78
Representation of Convective Processes in NWP Models (Part I) George H. Bryan NCAR/MMM Presentation at ASP Colloquium, “The Challenge of Convective Forecasting” 13 July 2006

Representation of Convective Processes in NWP Models (Part I) George H. Bryan NCAR/MMM Presentation at ASP Colloquium, “The Challenge of Convective Forecasting”

Embed Size (px)

Citation preview

Page 1: Representation of Convective Processes in NWP Models (Part I) George H. Bryan NCAR/MMM Presentation at ASP Colloquium, “The Challenge of Convective Forecasting”

Representation of Convective Processes in NWP Models

(Part I)

George H. Bryan

NCAR/MMM

Presentation at ASP Colloquium,

“The Challenge of Convective Forecasting”

13 July 2006

Page 2: Representation of Convective Processes in NWP Models (Part I) George H. Bryan NCAR/MMM Presentation at ASP Colloquium, “The Challenge of Convective Forecasting”

Goals

• To understand how deep moist convection (i.e., thunderstorms) can be simulated with numerical models

• To review how this is done in NCAR’s real-time forecasts with the ARW Model

Page 3: Representation of Convective Processes in NWP Models (Part I) George H. Bryan NCAR/MMM Presentation at ASP Colloquium, “The Challenge of Convective Forecasting”

Outline

• Part I: What is a numerical model?

• Part II: What resolution is needed to simulate convection in numerical models?

Page 4: Representation of Convective Processes in NWP Models (Part I) George H. Bryan NCAR/MMM Presentation at ASP Colloquium, “The Challenge of Convective Forecasting”

Part I: What is a numerical model?

• It’s computer code!

• For example …

Page 5: Representation of Convective Processes in NWP Models (Part I) George H. Bryan NCAR/MMM Presentation at ASP Colloquium, “The Challenge of Convective Forecasting”

Example: Control interface (namelist.input) for the ARW Model

Page 6: Representation of Convective Processes in NWP Models (Part I) George H. Bryan NCAR/MMM Presentation at ASP Colloquium, “The Challenge of Convective Forecasting”

Example: Main solver for the ARW Model

Page 7: Representation of Convective Processes in NWP Models (Part I) George H. Bryan NCAR/MMM Presentation at ASP Colloquium, “The Challenge of Convective Forecasting”

A numerical model is composed of:

• A set of governing equations• A specified domain• A set of numerical methods• A set of parameterizations• Initial conditions and boundary conditions

A specific numerical model is the result of a series of choices, approximations, and compromises

Page 8: Representation of Convective Processes in NWP Models (Part I) George H. Bryan NCAR/MMM Presentation at ASP Colloquium, “The Challenge of Convective Forecasting”

Components of a numerical model

• A set of governing equations

• A specified domain

• A set of numerical methods

• A set of parameterizations

• Initial conditions and boundary conditions

Page 9: Representation of Convective Processes in NWP Models (Part I) George H. Bryan NCAR/MMM Presentation at ASP Colloquium, “The Challenge of Convective Forecasting”

Commandments

1. Honor thy model’s creator

2. Thou shalt not covet thy neighbor’s supercomputer

3. Thou shalt conserve mass

4. Thou shalt conserve energy

5. Thou shalt conserve momentum

6. …

Page 10: Representation of Convective Processes in NWP Models (Part I) George H. Bryan NCAR/MMM Presentation at ASP Colloquium, “The Challenge of Convective Forecasting”

Governing Equations

• Must obey laws of physics– Newton’s laws

• Conservation of mass• Conservation of momentum

– Laws of thermodynamics• Conservation of internal energy• Rules governing water and it’s phases

– Laws governing other relevant processes• Chemistry• Electric fields

Page 11: Representation of Convective Processes in NWP Models (Part I) George H. Bryan NCAR/MMM Presentation at ASP Colloquium, “The Challenge of Convective Forecasting”

Example: a dry equation set

• Conservation of momentum:

• Conservation of energy:

• Conservation of mass:

∂ui∂t+ u j

∂ui∂x j

+1

ρ

∂p

∂xi+ δ i3g −

1

ρ

∂σ ij∂x j

= 0

cv∂T∂t

+uj

∂T∂xj

+pρ

∂uj

∂xj

−κ∂2T

∂xj∂xj

=0

∂ρ∂t+∂ρu j∂x j

= 0

Page 12: Representation of Convective Processes in NWP Models (Part I) George H. Bryan NCAR/MMM Presentation at ASP Colloquium, “The Challenge of Convective Forecasting”

