of O) Closed (no VO G/R)

Cyclability Limited High

81 IMEC 2012

Only ”VO drift” RRAM further discussed

© IMEC 2010 / CONFIDENTIAL

>1010 Cyclability of HfO2 RRAM

D.WOUTERS SISC 2012 82

By balancing the SET pulse WL=1V, BL=1.8V, 5ns and RESET pulse WL =3V, SL=1.8V, 10ns,

1010 pulse endurance could be achieved on 40nm Hf/HfO2 1T1R devices.

Y.Y.Chen, (imec) accepted for TED 2012

IMEC 2012

© IMEC 2010 / CONFIDENTIAL

HfO2 RRAM demonstrator

D.WOUTERS SISC 2012

NTHU/ITRI ISSCC 2011 1T1R

83 IMEC 2012

© IMEC 2010 / CONFIDENTIAL

RRAM : classification & materials

▸ RRAM : general definitions & some history...

▸ Classification

▸ Filamentary switching

- Properties of filamentary switching

- Thermo-chemical RRAM

- Bipolar “oxygen vacancy drift” RRAM

- Electro-chemical CBRAM

▸ Interfacial switching

D.WOUTERS SISC 2012 84 IMEC 2012

© IMEC 2010 / CONFIDENTIAL

Conductive Bridge RRAM :

“Programmable Metallization Cell”

D.WOUTERS SISC 2012 85

1D Filamentary

Material :

Ag or Cu based

Electro- chemical

Cation Source (Ag+, Cu+ or...)

Cu+

Ag+

BE

ME

TA

LIC

FIL

AM

EN

T

BIPOLAR

Ag/Cu electrode

Inert electrode

IMEC 2012

© IMEC 2010 / CONFIDENTIAL

Electrochemical filament formation

▸ Oxidation at anode: forming of metal ions (Ag Ag+ + e-)

▸ Drift of metal ions through insulating switching layer

▸ Reduction at cathode: plating out of metal ions (Ag+ + e- Ag)

- Growing filament forms “virtual cathode”

D.WOUTERS SISC 2012 86

U. Russo et al., IEEE TRANSACTIONS ON ELECTRON DEVICES, 56(5), p. 1040, 2009

Rainer Waser et al., Adv. Mater.

2009, 21, 2632–2663

IMEC 2012

© IMEC 2010 / CONFIDENTIAL

Bipolar Switching

D.WOUTERS SISC 2012 87

1.E-12

1.E-08

1.E-04

-3 -1.5 0 1.5 3

after 103 cycles

Vbit-line (V)

Curr

ent

(A)

Asymmetric switching

VRESET < VSET

Deep RESET

~ complete filament annihilation?

L.Goux et al., VLSI Technology 2012

IMEC 2012

© IMEC 2010 / CONFIDENTIAL

Materials and Structures

D.WOUTERS SISC 2012 88

Ag electrode

Inert electrode

GexSe

matrix

Ag2Se

nanoparticles

1st generation : Ag-doped chalcogenide

All-in-one, non-homogeneous material

[1] M.Kozicki,

IEEE Trans. On

Nanotechnology

4(3), 331 (2005)

Cu(X) electrode

Inert electrode

Metal-oxide

matrix

2nd generation: Metal-Oxide

Cu source separated from switching layer

K.Aratani et al., IEDM 2007

IMEC 2012

© IMEC 2010 / CONFIDENTIAL

PRO/COM OF CBRAM

D.WOUTERS SISC 2012 89

K.Aratani et al., IEDM 2007

M.Kund et al., IEDM 2005

▸ Combines high resistance window with low current operation

▸ Good cyclability (>108 cycles)

▸ Limited thermal stability of material and control of Cu diffusion

▸ Process T and High-T retention issue

▸ Low RESET voltage (disturb)

IMEC 2012

© IMEC 2010 / CONFIDENTIAL

SONY ISSCC 2011 CBRAM 1T1R

D.WOUTERS SISC 2012 90 IMEC 2012

© IMEC 2010 / CONFIDENTIAL

RRAM : classification & materials

▸ RRAM : general definitions & some history...

