63
RELATIVISTIC ELECTRON BEAMS AND BEAM-PLASMA INTERACTION P.C. de JAGHER~ F.W. SLUUTERa and H.J. HOPMANb a Department of Applied Physics, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands b FOM-Institute for Atomic and Molecular Physics, Kruislaan 407, P.O. Box 41883, 1009 DB Amsterdam, The Netherlands I NORTH-HOLLAND - AMSTERDAM

Relativistic electron beams and beam-plasma interaction .pdf

Embed Size (px)

DESCRIPTION

Review Article Jagher 1988 Physics Reports

Citation preview

Page 1: Relativistic electron beams and beam-plasma interaction .pdf

RELATIVISTIC ELECTRON BEAMS ANDBEAM-PLASMA INTERACTION

P.C. de JAGHER~F.W. SLUUTERa and H.J. HOPMANb

a DepartmentofApplied Physics,EindhovenUniversity of Technology,

5600 MB Eindhoven,The Netherlands

b FOM-Institutefor Atomicand Molecular Physics, Kruislaan 407, P.O. Box 41883,

1009 DB Amsterdam,The Netherlands

INORTH-HOLLAND - AMSTERDAM

Page 2: Relativistic electron beams and beam-plasma interaction .pdf

PHYSICSREPORTS(Review Sectionof PhysicsLetters) 167, No. 4 (1988) 177—239. North-Holland,Amsterdam

RELATIVISTIC ELECTRON BEAMS AND BEAM-PLASMA INTERACTION

P.C. de JAGHERa, F.W. SLUIJTERa and H.J. HOPMANb*

‘Departmentof AppliedPhysics,EindhovenUniversityof Technology,56(X) MB Eindhoven, The NetherlandsFOM-Institute for Atomicand Molecular Physics,Kruislaan 407, P.O. Box 41883,1009 DB Amsterdam,The Netherlands

ReceivedJanuary1988

Contents:

1. Introduction 179 3.4. Principalwavesin the beam—plasmasystem 2001.1. Introduction 179 3.5. The waveguidemodes 2101.2. A historicalsketch 179 4. Non-linear theory 2191.3. Relativistic electronbeam—plasmainteraction 184 4.1. Introduction 219

2. The momentumdistribution of a relativisticelectronbeam 4.2. General characteristicsof a linearly unstablewaveand its moments 186 spectrum and its interaction with a beam—plasma2.1. Introduction 186 system 2192.2. The momentum distributionof a relativistic electron 4.3. The non-linearstageof thetwo-streaminstability in a

beam 186 REB—plasmasystem 2242.3. A comparisonof thevarious models 189 Appendices 2262.4. Hydrodynamic parameters for relativistic electron A. The equivalentconductivity tensor for the relativistic

beams 190 electronbeam 2263. Linear theory 192 B. The numericalcalculationof someintegrals 231

3.1. Introduction 192 C. The relativistic bounce motion 2333.2. Hydrodynamictheory for a cold beam—plasmasystem 194 References 2353.3. Kinetic theory 198

Abstract:The interaction of a (relativistic) electronbeamwith a plasmais discussed.In the introductionthe history of the field and relatedtopics are

reviewed.Next themomentumspacedistributionof a relativisticelectronbeam(REB) is treated.Then, taking into accountthe kineticpropertiesof a REB, linear wave dispersionin a REB—plasma system is surveyed.Dispersion diagramsare calculatedand presentedfor a numberofrepresentativesetsof parameters.Finally adiscussionis givenof thedispersivepropertiesof unstablewaves.Criteriaare developedto discriminatebetweenthe varioustypesof possiblenon-linearbehaviourof thewavesas they grow to their saturationlevel.

* Presentaddress:NET-team,Max PlanckInstitute for PlasmaPhysics,D 8046, Garchingbei München,Fed. Rep. Germany.

Singleordersfor this issue

PHYSICSREPORTS(Review Sectionof PhysicsLetter~)167, No. 4 (1988) 177—239.

Copies of this issue may be obtained at the price given below. All orders shouldbe sentdirectly to the Publisher.Ordersmust beaccompaniedby check.

Single issueprice Dfi. 48.00,postageincluded.