Example: another dry equation set

• Conservation of momentum:

• Conservation of energy:

• Conservation of mass:

∂ui∂t+ u j

∂ui∂x j

+ cpθ∂π

∂xi+ δ i3g = 0

∂θ∂t+ u j

∂θ

∂x j= 0

∂ρu j∂x j

= 0

Page 13: Representation of Convective Processes in NWP Models (Part I) George H. Bryan NCAR/MMM Presentation at ASP Colloquium, “The Challenge of Convective Forecasting”

from Bannon (2002)

There is debate about the exact form of the governing equations, particularly for moist conditions, for example:

Page 14: Representation of Convective Processes in NWP Models (Part I) George H. Bryan NCAR/MMM Presentation at ASP Colloquium, “The Challenge of Convective Forecasting”

The point:

• Almost every model uses a (slightly) different equation set.

• Why?– Different applications

• climate vs weather• tropical vs polar

– Debate about what matters• Moist effects (raindrops interacting with air)• Unknown magnitude (e.g., viscous

dissipation/heating)

Page 15: Representation of Convective Processes in NWP Models (Part I) George H. Bryan NCAR/MMM Presentation at ASP Colloquium, “The Challenge of Convective Forecasting”

ARW Model equations

• The ARW Model is one of the first cloud-scale models designed specifically to conserve mass, momentum, energy

• However:– “Issues” with mass conservation (water)– Momentum conservation is not guaranteed (?)– Conserves internal energy of dry air

Page 16: Representation of Convective Processes in NWP Models (Part I) George H. Bryan NCAR/MMM Presentation at ASP Colloquium, “The Challenge of Convective Forecasting”

Components of a numerical model

• A set of governing equations

• A specified domain

• A set of numerical methods

• A set of parameterizations

• Initial conditions and boundary conditions

Page 17: Representation of Convective Processes in NWP Models (Part I) George H. Bryan NCAR/MMM Presentation at ASP Colloquium, “The Challenge of Convective Forecasting”

Idealized Domains

• Could be as simple as this room

• Could be a cloud in a box with a rigid lid

• Could be a sphere with no land (“aqua-planet”)

Page 18: Representation of Convective Processes in NWP Models (Part I) George H. Bryan NCAR/MMM Presentation at ASP Colloquium, “The Challenge of Convective Forecasting”

A global domain

Uses structured, rectangular grid

from: mitgcm.org

Page 19: Representation of Convective Processes in NWP Models (Part I) George H. Bryan NCAR/MMM Presentation at ASP Colloquium, “The Challenge of Convective Forecasting”

Staggered grids:

from: Randall (1994)

(e.g., MM5) (e.g., ARW)

Page 20: Representation of Convective Processes in NWP Models (Part I) George H. Bryan NCAR/MMM Presentation at ASP Colloquium, “The Challenge of Convective Forecasting”

Non-rectangular grids

from: ccrma.standford.edu/~bilbao

hexagonal triangular

Page 21: Representation of Convective Processes in NWP Models (Part I) George H. Bryan NCAR/MMM Presentation at ASP Colloquium, “The Challenge of Convective Forecasting”

A global triangular grid with mesh refinement

from: Thomas Heinze, DWD

Page 22: Representation of Convective Processes in NWP Models (Part I) George H. Bryan NCAR/MMM Presentation at ASP Colloquium, “The Challenge of Convective Forecasting”

Rectangular grids with nested domains

from: Bryan and Fritsch (2000)

Page 23: Representation of Convective Processes in NWP Models (Part I) George H. Bryan NCAR/MMM Presentation at ASP Colloquium, “The Challenge of Convective Forecasting”

How is a grid chosen?