▸ Classification

▸ Filamentary switching

- Properties of filamentary switching

- Thermo-chemical RRAM

- Bipolar “oxygen vacancy drift” RRAM

- Electro-chemical CBRAM

▸ Interfacial switching

D.WOUTERS SISC 2012 91 IMEC 2012

© IMEC 2010 / CONFIDENTIAL

2D switching RRAM

D.WOUTERS SISC 2012 92

Schottky barrier

2D

Interfacial

TE

BE

exchange layer

O vacancy,...

perovskite

BIPOLAR

Akihito Sawa, MaterialsToday 11(6) p.28 2008

Material :

complex oxides

(doped perovskites)

noble (Pt) electrode

IMEC 2012

© IMEC 2010 / CONFIDENTIAL

Mechanism: modulation of Schottky

barrier

D.WOUTERS SISC 2012 93

Akihito Sawa, MaterialsToday 11(6) p.28 2008 by moving oxygen vacancies

to or from the interface

IMEC 2012

© IMEC 2010 / CONFIDENTIAL

Area scaling as fingerprint of 2D switch

D.WOUTERS SISC 2012 94

H.Sim et al., IEDM 2005

IMEC 2012

© IMEC 2010 / CONFIDENTIAL

PRO/CON 2D Interfacial Switching

▸ Materials :

- Complex perovskite oxides : process (in) compatibility ?

- Pt electrode required for good Schottky barriers

▸ Thick films :

- may compromise scaling

▸ Asymmetry and Non-linearity of LRS I-V behavior:

- Suitable for Self Rectifying Cell

D.WOUTERS SISC 2012 95 IMEC 2012

© IMEC 2010 / CONFIDENTIAL

Interfacial switching key for Self

Rectifying Cell...

D.WOUTERS SISC 2012 96

J.Sanchez, NCCAVS Thin Film User Group Meeting, 10/14/09

Current limited by QM tunneling through

tunneling layer

Barrier height influenced by oxygen

vacancies driven in our out the TO

IMEC 2012

© IMEC 2010 / CONFIDENTIAL

UNITY SC ISSCC2010 SRC

D.WOUTERS SISC 2012 97 IMEC 2012

IMEC 2012

© IMEC 2010 / CONFIDENTIAL

Outline

D.WOUTERS SISC 2012 98

RRAM : Classification

Need for new Non Volatile Memory?

RRAM : Memory Structure

RRAM: Status

Materials

Device

IMEC 2012

Resistive Switching Behavior

© IMEC 2010 / CONFIDENTIAL

RRAM Memory Structure

▸ Memory Cell > RRAM element

▸ Different RRAM Cell configurations

▸ 3D RRAM architectures

D.WOUTERS SISC 2012 99 IMEC 2012

© IMEC 2010 / CONFIDENTIAL

RRAM Cell and Array configurations

▸ RRAM element = RRAM cell ?

- Raw Cross Point array = highest density configuration

- Cell size = 4F2

D.WOUTERS SISC 2012

Akihito Sawa,

MaterialsTodayJUNE 2008 |

VOLUME 11 | NUMBER 6 p. 28

100 IMEC 2012

© IMEC 2010 / CONFIDENTIAL

RAW XP LIMITATIONS

▸ Read errors due to sneak current paths

▸ Program disturbs on half-select cells (1/2 or 1/3 V

scheme)

▸ Power dissipation due to current through half-

selected cells

D.WOUTERS SISC 2012 101

E.Linn en al, NATURE MATERIALS VOL 9 p. 403 MAY 2010 J.Liang et al., IEEE TRANSACTIONS ON ELECTRON

DEVICES, VOL. 57, NO. 10, p.2532 OCTOBER 2010

IMEC 2012

© IMEC 2010 / CONFIDENTIAL

RAW XP ARRAY EXPLORATION

D.WOUTERS SISC 2012 102

J.Liang et al., IEEE TRANSACTIONS ON ELECTRON

DEVICES, VOL. 57, NO. 10, p.2532 OCTOBER 2010

Very limited array sizes, dependent on

Ron/Roff ratio, Ron value, non-linearity, etc.

Solution ? Need for selector element in RRAM cell

An Chen, Nanotechnology (IEEE-NANO), pp.1767-1771, 15-18 Aug. 2011

IMEC 2012

© IMEC 2010 / CONFIDENTIAL

1T1R cell

Transistor is ideal selector

▸ Both isolation switch and current limiter (during SET)

▸ 3-terminal device : large cell

▸ Best suited for embedded RRAM

D.WOUTERS SISC 2012 103

0 1 2 3 40

200

400Reset

Set

I(mA

)V_topelectrode_NiOcell (V)

Forming

F.Nardi et al, IMW 2010

F,Chen ITRI

IMEC 2012

© IMEC 2010 / CONFIDENTIAL

1D1R -1S1R cell

▸ Diode selector

- Good selector : strong asymmetry (rectification) combined

with strong (exponential) non-linearity

- 2 terminal selector on top of RRAM

Small cell size possible

- Only for unipolar switching RRAM

- Voltage drop over diode

- Large aspect ratio

▸ For bipolar RRAM

- New 2 terminal selectors :

“Symmetric” diode type and Volatile Switching types

D.WOUTERS SISC 2012 104

P.Wong (Stanford)