0 370-15731881$22.05 © ElsevierSciencePublishersB.V. (North-HollandPhysicsPublishingDivision)

Page 3: Relativistic electron beams and beam-plasma interaction .pdf

P.C. deJagheret a!., Relativistic beam—plasmainteraction 179

1. Introduction

1.1. Introduction

Generally speaking,there are four fields of researchfor which beam—plasmainteraction is im-portant. Firstly, there is the purely scientific wish to understandthe behaviourof a beam—plasmasystem.Then, the electronbeam,being a sourceof free energy,can excite oscillations.This is appliedin various kindsof electron tubesand other devicesthat havebeen andstill are being developedtogenerateradio waves in and abovethe ultra-high frequencyband (109_lOllHz). Thirdly, especiallysince intense relativistic electron beams (REB’s) becameavailable, there are studiesaimed at theemploymentof thesebeamsto heat a plasmaup to thermonucleartemperatures(108 K i04 eV). Inrecentdevelopments,like free electronlasers,gyrotronsandrelativisticallymoving mirrors, relativisticelectronbeamsareemployedto generatehigh powerwavesup to theinfraredregion.We alsonotethetechnicalapplicationof REB’s drilling holesin rock (mining) or in the atmosphere(S.D.!.). Finally wemention ionosphericand astrophysicalphenomena,like type-TI! solar burstsand the auroraborealis,that occurbecauseof beam(solarwind)—plasmainteraction.However,a reviewof the relatedresearchis beyondthe scopeof this paper.

In the nextsectionwemakesomeremarksregardingthe history of the first threefields. Thereafter,in the last sectionof thisintroduction,we paysomeattentionto morerecentresultsregarding(intense)relativistic electronbeamsandto their interactionwith a plasma.Hereand in the subsequentsectionsour main interestgoes to researchaimedat plasmaheating.

Section 2 deals with relativistic electronbeams.Especially their velocity distribution, which canneitherbe called thermalnor cold, will be discussed.The influenceof this distributionon instabilitiesinthe beam—plasmasystemis treatedin section3. The last section is devotedto the onsetof non-linearand turbulentprocessesthat can play a role in the beam—plasmainteraction.

1.2. A historical sketch

The first time beam—plasmainteractionwas observedin thelaboratorycoincidedwith thefirst timealaboratoryplasmawas created.Theseearly experimentswere intendedto study electricdischargesingasesat low pressure[1]. In theseexperimentsit was observedthat at gaspressuresof about 1 mm Hg,nearthe cathodethereexistedregionswherelight is emitted.Theseglow regionsareboundedby darkregions, carrying the namesof Faradayand Hittorf. In the glow regions electronsemitted by thecathodehavegainedenoughenergyto excite and ionize the gas molecules.Doing so they lose theirenergyand next a dark region appears[21.Probemeasurementsof the electric field confirmed thispicture. So the glow region itself containsa beamcreatedplasmaand a beamof electronspassingthrough. Further investigations,such as those by Penning[3], revealedthat the interaction betweenbeamand plasmaleadsto high frequency(i09 Hz) oscillations.These oscillationswere explainedbyTonks and Langmuir [4] as electrostaticoscillations of plasma electronsthat occur at the plasmafrequencyWpe~ ~ = nee2lmeEo.

The oldestreferenceswe could trace to relativistic effectsof chargedparticlesacting as a beamin achargedbackgroundis one on pinching [5] and oneon cosmicrays [6]. Otherearlypapersdealingwiththe questionof electricalneutrality in a relativistic beamplasmasystemandwith relativistic correctionsto the theoryof the positive column were written by Fetz [7, 8].

Page 4: Relativistic electron beams and beam-plasma interaction .pdf

180 P.C. deJaghereta!.. Relativisticbeam—plasmainteraction

1.2.1. Microwave tubesFromhereon researchbecamedirectedat the applicationof the observedbeam—plasmainteraction.

A first attemptwas madeby Haeff [9] who reportedwave amplification of 80 dB over a distanceof20 cm, He also mentioned the occurrenceof situations in nature, such as the solar coronaabovesunspots,wheresimilar processescouldtakeplace.Furtheranalysesof the beamplasmasystem,usingabeamwith a well-definedvelocity, were reportedby Pierce[10] andBohmand Gross[11]. The latter,presentinga comprehensivetheoryof plasmaoscillations,discussedtheir origin and growth. Also, inthe USSR, the prospectsof plasmatubeshad beenrealized[12].The mostsuccessfulplasmaamplifiertube experimentwas performedby Boyd et al. [13]. These authorsmeasuredthe amplification of asignal as function of the beam current. Having determinedthe plasma density with the aid of aLangmuirprobe,theywereable to concludethat the amplificationreachedits maximum at w = aswas predictedten years before [11]. Furthermorethey observeda saturationof the amplification, aphenomenonwhich had to wait anotherdecadefor its explanation.Beamsused in thesemicrowavetubestypically haveenergiesof i03 eV and currentsof l0_2A.