• Many factors:– Ease of use– Accuracy– Performance– Application– Experience– Legacy

Page 24: Representation of Convective Processes in NWP Models (Part I) George H. Bryan NCAR/MMM Presentation at ASP Colloquium, “The Challenge of Convective Forecasting”

Vertical coordinates: a terrain-following coordinate

from: Xue et al. (2000)

Page 25: Representation of Convective Processes in NWP Models (Part I) George H. Bryan NCAR/MMM Presentation at ASP Colloquium, “The Challenge of Convective Forecasting”

Coordinate transformationIn the model code, it looks like a regular, rectangular mesh, e.g.:

from: Tannehill et al. (1997)

Vertically stretch grid:

Grid with curved upper

boundary:

Page 26: Representation of Convective Processes in NWP Models (Part I) George H. Bryan NCAR/MMM Presentation at ASP Colloquium, “The Challenge of Convective Forecasting”

from: Xue et al. (1995)

Coordinate transformationExample: ARPS equation for u

ARPS equations are not written in (x,y,z) space. They are written in (,,) space. (a curvilinear coordinate system)

Page 27: Representation of Convective Processes in NWP Models (Part I) George H. Bryan NCAR/MMM Presentation at ASP Colloquium, “The Challenge of Convective Forecasting”

Other types of vertical coordinates

from: Pielke (2002)

Page 28: Representation of Convective Processes in NWP Models (Part I) George H. Bryan NCAR/MMM Presentation at ASP Colloquium, “The Challenge of Convective Forecasting”

Terrain-following coordinate

• Very common (MM5, ARPS, ARW, etc)

• But, has a known limitation– Change in terrain height between two grid

points must be less than vertical grid spacing (I think … see Mahrer 1984)

– This becomes a real problem with cloud-scale model grids

• Example: atmosphere at rest

Page 29: Representation of Convective Processes in NWP Models (Part I) George H. Bryan NCAR/MMM Presentation at ASP Colloquium, “The Challenge of Convective Forecasting”

Not all features in model output are real!

Example: u (every 1 m/s) from a simulation of a stably stratified atmosphere at rest

Page 30: Representation of Convective Processes in NWP Models (Part I) George H. Bryan NCAR/MMM Presentation at ASP Colloquium, “The Challenge of Convective Forecasting”

Domain: What’s in ARW?

• Structured, rectangular grid with nests on a C-grid

• Hybrid terrain-following/hydrostatic-pressure vertical coordinate

• Why?– Experience at NCAR– Cloud-scale resolution

Page 31: Representation of Convective Processes in NWP Models (Part I) George H. Bryan NCAR/MMM Presentation at ASP Colloquium, “The Challenge of Convective Forecasting”

Components of a numerical model

• A set of governing equations

• A specified domain

• A set of numerical methods

• A set of parameterizations

• Initial conditions and boundary conditions

Page 32: Representation of Convective Processes in NWP Models (Part I) George H. Bryan NCAR/MMM Presentation at ASP Colloquium, “The Challenge of Convective Forecasting”

The essence of the problem

• Consider the equation for potential temperature for dry, inviscid flow

• This is not easy to implement into a computer code

• Computers add/subtract/multiply/divide, but they don’t differentiate/integrate

∂θ∂t= −u

∂θ

∂x− v∂θ

∂y− w

∂θ

∂z

Page 33: Representation of Convective Processes in NWP Models (Part I) George H. Bryan NCAR/MMM Presentation at ASP Colloquium, “The Challenge of Convective Forecasting”

Basic types of numerical methods

• Finite difference– Based on a grid (or mesh)– Uses Taylor series approximations to

differential terms

• Finite volume– Based on fluxes in-to/out-of control volumes– Triangles, hexagons

• Spectral– Specifies fields in Fourier space

Page 34: Representation of Convective Processes in NWP Models (Part I) George H. Bryan NCAR/MMM Presentation at ASP Colloquium, “The Challenge of Convective Forecasting”

Finite differences

• ARW is a finite difference-based model

• Taylor series:

– an infinite series– at some point we truncate the higher-order terms– for example …

f xi + Δx( ) = f xi( ) + Δx∂f∂x xi

+Δx2

2!∂2 f∂x2

xi

+L +Δxn

n!∂n f∂xn

xi

Page 35: Representation of Convective Processes in NWP Models (Part I) George H. Bryan NCAR/MMM Presentation at ASP Colloquium, “The Challenge of Convective Forecasting”

f xi + Δx( ) = f xi( ) + Δx∂f∂x xi

+Δx2

2!∂2 f∂x2

xi

+L +Δxn

n!∂n f∂xn

xi

f xi + Δx( ) = f xi( ) + Δx∂f∂x xi

+ R

Start with:

Ignore all but first few terms, the rest will be a remainer (R):

Solve for f/x

∂f∂x xi

=f xi + Δx( ) − f xi( )

Δx−R

Δx

• This is called a “forward difference” approximation to f/x.