IMEC 2012

© IMEC 2010 / CONFIDENTIAL

2- Terminal SELECTOR concepts

D.WOUTERS SISC 2012

unipolar bipolar

Diode types

-p(i)n diode

-Schottky diode

Symmetric diode type

-Zener

-Punch Through Diode

Volatile switching

type

-MOTT

-OTS

-MIEC

VO2

Chalcogenide novel

materials

Diode types

MOx pn/Schottky diode

Using

semiconducting

material

Y.Sasago et al, VLSI Tech.Symp. 2009

M-J. Lee, Advanced Functional Materials,

2008, 18, p.1

M-J. Lee, Advanced Materials, 2007, 19, p.3919

D.Kau et al, IEDM 2009

Ion Conductor

K.Gopalankhrisnan et al. VLSI 2010

Symmetric diode

type

- Schottky Diode

-Tunnel

Diode

MOx

J-J. Huang, EDL 11(10) 2011

J-J. Huang, IEDM 2011

105 IMEC 2012

© IMEC 2012 / CONFIDENTIAL

3D Stackable RRAM 3D VRRAM

D.WOUTERS SISC 2012

3D RRAM ARRAY OPTIONS

106 IMEC 2012

© IMEC 2012 / CONFIDENTIAL

3D Stackable RRAM

D.WOUTERS SISC 2012

3D RRAM ARRAY OPTIONS

107 IMEC 2012

M. Lee, et al., IEDM Tech. Dig. 2007

“pseudo 3D” = 2D stacking

3D Matrix, Semiconductor International , 7 Jan. 2005 1S1R

© IMEC 2012 / CONFIDENTIAL

3D Stackable RRAM 3D VRRAM

D.WOUTERS SISC 2012

3D RRAM ARRAY OPTIONS

108 IMEC 2012

H.Yoon, et al., VLSI Tech. 2009

“true” 3D

No place for

selector !

SRC

© IMEC 2010 / CONFIDENTIAL

Self Rectifying Cell

▸ Cell with strong nonlinearity (in ON state)

▸ Some proposals, but still limited nonlinearity

D.WOUTERS SISC 2012 109

Hynix VLSI Tech. 2012 M.Jo et al, VLSI Tech. 2010

Pt/

Al/PC

MO

/Pt

IMEC 2012

© IMEC 2010 / CONFIDENTIAL 110 © IMEC 2012 / CONFIDENTIAL

BIT CELL SELECTION

D.WOUTERS SISC 2012

Embedded 2D stackable array 3D vertical RRAM

PROS Easy to optimize

high ON/OFF ratio

Easy to integrate in

CMOS BEOL (3 extra

masks vs 8 for Flash)

4F2 4F2

thin

CONS Big cell,

not stackable

Stackable? No real solution yet

IMEC 2012

© IMEC 2010 / CONFIDENTIAL

Outline

D.WOUTERS SISC 2012 111

RRAM : Classification

Need for new Non Volatile Memory?

RRAM : Memory Structure

RRAM: Status

Materials

Device

IMEC 2012

Resistive Switching Behavior

© IMEC 2010 / CONFIDENTIAL

RRAM switching behavior

Detailed understanding of RRAM device

behavior required for :

▸ Tuning memory operation conditions

▸ Predicting reliability

▸ Optimizing material stack

Not just process, but detailed kinetics of device

behavior

Focus on oxygen-drift HfO2 RRAM

▸ More generally applicable to bipolar filamentary

switching (Ox)RRAM D.WOUTERS SISC 2012 112 IMEC 2012 IMEC 2012

© IMEC 2010 / CONFIDENTIAL

Understanding RRAM switching

1. Modeling approaches

2. Intrinsic RRAM switching

3. QPC filament conduction model

4. Hourglass switching model

D.WOUTERS SISC 2012 113 IMEC 2012

© IMEC 2010 / CONFIDENTIAL

Modeling approaches

How to understand filamentary switching ?

(i) use your imagination

D.WOUTERS SISC 2012 114 IMEC 2012

© IMEC 2010 / CONFIDENTIAL

The Artist approach to RRAM

D.WOUTERS SISC 2012 115 IMEC 2012

© IMEC 2010 / CONFIDENTIAL IMEC 2012

(too) many RRAM artist styles ?

D.WOUTERS SISC 2012 116

N.Xu et al, VLSI Tech 2008

D. IELMINI TED 2011

G.Bersuker, 2nd RRAM workshop 2012

K.Kamiya et al, APL 100 2012

L.Goux et al, ESSL 14(6) 2011 S.Larentis et al, TED 59(9) 2012

© IMEC 2010 / CONFIDENTIAL

Relevance of Science Art ?