The growthof wavesin plasmasandthatin slowwave structures,suchasusedin klystronsandotherelectrontubes,havemanyfeaturesin common. The phenomenoncan be describedby the dispersionequationEr — wPhI(w — ku

0)2= 0. It was realizedthat amplification factorsin plasmasaremuchlarger

than in slow wave structuresbecausein a plasma the relative dielectric constant,Er~ can assumenegativevalues.So, filling a klystron with plasmawould reduceits size substantially.Attemptsin thisdirection were successfulat economicallyuninterestinglylow power levelsonly. For stableoperationafully ionized plasmais required,which is difficult to achievein a small volume. If the gas is partiallyionized the degreeof ionization dependson the wave amplitude,so all kindsof parasiticoscillationsbecomepossible [14].

Meanwhileanotherresonanceof a plasmabecameemployedin ultra-highfrequencydevices.Whenimmersedin a magneticfield a plasma can freely oscillateat the cyclotron frequency[1, 11 = eBim.High power levels appearedto be attainableand a variety of magnetronshavebeenproducedeversince. Here only an electronbeam,which is propagatingin an evacuatedwave cavity, is employed.When the beamenergyis increasedup to relativistic values,the cyclotronfrequencyis shifted duetothe relativistic masscorrection: ~b = eBlym.

An electronbeam,propagatingacrossa magneticfield, forms a ring or an annularbeam.In sucharing or beam density fluctuations lead to the occurrenceof electron bunches. In such a bunchelectrostaticrepulsioncauseselectronsin the tail to decelerate.As the masscorrectioncausesthemoreenergeticelectronsto rotate slower thanthe less energeticones,slow electronswill overtakethe fastones.The combinationof thesetwo effectsleadsto an instability which is oftenreferredto asa negativemassinstability. This type of instability is used in devicescalledgyrotronswhich arebeing developed[15—18].They are reportedto work fairly efficiently and to generatevery high peakpower levels[17,19].

Two other mechanismsthat can be employedto generateultra-shortwavelengthradiowavesarebeing investigated.Firstly, propagatinga beamalong a rippled magneticfield or waveguidestructure,electromagneticwaveswith a wavelengthA = ~l/2y~, where~l is the lengthof the ripple, areemitted.This effect is usedin devicescalled free electron lasers(FEL’s) [20—22].Secondly,as soon as anelectromagneticwavehaspenetratedinto a plasmadownto a regionwherethe cutoff frequencyequalsthe wave frequency,the wave is reflected.This effect can be usedto reflect a wave in a relativisticallymoving mirror formed by the front of a relativistic electronbeam. The faster this mirror movestheshorterthe wavelengthof the reflectedwave [23].

Page 5: Relativistic electron beams and beam-plasma interaction .pdf

P.C. deJagheret a!., Relativisticbeam—plasmainteraction 181

Besidesthe possibility to convert beamenergyinto electromagneticwaves other reasonsto studybeam—plasmainteraction exist: namely plasma heating and fundamentalresearch.In the next twosectionswe discussboth.