• -R/Δx is called the “truncation error”

Page 36: Representation of Convective Processes in NWP Models (Part I) George H. Bryan NCAR/MMM Presentation at ASP Colloquium, “The Challenge of Convective Forecasting”

T.E.=−RΔx

=−Δx2

∂2 f∂x2

xi

+L

Let’s examine this formulation’s truncation error (T.E.):

• Because the T.E. is proportional to Δx, we say that the error is of O(Δx)

• This is more commonly referred to as “first order” truncation error

• If T.E. is proportional to Δx2, is is a “second order” scheme

• If T.E. is proportional to Δx6, is is a “sixth order” scheme

Page 37: Representation of Convective Processes in NWP Models (Part I) George H. Bryan NCAR/MMM Presentation at ASP Colloquium, “The Challenge of Convective Forecasting”

Notes on truncation error

• Truncation error (or “the order of a scheme”) tells you nothing about it’s accuracy– It tells you how the errors change as grid spacing

changes

• Notice that error is an inherent part of model design (error is guaranteed!)

• What we know about, we can deal with– (Knowledge is power)

Page 38: Representation of Convective Processes in NWP Models (Part I) George H. Bryan NCAR/MMM Presentation at ASP Colloquium, “The Challenge of Convective Forecasting”

from: Durran (1999)

Analytic solution to the advection equation• “E” = exact• “2” = 2nd order centered (e.g., MM5)• “4” = 4th-order centered (e.g., ARPS)

Page 39: Representation of Convective Processes in NWP Models (Part I) George H. Bryan NCAR/MMM Presentation at ASP Colloquium, “The Challenge of Convective Forecasting”

Example: translate an 8Δ feature across a gridInitial condition = analytic final state

Page 40: Representation of Convective Processes in NWP Models (Part I) George H. Bryan NCAR/MMM Presentation at ASP Colloquium, “The Challenge of Convective Forecasting”

A brief, math-free introduction to Fourier/spectral analysis

• Any real field can be represented by a series of sin waves with two pieces of information:– amplitude– phase

• The (squared) amplitude of these waves as a function of wavenumber is the power spectrum

Page 41: Representation of Convective Processes in NWP Models (Part I) George H. Bryan NCAR/MMM Presentation at ASP Colloquium, “The Challenge of Convective Forecasting”
Page 42: Representation of Convective Processes in NWP Models (Part I) George H. Bryan NCAR/MMM Presentation at ASP Colloquium, “The Challenge of Convective Forecasting”
Page 43: Representation of Convective Processes in NWP Models (Part I) George H. Bryan NCAR/MMM Presentation at ASP Colloquium, “The Challenge of Convective Forecasting”
Page 44: Representation of Convective Processes in NWP Models (Part I) George H. Bryan NCAR/MMM Presentation at ASP Colloquium, “The Challenge of Convective Forecasting”
Page 45: Representation of Convective Processes in NWP Models (Part I) George H. Bryan NCAR/MMM Presentation at ASP Colloquium, “The Challenge of Convective Forecasting”
Page 46: Representation of Convective Processes in NWP Models (Part I) George H. Bryan NCAR/MMM Presentation at ASP Colloquium, “The Challenge of Convective Forecasting”
Page 47: Representation of Convective Processes in NWP Models (Part I) George H. Bryan NCAR/MMM Presentation at ASP Colloquium, “The Challenge of Convective Forecasting”
Page 48: Representation of Convective Processes in NWP Models (Part I) George H. Bryan NCAR/MMM Presentation at ASP Colloquium, “The Challenge of Convective Forecasting”
Page 49: Representation of Convective Processes in NWP Models (Part I) George H. Bryan NCAR/MMM Presentation at ASP Colloquium, “The Challenge of Convective Forecasting”
Page 50: Representation of Convective Processes in NWP Models (Part I) George H. Bryan NCAR/MMM Presentation at ASP Colloquium, “The Challenge of Convective Forecasting”
Page 51: Representation of Convective Processes in NWP Models (Part I) George H. Bryan NCAR/MMM Presentation at ASP Colloquium, “The Challenge of Convective Forecasting”
Page 52: Representation of Convective Processes in NWP Models (Part I) George H. Bryan NCAR/MMM Presentation at ASP Colloquium, “The Challenge of Convective Forecasting”
Page 53: Representation of Convective Processes in NWP Models (Part I) George H. Bryan NCAR/MMM Presentation at ASP Colloquium, “The Challenge of Convective Forecasting”
Page 54: Representation of Convective Processes in NWP Models (Part I) George H. Bryan NCAR/MMM Presentation at ASP Colloquium, “The Challenge of Convective Forecasting”
Page 55: Representation of Convective Processes in NWP Models (Part I) George H. Bryan NCAR/MMM Presentation at ASP Colloquium, “The Challenge of Convective Forecasting”

from: Durran (1999)