▸ Visualize possible processes

- Generation of new insights

- May hint to possible flaws in the assumed model

- Explaining RRAM to your management

▸ Not a proof on its own but a good add-on of

theoretical models

▸ Limitations :

- Limited to classical “particle” models : problem to visualize

Quantum-Mechanical processes...

D.WOUTERS SISC 2012 117 IMEC 2012

© IMEC 2010 / CONFIDENTIAL

Modeling approaches

How to understand filamentary switching ?

(i) use your imagination : the “artist” approach

(ii) bottom up: material scientist approach

D.WOUTERS SISC 2012 118 IMEC 2012

© IMEC 2010 / CONFIDENTIAL

BOTTOM-UP approach

▸ List up all possible physical processes potentially involved in

the resistive switching...

D.WOUTERS SISC 2012 119

R.Waser, IEDM short course 2011

IMEC 2012

© IMEC 2010 / CONFIDENTIAL

BOTTOM-UP approach critique

Too many possible equations to cope with.

▸ How to select relevant/dominating processes?

▸ A lot of different processes described by similar

“exponential” math....

You only get out what you put in

▸ unexpected processes may play a role

Classical “continuum” approach

▸ Finite element modeling of current & temperature

based on local conductivity and Joule heating

▸ Cannot account for Quantum-Mechanical effects!

D.WOUTERS SISC 2012 120 IMEC 2012

© IMEC 2010 / CONFIDENTIAL IMEC 2012

Example : V-t dilemma in CBRAM

▸ Which is the rate limiting process in CBRAM?

- (i) anodic dissolution of Cu according to Cu⇒Cuz++ze−

- (ii) drift of the Cuz+cations across the SiO2

- (iii) cathodic deposition at the Pt electrode by Cuz++ze−⇒ Cu.

▸ All 3 give exponential !

▸ Argued that (iii) dominates through the charge

transfer rate at the Cu/SiO2 interface described by the

Butler–Volmer equation

D.WOUTERS SISC 2012 121

C.Schindler et al., Appl.Phys. Lett, 94, 072109, 2009

© IMEC 2010 / CONFIDENTIAL IMEC 2012

How deep at the bottom to start?

▸ The “ultimate” bottom : Ab Initio

- Obtained A.I. results have been revealing on the behavior of

oxygen defects (charge states, formation energy, diffusion

constants) and their coalescence into filaments

- But limited to study specific effects

D.WOUTERS SISC 2012 122

Katsumasa Kamiya et al, Appl. Phys.

Lett. 100, 073502 (2012);

S. Park, et al.,IEEE Electron Device Letters, 32, 197, 2011.

© IMEC 2010 / CONFIDENTIAL

Modeling approaches

How to understand filamentary switching ?

(i) use your imagination : the “artist” approach

(ii) bottom up: the material scientist approach

(iii) top-down: the EE approach

D.WOUTERS SISC 2012 123 IMEC 2012

© IMEC 2010 / CONFIDENTIAL

The EE approach

▸ Start from device behavior: electrical characterization

- Conduction in different R states

- Intrinsic versus extrinsic switching curves

- Try to analyze the important effects (AC vs DC, temperature)

- Effect of sample geometry (e.g. device area)

- Others: RTN...

▸ Come up with a model

- Filament model for conduction in HRS and LRS

- Kinetic model for switching

▸ Check if we can simulate all electrical data with

consistent and physically “sound” set of parameters

D.WOUTERS SISC 2012 124 IMEC 2012

© IMEC 2010 / CONFIDENTIAL

TOP-DOWN approach critique

▸ Behavioral model...

... but preferentially physics based

link to actual material processes

= “MEET IN THE MIDDLE”

▸ Device behavior can be influenced by

- Material

- Device structure

- Process effects

May limit a more general value..

D.WOUTERS SISC 2012 125 IMEC 2012

© IMEC 2010 / CONFIDENTIAL

Understanding RRAM switching

1. Modeling approaches

2. Intrinsic RRAM switching

3. QPC filament conduction model

4. Hourglass switching model

D.WOUTERS SISC 2012 126 IMEC 2012

© IMEC 2010 / CONFIDENTIAL

DC switching measurements : 0T1R

Current compliance hides (SET) switching

D.WOUTERS SISC 2012 127

Measured I-V (= extrinsic)

(A)

VC

IC

VSET

(V)

Easy to measureand always known

Compliance limited(A)

VC

IC

(V)

VSET

?

Which is exact(V,I) trajectory ?