1.2.2. PlasmaheatingIn order to heat a plasmaup to fusion temperatures(108K i04 eV), energymust be fed into it. It

was known that plasmasare heatedby waves. Beam—plasmatubes carried the promiseto generatethesewaves. But then peoplerealized that there are many losseswhen collecting, transportingandlaunchingthesewaves. Theselossescan be avoidedinjecting the beamdirectly into the plasma.Thefirst report on plasmaheatingby a strongelectron beamwas by Smullin and Getty [24]. The beamsinvolved had energiesabove i04 eV and currentsabove 10 A. Thesebeamswere injected along themagneticfield lines into a puff of ga~in the centreof a mirror machine. It was observedthat energytransferled to two differentplasmaelectronpopulations:a low temperaturegroupwith Te 100eV anda very low density high temperature,Te i0~eV, group. Similar experimentswere performedbyKharchenkoet a!. [25], by Seidl and Sunka [26] and by Alexeff and Neidigh [27]. In the paperofKharchenkoet al. [251many topics that would appearto be of interestfor the field during the nextdecadewere alreadytreated.Alexeff andNeidigh reportedthat the energytransferfrom the beamtothe wavesand from thereto the gasis so efficient that a fully ionizedplasmawas formed. Undertheseconditions,calledburnout of the neutralgas, they discoveredthat rings of highly energeticelectronsencirclingthe axis were formed, a finding which later was applied in the ELMO Bumpy Torusfusionmachine [28]. Besides electron beam—plasmaheating we mention researchon ion beam—plasmainteraction.This interaction is interestingbecausean ion beam is formed when a neutral beamisinjected into a hot plasma. Since neutral beams are not deflectedby magnetic fields they areappropriateto supplyenergyto a plasmain a toroidal system.Highly energeticion beamsappearedtointeractwith a plasmalike electronbeamsdo. However,when the ion beamvelocity lies betweentheplasma-electronand the plasma-ion thermal velocities, ion-beam—plasma-electroninstabilities areLandaudampedand instabilitiesdue to ion-beam—plasma-ioninteraction dominate[29, 30]. Earlierwork in this field was reportedby Brakenhoff et al. [31] and HermannandFessenden[32].

Around 1970 electronbeamheatingresearchgot a new impulsewhen the technologyto generatehigh powerrelativistic electronbeams(REB’s), using a Marx generator,becamemature;cf. ref. [33]for furtherreferences.Thesebeamshaveenergiesabove0.5MeV, currentsexceeding100A andapulselength aboveSOns. Using REB’s a new mechanismto heat a plasmacould becomeeffective: returncurrentheating.Dueto the short risetimeof the beamcurrenta returncurrentis inducedin theplasma.This current,which, at the moment it sets in, fully compensatesthe beamcurrent,is carried by theplasmaelectrons.Consequentlythe plasmaelectronsflow through the ions with a velocity which isproportionalto the beam-to-plasma-electrondensityratio [34—40].If thisvelocity is not small comparedto the thermalvelocities an instability nearthe ion plasma frequency,the Bunemaninstability [41],develops.This type of interactionmight preferentiallyheatthe ions [42—46],whichhardly occurredinthe long pulse beam—plasmaexperimentsof the precedingdecade.

One of the first to report on REB—plasmainteraction were Altyntsev et al. [47]. In theseearlyexperiments,like Prono’s [48], huge plasmaenergydensitieswere measured.However, diagnosticswere rather elementaryso a proper interpretation of the results had to wait. Better diagnosedexperimentswere reportedlater by Abrashitovet a!. [49], Hammeret al. [50], Greenspanet a!. [51]andJanssenet a!. [52,53]. REB—plasmainteractionprovedto be able to havethe beamdeposit10% of

Page 6: Relativistic electron beams and beam-plasma interaction .pdf

182 p.c. de Jag/seeeta!., Relativistic beam—plasmainteraction

its energyin a plasma column of 1 m length and plasmatemperaturesabove 1 keY were measured.Theseresultsdependedsensitivelyon the velocity distributionof the beamelectronsand the beamtoplasmadensityratio.

Extrapolationof theseexperimentsto thermonuclearreactorparametersshowedthat a linearreactoris feasible. However, poor energyconfinementalong the magneticfield, evenin casespecialfieldconfigurations,like multiple mirror fields, are used,requiresa reactorlengthof 300m [54]. The highcosts of such large scale experimentsand the judgementthat toroidal facilities are more promising,causedthermonuclearelectronbeam—plasmaresearchto terminate.

1.2.3. Fundamentalbeam—plasmaresearchApart from the two applications discussedabove, also other reasonsstimulated fundamental

beam—plasmaresearch.In anyapparatusin which a beamof chargedparticlesis presentbeam—plasmainteraction may occur. Thus it could happenthat unwantednoise in a D-shapedmagneticmassspectrometerconstructedto separateU isotopes,a “calutron”, initiated beam—plasmaresearchinAmsterdamover a quartercentury ago. Also progressin mathematicsmakesbeam—plasmaresearchrewarding. During the pastdecadesmathematicsof non-linearequations,especiallywhereit concernsnon-linearsolitary wavesandchaoticbehaviour,providednew techniques[55,56]. The correspondingphenomenacan occurdueto the interactionof a beamwith a plasma[57].At presentthis still motivatesresearch,cf. e.g. [58, 591.