Analytic solution to the advection equation• “E” = exact• “2” = 2nd order centered (e.g., MM5)• “4” = 4th-order centered (e.g., ARPS)

Page 56: Representation of Convective Processes in NWP Models (Part I) George H. Bryan NCAR/MMM Presentation at ASP Colloquium, “The Challenge of Convective Forecasting”

Example: translate an 8Δ feature across a gridInitial condition = analytic final state

Page 57: Representation of Convective Processes in NWP Models (Part I) George H. Bryan NCAR/MMM Presentation at ASP Colloquium, “The Challenge of Convective Forecasting”

Leapfrog in time, 2nd-order centered in space (e.g., MM5)

Page 58: Representation of Convective Processes in NWP Models (Part I) George H. Bryan NCAR/MMM Presentation at ASP Colloquium, “The Challenge of Convective Forecasting”

Leapfrog in time, 4th-order centered in space (e.g., ARPS)

Page 59: Representation of Convective Processes in NWP Models (Part I) George H. Bryan NCAR/MMM Presentation at ASP Colloquium, “The Challenge of Convective Forecasting”

Runge-Kutta in time, 6th-order centered in space (e.g., ARW)

Page 60: Representation of Convective Processes in NWP Models (Part I) George H. Bryan NCAR/MMM Presentation at ASP Colloquium, “The Challenge of Convective Forecasting”

Runge-Kutta in time, 5th-order upwind-biased in space (e.g., ARW)

Page 61: Representation of Convective Processes in NWP Models (Part I) George H. Bryan NCAR/MMM Presentation at ASP Colloquium, “The Challenge of Convective Forecasting”

An introduction to filters/diffusion

• Because we know the error is there, we should remove it

• This is why models have filters / diffusion / smoothers / dampers / mixing

• Filtering -- especially at small scales -- is a good thing!

Page 62: Representation of Convective Processes in NWP Models (Part I) George H. Bryan NCAR/MMM Presentation at ASP Colloquium, “The Challenge of Convective Forecasting”

from: Durran (1999)

Analytic solution to the artificial diffusion terms• “2” = 2 (e.g., Eta?)• “4” = 4 (e.g., MM5, ARPS)• “6” = 6 (e.g., ARW)

Page 63: Representation of Convective Processes in NWP Models (Part I) George H. Bryan NCAR/MMM Presentation at ASP Colloquium, “The Challenge of Convective Forecasting”

from: Knievel et al. (2005)

Example: ARW simulation over Utah

Essentially no filter + 6 diffusion

Page 64: Representation of Convective Processes in NWP Models (Part I) George H. Bryan NCAR/MMM Presentation at ASP Colloquium, “The Challenge of Convective Forecasting”

from: Jack Kain, NSSL

ARW Model forecast

Δ = 2 km

Page 65: Representation of Convective Processes in NWP Models (Part I) George H. Bryan NCAR/MMM Presentation at ASP Colloquium, “The Challenge of Convective Forecasting”

The point:

• Numerical techniques have a direct effect on the model’s output

• Most of the differences are at small scales

• Some features in a model’s output are real, some come from numerical techniques– My “rule of thumb” for ARW:

• If it’s bigger than 6Δ, then it’s believable• If it’s smaller than 6Δ, don’t trust it

Page 66: Representation of Convective Processes in NWP Models (Part I) George H. Bryan NCAR/MMM Presentation at ASP Colloquium, “The Challenge of Convective Forecasting”

ARW:

• Mostly 2nd-order finite differences (on Arakawa-C grid)

• 5th*- and 6th*-order finite differences for advection terms– * = only for constant flow– More accurate with small-scale features– Can be more costly

6 diffusion– Acts only at small scales

Page 67: Representation of Convective Processes in NWP Models (Part I) George H. Bryan NCAR/MMM Presentation at ASP Colloquium, “The Challenge of Convective Forecasting”

Components of a numerical model

• A set of governing equations

• A specified domain

• A set of numerical methods

• A set of parameterizations

• Initial conditions and boundary conditions

Page 68: Representation of Convective Processes in NWP Models (Part I) George H. Bryan NCAR/MMM Presentation at ASP Colloquium, “The Challenge of Convective Forecasting”

Subgrid-scale processes are handled with parameterizations

• From AMS Glossary:– Subgrid-scale process: Atmospheric

processes that cannot be adequately resolved within a numerical simulation. Examples can include turbulent fluxes, phase changes of water, chemical reactions, and radiative flux divergence. Such processes are often parameterized in numerical integrations and even neglected in some applications.