I-V of TMO ( = intrinsic)

(only 2 points known)

F.Nardi et al, Trans.El.Dev. 59(9), p.2461, 2012

HfO2 RRAM cell

IMEC 2012

© IMEC 2010 / CONFIDENTIAL

DC switching measurements : 1T1R

▸ Total cell voltage during SET switching known

▸ But high non-linearity of Transistor current

IDS=f(VG,VDS) prohibit calculation of voltage over

RRAM

D.WOUTERS SISC 2012 128

D.Ielmini , Trans.El.Dev. 58(12), p.4310 (2011)

IMEC 2012

© IMEC 2010 / CONFIDENTIAL

DC switching measurements : 2R

Using a linear integrated component (resistor):

▸ we can limit current

▸ We can recover the SET trajectory:

VRRAM = Vapplied-I.RA

D.WOUTERS SISC 2012 129

SL

BL

TE

BEVR

RA

MV

RA

+

-

VA

RA2R

WT

LTETE BE cell

RA

2R test structures:

0.05 0.10 0.15

50

100

150

200

250

300

350 TE Line 25C

TE Line 125C

Lin

e s

quare

resis

tance R

S [

]

TiN line CD [um]4 P

oin

t

5um

len

target

Calibration of sqr res:

NOTE: nominal CD and effective resistances

Imec crossbar RRAM

A. Fantini et al, IMW 2012

IMEC 2012

© IMEC 2010 / CONFIDENTIAL

Extrinsic Switching in 2R

D.WOUTERS SISC 2012 130

-1.5 -1.0 -0.5 0.0 0.5 1.00

25µ

50µ

75µ

100µ

125µ

Voltage (V)

|Curr

ent| (

A)

SETRES

VT,SET

2

1

3

4

-5.6k

Abrupt

RESETGradual

Increase

Measured I-V (Extrinsic)

Applied Voltage VA (V)

IRES <= ISET

• RESET is very abrupt. In clear contrast to “analog” reset.

• Gradual (linear) SET after first “jump”

• SET Linearly returns to origin with a different (lower) slope

• Onset of RESET symmetrically occurs at the same end point of SET sweep.

A. Fantini et al, IMW 2012

IMEC 2012

© IMEC 2010 / CONFIDENTIAL

Extrinsic Intrinsic switching in 2R

D.WOUTERS SISC 2012 131

-1.5 -1.0 -0.5 0.0 0.5 1.00

25µ

50µ

75µ

100µ

125µ

| Voltage | (V)

|Curr

ent| (

A)

SETRES

1

23

4Vtrig

Vtran

s

|Vtran

s|“EXT”

“EXT”

“INT”2

1

3

4

C

A

B

D

Voltage (V)

Current increases

at constant V

A. SET triggering followed by rapid “snapback”: with slope (-1/RA)

B. “Filament” then grows (i.e. current increases) at constant voltage

(“transition voltage”) Vtrans

C. RESET transition triggers at symmetrical (-Vtrans) voltage with fast voltage

increase (“snapforward”) with slope (-1/RA)

D. “Filament” then shrinks at approx constant saturation current IR,sat

A. Fantini et al, IMW 2012

IMEC 2012

© IMEC 2010 / CONFIDENTIAL 132 2012 / imec

Voltage controlled switching :

definition of Transition Voltage

D.WOUTERS SISC 2012

VT,SET V

|I|

VTRANS -VTRANS

-VRESET_MAX

Filament grows at constant

voltage = VTRANS

At symmetric voltage,

filament starts to RESET

VTRANS is the minimum voltage required for switching

IMEC 2012

© IMEC 2010 / CONFIDENTIAL

Fingerprint of filamentary switching?

▸ Analysis of different RRAM material systems show

similar intrinsic switching characteristics

D.WOUTERS SISC 2012 133

VTRANS ~0.2V

SET RESET

TABLE I

PARAMETERS FOR DIFFERENT ANALYZED CRS CELLS

RRAM element Imax RLRSa RSERIES VTRANS

b Ref

TiN\HfO2\Hf\TiN 3 mA ~140 180 ~0.36 V -

Pt\SiO2\GeSe\Cu 0.9 mA ~264 1050 ~0.18 V [1]

Pt\SiO2\Cu 15 mA ~27 220 ~0.26 V [2]

Pt\Ta2O5-x\TaO2-x\Pt 40 mA ~10 k 44 k ~0.40 V [4]

Au\CNT\a-C\Au 80 mA ~24 k 70 k ~1.85 V [5] aAverage for Top and Bottom RE; bAverage of + and - VTRANS

D.Wouters, EDL 33(8), p. 1186 (2012)

Pt\SiO2\GeSe\Cu

CBRAM cell

▸ Transition Voltage = material

dependent parameter?