Eversinceuseful applicationsof plasmaappearedfeasiblefundamentalresearchflourished.At first,the studieswere concentratedon linearized equations.A first major discoverywas madeby Landauwhopointedout the physicalimplicationsof the theoremsof theLaplacetransform[60].This discoveryultimatelyled to the conceptof resonantparticles:particlesof whichthe velocity is (nearly)equalto thephasevelocity of somewave andthereforestrongly interactwith this wave.Later, Penroseformulatedcriteria to decidewhetherthe electrostaticinteractionbetweena plasmaandwavesleadsto instabilities[61]. These criteria imply that a plasma with a sufficiently pronouncedminimum in its velocitydistribution, suchas a beam—plasmasystem, is unstable[62]. The understandingof the experimentaldataimprovedwhenTrivelpiece calculatedthe influenceof finite geometry[63]: unstablewavesin anexperimentshould be regardedas unstablewaveguidemodes and not as freely propagatingplanewaves. So factorslike cos(k~I~k~)appearin formulae [64].

Becausemany experimentstook place in a magneticfield the theorieswere extendedaccordingly.For a cold plasma the classification of all small amplitudewaves is accomplishedby the Clemmov—Mullaly—Allis (CMA) diagram,cf. e.g. [65, 66]. In a cold magnetizedhomogeneousbeam—plasmasystem the coupling betweenthe electron plasma waves with the beamwaves can lead to threeadditionalunstablemodesbesidethe electrostatictwo-streaminstability [67].

The growing complexity of the theory led to experimentswith better controlled conditionsandimproveddiagnostics.Nezlin andSolntsevreportedmeasurementson beamcreatedplasmasat very lowgas pressures[68]. They observedthe beamspacecharge to expel all plasmaelectrons,leaving asituationwherethe Bunemaninstability [41] can develop. At evenlower plasmadensitiesthe beamspacechargecould build up a spacechargepotentialthat was largerthan the acceleratingvoltageoverthe electron gun. This “virtual cathode” then preventsthe beampropagation. In a well-designedexperimentKharchenkoet a!. measuredthe energyspectrumof the beamelectronsemergingfrom theplasma[25].It appearedto be a flat distributionextendingbetween0.5 and 1.2 timesthe initial beamenergy.At the same time Vedenovet al. and Drummond and Pines investigateda mechanismfor

Page 7: Relativistic electron beams and beam-plasma interaction .pdf

P.C. deJag/seeet al., Relativisticbeam—plasmainteraction 183

wave—particle interaction which becameknown as quasi-lineardiffusion [69—73].It appearedto bepossibleto attributethe flatnessof the distributionfunction to this process[72—75].However, the factthat somebeamelectronsobtainedenergiesabovethe initial beamenergycould not be explainedthisway. Meanwhile the measurementof growth ratesof unstablewavesoften deliveredvaluesbelow thetheoreticallypredictedones.This leadsto extensionsof the theory incorporatingeffectsof non-uniformdensities,collisions and non-zerotemperature[76—78].A careful comparisonof measureddispersioncharacteristicsof an electron plasmawave with a kinetic model showedgood agreementboth forwavelengthand damping rates [79]. In a further developmentof this experimentMalmberg andWhartonobservedthat theexcitationin the plasmaof alargeamplitudewave leadsto oscillationsin thewave amplitude.This effect was explainedas the resultof trappedparticleoscillations,a phenomenonalreadystudiedby O’Neil [80], thatwould playan importantrole in theexplanationof the saturationofbeam—plasmainstabilities. If electronshavevelocities which are nearlyequalto the phasevelocity ofsomewave they may fall into a trough of the wave potential andcreatea spacechargeof a polarityoppositeto that of the wavewhile they approachthe bottomof the trough.Hence the wave amplitudeis reduced.The trappedelectronsoscillatearoundthe minimumof the wavepotentialwith a bouncefrequency,which, in a first approximation,is given by ~

0B = \1eEkIm; hereE denotesthe amplitudeand k the wavevectorof the wave. The wavelength of the amplitude modulation of the wave isobviously given by kB = WB!Vph, whereuPh is the phasevelocity of the modulatedwave.