Page 69: Representation of Convective Processes in NWP Models (Part I) George H. Bryan NCAR/MMM Presentation at ASP Colloquium, “The Challenge of Convective Forecasting”

Parameterizations (aka “physics”) for cloud models

• Microphysics: cloud drops, rain drops, snow, hail, etc

• Surface: grass, sand, forest, rock, etc … along with soil temperature, moisture, etc

• Sub-grid-scale turbulence: boundary layer eddies, puffy Cu clouds

• Atmospheric radiation: longwave (IR), shortwave (UV)

Page 70: Representation of Convective Processes in NWP Models (Part I) George H. Bryan NCAR/MMM Presentation at ASP Colloquium, “The Challenge of Convective Forecasting”

Modifying a numerical model

• It is very difficult to modify a model’s governing equations

• It is very difficult to modify a model’s grid structure

• Some numerical techniques can be changed easily, others cannot

• It is extremely easy to modify a model’s parameterizations

Page 71: Representation of Convective Processes in NWP Models (Part I) George H. Bryan NCAR/MMM Presentation at ASP Colloquium, “The Challenge of Convective Forecasting”
Page 72: Representation of Convective Processes in NWP Models (Part I) George H. Bryan NCAR/MMM Presentation at ASP Colloquium, “The Challenge of Convective Forecasting”

What’s in ARW, and why?

• There are many parameterizations in ARW, and the list is growing

• Why? – Because we can.– Because it matters.

• What gets into the model?– Whatever someone has time to work on.

Page 73: Representation of Convective Processes in NWP Models (Part I) George H. Bryan NCAR/MMM Presentation at ASP Colloquium, “The Challenge of Convective Forecasting”

Components of a numerical model

• A set of governing equations

• A specified domain

• A set of numerical methods

• A set of parameterizations

• Initial conditions and boundary conditions

Page 74: Representation of Convective Processes in NWP Models (Part I) George H. Bryan NCAR/MMM Presentation at ASP Colloquium, “The Challenge of Convective Forecasting”

Initial conditions /data assimilation

• An important part of real-time forecasts– Need to know the present, before you can

predict the future

• Historically viewed as external to the numerical model … but not any more– Variational schemes (3DVAR, 4DVAR)– Ensemble-based schemed (EnKF)

Page 75: Representation of Convective Processes in NWP Models (Part I) George H. Bryan NCAR/MMM Presentation at ASP Colloquium, “The Challenge of Convective Forecasting”

Boundary conditions

• A global model needs only lower and upper boundary conditions

• A limited-area model also needs lateral boundary conditions– Often comes from a global model forecast, or

from a limited-area model with a larger domain

• Idealized simulations can use funky boundary conditions: periodic, rigid walls, open wave-radiating, etc.

Page 76: Representation of Convective Processes in NWP Models (Part I) George H. Bryan NCAR/MMM Presentation at ASP Colloquium, “The Challenge of Convective Forecasting”

In Summary:

• Numerical models are complex!

• Choices have been made– e.g., rectangular vs triangular

• Approximations have been made– e.g., 2nd-order vs. 4th-order finite difference

• Compromises have been made– Accuracy vs. efficiency

Page 77: Representation of Convective Processes in NWP Models (Part I) George H. Bryan NCAR/MMM Presentation at ASP Colloquium, “The Challenge of Convective Forecasting”

My advice:

• Know thy model!– Read the documentation– Read the journal articles

• Choose a model that was designed to simulate what you are studying– Climate vs. weather– Thunderstorms vs. puffy Cu– Tropical vs. polar

Page 78: Representation of Convective Processes in NWP Models (Part I) George H. Bryan NCAR/MMM Presentation at ASP Colloquium, “The Challenge of Convective Forecasting”

<end of Part I>