IMEC 2012

© IMEC 2010 / CONFIDENTIAL

Current scaling in 2R

D.WOUTERS SISC 2012 134

0

50µ

100µ

150µ

200µ

250µ

Cu

rre

nt

(A)

0.0 0.5 1.0 1.50

50µ

100µ

150µ

200µ

250µ

Ab

s C

urr

en

t (A

)

|VRRAM

| (V)

0

10µ

20µ

30µ

40µ

50µ

60µ

0.0 0.5 1.0 1.50

10µ

20µ

30µ

40µ

50µ

60µ

|VRRAM

| (V)

0

12µ

0.0 0.5 1.0 1.50

12µ

|VRRAM

| (V)

RA (0.25∙G0)-1RA (0.93 ∙ G0)

-1RA (4.1∙G0)-1

Vtr

ans

Vtr

ans

Vtr

ans

SET

RES

-3.1k -55k-14k

(a) (b) (c)

Important observations (mean values):

• Transition voltage not depending on current level • Evidence of deviation from ohmic behavior for LRS in the lowest current

range

Non-linear I-V in the LRS

IR,SAT

IMEC 2012

© IMEC 2010 / CONFIDENTIAL

AC characterization

D.WOUTERS SISC 2012 135

▸ Typically done using voltage pulses

- Pulse effect measured by probing R after applying pulse

- No information of what happens during the pulse

D.Ielmini , IEDM 2011

IMEC 2012

© IMEC 2010 / CONFIDENTIAL

AC characterization in 2R

D.WOUTERS SISC 2012 136

▸ Transition voltage is log. depending in ramp rate

0

50µ

100µ

150µ

200µ

250µ

DC (0.5 V/s)

100 V/s

1 kV/s

10 kV/s

100 kV/s

1 MV/s

Cu

rre

nt I (A

)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.60

50µ

100µ

150µ

200µ

250µ

| C

urr

en

t | (A

)

|VRRAM

| (V)

0

10µ

15µ

20µ

25µ

30µ

DC (0.5 V/s)

100 V/s

1 kV/s

10 kV/s

100 kV/s

1 MV/s

Cu

rre

nt I (A

)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.60

10µ

15µ

20µ

25µ

30µ

| C

urr

en

t | (A

)

|VRRAM

| (V)

-3.1k

25 C, SETIncreasing

r = dVA/dt

25 C, RES

25 C, SET

-27.6k

(a) (b) (c)

0.45

0.50

0.55

0.60

0.65

0.70

0.75

Vtr

an

s (

V)

Vtrans

, 25C, RA 3.1 k

100m 1 10 100 1k 10k 100k 1M60µ

80µ

100µ

120µ

140µ

160µ

IR,sat

, 25C, RA 3.1 k

Re

se

t sa

t (A

)

Ramp rate r (V/s)

Measured @

90% Sweep V

Measured @

90% Sweep V

0

10µ

15µ

20µ

25µ

30µ

DC (0.5 V/s)

100 V/s

1 kV/s

10 kV/s

100 kV/s

1 MV/s

Cu

rre

nt I

(A)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

0

10µ

15µ

20µ

25µ

30µ

| C

urr

en

t | (A

)

|VRRAM

| (V)

0

50µ

100µ

150µ

200µ

250µ

DC (0.5 V/s)

100 V/s

1 kV/s

10 kV/s

100 kV/s

1 MV/s

Cu

rre

nt I

(A)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

0

50µ

100µ

150µ

200µ

250µ

| C

urr

en

t | (A

)

|VRRAM

| (V)

-3.1k

25 C, SETIncreasing

r = dVA/dt

25 C, RES

25 C, SET

25 C, RES

-27.6k

0.45

0.50

0.55

0.60

0.65

0.70

0.75

Vtr

an (

V)

Vtrans

, 25C

Vtrans

, 250C

100m 1 10 100 1k 10k 100k 1M

60µ

80µ

100µ

120µ

140µ

160µ

Reset sat (A

)

Ramp rate r (V/s)

(a) (b) (c)

~log(r)

~log(r)

A. Fantini , IMW 2012

~200 m

V

IMEC 2012

© IMEC 2010 / CONFIDENTIAL

Understanding RRAM switching

1. Modeling approaches

2. Intrinsic RRAM switching

3. QPC filament conduction model

4. Hourglass switching model

D.WOUTERS SISC 2012 137 IMEC 2012

© IMEC 2010 / CONFIDENTIAL

Non-linear & Quantized conduction

D.WOUTERS SISC 2012 138

160x10-6

120

80

40

co

nd

ucta

nce

(A

/V)

0.80.60.40.20.0Voltage Vox (V)300x10

-6

200

100

0

Co

nd

ucta

nce

ch

an

ge

(A

/V2)

0.80.60.40.20.0

Voltage Vox (V)

Co

nd

ucta

nce

Change (

A/V

2)

~0.23 V

Top electrode Voltage (V)

Half-integer values of

2e2/h = 77.5mA/V

(1/2).(2e2/h)

(2/2).(2e2/h)

(3/2).(2e2/h)

(4/2).(2e2/h)

wy

wx

10-7

10-6

10-5

10-4

Curr

en

t (A

)

0.60.40.20.0Voltage (V)

reset

2

4

1014

2

4

1015

om

eg

a p

ara

me

ter

(Hz)

10-6

2 4 6 8

10-5

2

Current @ 0.2V (A)

(d)

Room-T measurements

R.Degraeve et al, VLSI-TSA 2012

R.Degraeve et al, VLSI 2011 IMEC 2012

© IMEC 2010 / CONFIDENTIAL

Quantum Point Contact model

D.WOUTERS SISC 2012 139

R.Degraeve et al, IEDM 2010

• Inside filament : interacting

defects (oxygen vacancies)

create conductive band

• Geometric confinement

of current flow causes

bottleneck with discrete

levels

• Quantum point contact

(QPC) model for conduction

2222

02

1

2

1, ymxmeVyxE yx ww

IMEC 2012

© IMEC 2010 / CONFIDENTIAL

Fitting I-V with QPC

▸ Only wy parameter changes indicating RESET

occurs by local filament NARROWING

D.WOUTERS SISC 2012 140

wy

wx

10-7

10-6

10-5

10-4

Curr

en

t (A

)

0.60.40.20.0Voltage (V)

reset

2

4

1014

2

4

1015

om

eg

a p

ara

me

ter

(Hz)

10-6

2 4 6 8

10-5

2

Current @ 0.2V (A)

(d)

wy

wx

10-7

10-6

10-5

10-4

Curr

en

t (A

)

0.60.40.20.0Voltage (V)

reset

2

4

1014

2

4

1015

om

eg

a p

ara

me

ter

(Hz)

10-6

2 4 6 8

10-5

2

Current @ 0.2V (A)

(d)

R.Degraeve et al, VLSI 2011

IMEC 2012

© IMEC 2010 / CONFIDENTIAL

Constriction size ~ # defects

D.WOUTERS SISC 2012 141

Constriction

Ac

hc nC defects

rc

Geometric representation:

~ wx-1

~ wy-1

IMEC 2012

© IMEC 2010 / CONFIDENTIAL

Filament Model

D.WOUTERS SISC 2012 142

(II)

RESET

(III)

“deep” RESET

(I)

SET

Classical R Tunneling QPC

Not observed in our HfO2 RRAM

IMEC 2012

© IMEC 2010 / CONFIDENTIAL

Abstract filament model = Hourglass

D.WOUTERS SISC 2012 143

Hf top electrode

Top Reservoir TR

Bottom

Reservoir BR

Constriction C

TiN bottom

electrode

▸ Filament = 2 reservoirs of oxygen vacancies

connected by a constriction

▸ Size of defect reservoirs, number of defect particles,

and constriction length are fixed by Forming

R.Degraeve et al, VLSI 2012

IMEC 2012

© IMEC 2010 / CONFIDENTIAL

Understanding RRAM switching

1. Modeling approaches

2. Intrinsic RRAM switching

3. QPC filament conduction model

4. Hourglass switching model

D.WOUTERS SISC 2012 144 IMEC 2012

© IMEC 2010 / CONFIDENTIAL

Dynamic Hourglass switching model

▸ Filament = charged defects (oxygen vacancies)

- Moveable under influence of electric field

▸ Hourglass shape determined by Forming

- Hourglass ~ substoichiometric HfOx with higher oxygen

vacancy mobility :

- defects remain in hourglass

- No generation/recombination

▸ Defects can move down/up top to bottom reservoir

depending on voltage polarity

D.WOUTERS SISC 2012 145 IMEC 2012

© IMEC 2010 / CONFIDENTIAL

Dynamic Hourglass switching model

▸ 4 different defect particle fluxes at TE/BE reservoir –

constriction interfaces

- Temp. activated over voltage modified energy barrier Ea

- Depending on filling level of the reservoir

D.WOUTERS SISC 2012 146

R.Degraeve et al, VLSI 2012

© IMEC 2010 / CONFIDENTIAL

Explanation of transition voltage

▸ From this model, it is possible to calculate the

minimum voltage to move a defect in or out the

constriction in a certain amount of time

▸ This voltage ~ cte at larger currents

= “transition voltage”

▸ Independent of polarity : same voltage to start RESET

D.WOUTERS SISC 2012 147

40x10-6

30

20

10

0

Curr

ent

(A)

1.00.80.60.40.20.0

VRRAM (V)

nC=1

nC=2

nC=6

nC=15

nC=32

nC=62

nC=100

nC=150

Transition line

-26k Vtri

g

R.Degraeve et al, VLSI 2012 IMEC 2012

© IMEC 2010 / CONFIDENTIAL

Further work

Here focused on SET behavior and explanation of

“constant voltage” filament growth

Hourglass model can explain also other effects, as:

▸ “overcurrent” in 1st RESET after forming

▸ RESET behavior as function of V and time’

▸ Fluctuationns and Disturb of RESETstate

▸ ....

D.WOUTERS SISC 2012 148 IMEC 2012

© IMEC 2010 / CONFIDENTIAL

Outline

D.WOUTERS SISC 2012 149

RRAM : Classification

Need for new Non Volatile Memory?

RRAM : Memory Structure

RRAM: Status

Materials

Device

IMEC 2012

Resistive Switching Behavior

© IMEC 2010 / CONFIDENTIAL

RRAM Status

▸ Performance and Endurance

▸ Scalability

▸ Demonstrators

▸ Product announcements

D.WOUTERS SISC 2012 150 IMEC 2012

© IMEC 2010 / CONFIDENTIAL D.WOUTERS SISC 2012 151 IMEC 2012

Steady improvement of RRAM

operation speed & current

Slide courtesy G.Jurczak, imec

© IMEC 2010 / CONFIDENTIAL

> 1012 “unlimited” cyclability in TaOx

D.WOUTERS SISC 2012 152

Y-B.Kim et al, VLSI Technology 2011

IMEC 2012

© IMEC 2010 / CONFIDENTIAL

<10nm scalability of HfO2 RRAM cells

D.WOUTERS SISC 2012 153

B.Govoreanu et al IEDM 2011

G.Kar et al VLSI 2012

IMEC 2012

© IMEC 2010 / CONFIDENTIAL

ARRAY DEMONSTRATIONS OF 1T-1R RRAM

154

Pt/TaOx/Pt

8kb bipolar array

Panasonic, IEDM 2008

Ru/TiOx/TaOx/Ru

1kb unipolar array

NEC, VLSI 2010

TaN/CuSixOy/Cu

1Mb bipolar array

SMIC, VLSI 2010

D.WOUTERS SISC 2012 IMEC 2012

© IMEC 2010 / CONFIDENTIAL

ARRAY DEMONSTRATIONS OF 1S-1R RRAM

D.WOUTERS SISC 2012

Panasonic, ISSCC 2012 8Mb,

Unity, ISSCC 2010 64Mb, 130nm

HYNIX, VLSI 2012 54nm CMOS platform

155 IMEC 2012

© IMEC 2010 / CONFIDENTIAL

ELPIDA

D.WOUTERS SISC 2012

64Mb, 50nm process,

Collaboration with AIST and SHARP

156 IMEC 2012

© IMEC 2010 / CONFIDENTIAL

Toshiba_Sandisk will announce a 32Gb

1D1R RRAM in 24nm @ ISSCC2013

D.WOUTERS SISC 2012 157

EETimes Asia 21 Nov. 2012

RRAM is fastly emerging !

IMEC 2012

© IMEC 2010 / CONFIDENTIAL

Conclusions

▸ Short introduction in why and how of RRAM

▸ Exciting material and device research field

- a lot of understanding during last years

▸ RRAM emerging to reality ?

D.WOUTERS SISC 2012 158

© IMEC 2010 / CONFIDENTIAL

Acknowledgements:

• Many contributions from the imec RRAM team, especially:

Y.Y,Chen, S.Clima, R.Degraeve, L.Goux, B.Govereanu, G.S.Kar, A.Fantini,

L.Zhang

• Program director : M.Jurczak

• Industrial partners in imec’s Core CMOS program

Thank You !

43rd IEEE Semiconductor

Interface Specialists

Conference

© IMEC 2010 / CONFIDENTIAL

© IMEC 2010 / CONFIDENTIAL 161 2012 / imec

type PCRAM OxRRAM STT-RAM

Operation Write Speed >10nsec ~5nsec ~1nsec

Write current ~10’s of uA ~uA’s 1-10MA/cm2

MLC? Yes ? No

Endurance 109 1012 1015 (infinite?)

Ron/Roff >103 10-100 ~2

CMOS

compatibility

Switching

Voltage

2 -4 V 2-4 V (+ needs Forming)

1-2 V

Materials GeSbTe Standard (HfO2) NS Metal stacks

Process

limitations

None? (non-

standard material)

None

Limited thermal

stability

Scalability Limitations Current (need sub-litho

scaling)

Variability (localized thin

filament)

Retention (~Volume)

Configuration Selector 1D1R 1T1R-1S1R 1T1R

2D stackable ? Yes No

Target

applications ?

(NOR-Flash)

SCM?

Embedded ?

SCM

(NAND) Flash

Embedded ?

DRAM

Embedded ?

D.WOUTERS SISC 2012