The influenceof this mechanismon the beam—plasmainteractionwas subsequentlyinvestigated.Itappearedto be useful to distinguishtwo limiting cases:the cold beam,or hydrodynamiccaseand thewarm beam,or kinetic one. In the latter casethe phasevelocity of the mostunstablewave lies withinthe supportof the beamdistributionfunction whichhas the shapeof a “gentlebump”. Herethe growthof the instability can be regardedas the inverseof Landaudamping[60] and all the time somebeamparticlesaretrappedin the unstablewave. In this casethe saturationof the instability can be explainedas a resultof changesof the beamdistributionfunctioncausedby quasi-lineardiffusion. This type ofbeamwas investigatedby Gentle and Robertson[81—83].In casethe beamis cold the unstablewavesmustgrow to a certainlevel beforetheycan trap beamparticles.During this growth the wave with thelargestgrowth rate becomesdominant. In the limit a “single wave” remainswhich can trap the entirebeam. This mechanismwas put forward by Drummondet a!. [84] to explain the saturationof thebeam—plasmainstability.

By this time beam—plasmaresearchbifurcated. One branch,aimedat plasmaheatingby meansofrelativistic electronbeamsis discussedin the nextsection.The other, mainlyemployingnon-relativisticbeams,remainedfocussingthe attentionon fundamentalprocesses.As an example we mention theexperimentsof Cabral who observedexamplesof mode-locking and wave decay [85]. In otherexperimentsparticle velocity distributions,which could be comparedwith the results of numericalsimulations,weremeasured.In anextclassof experimentscorrelationsweremeasuredto test theorieson plasmaturbulence.Reviewsof non-relativisticbeam—plasmaresearchhavebeenpublishedregularly[86—90].Nowadays,stimulatedby progressin mathematics,fundamentalbeamplasmaresearchstillcontinues.Roughlyspeaking,recentpublicationscan be divided in threeclasses.Firstly, old lines arecontinued. Beam—plasmasystemsare studied paying respectto spatial inhomogeneities[91], finiteexperimentaland beam geometry [92—96],beam modulation [97], the occurrenceof turbulence[98—100],or emitted waves[101].Secondly,non-linearphenomenaare studied.Both wave—waveandwave—particleinteraction [102—105]as well as non-linearwave solutions [106—108]are investigated.Thirdly, thereis the classof solitary non-linearwaveswhich is quite popularat present.Especiallythesolitary envelopeof a plasma wave (the Langmuir soliton), which can be excitedby beam—plasma

Page 8: Relativistic electron beams and beam-plasma interaction .pdf

184 P.C. de Jaghereta!., Relativistic beam—plasmainteraction

interaction,was oftenlooked at [109—1121,but alsoothertypes,like upper-hybridandwhistlersolitonswerestudied[113—114].

1.3. Relativistic electron beam—plasmainteraction

Around 1970, relativistic electron beams became available. This openednew perspectivesforbeam—plasmaresearchaimedat plasmaheating.Theserelativisticbeamsdeviatedin someaspectsfromthe dc beamsusedbefore. The major differencesare:

(1) a short, high current,pulse,(2) a typical beammomentumdistribution,(3) a high energycontent, and powerlevel and relativistic electronenergies.

Eachof thesepropertiescausesspecialfeaturesthat were investigated.When launchedinto a plasmathe short pulselength, combinedwith the high beamcurrent causes

strongswitching-onphenomena.We alreadymentionedthe inducedreturncurrentwhich mayprovidean additionalheatingmechanism[35—46].If the plasmais too dilute to sustainthe return current,thestrengthof the beamcurrentmayevenpreventbeampropagation.As soonas the net current exceedsthe Alfvén current ‘A = 4irr0yf3mc

3le l7y/3 kA, the self-field of the beamcausesthe beamto pinch[6]. Also an insufficient neutralizationof the beamspace-chargemaypreventbeampropagation;thebeamelectronswill be deceleratedin the field built up by this space-chargeand a virtual cathodeisformed [115,116]. Whena beamcurrent,exceedingthe Alfvén current,is only partially compensated,fluctuationsin the beamtrajectorymayleadto a disruptionof the beamcurrent[117].So the presenceof an induced return currentin the plasmais necessaryfor the propagationof a high current beam.Besidethe above-mentionedpinchingof the beam,othermacroscopicinstabilitiesmayinfluencestablebeampropagation.As such,both the kink or hose instability [118—123]andthe Weibelor filamentaryinstability [119, 124—135] were investigated.Especiallyin the earlyyearsof relativistic beamresearchthe topic of stablebeampropagationandthe relatedcurrentinducedmacroscopicinstabilities receivedmuchattention [136—146].An early review paperwas written by Breizmanand Ryutov [147].

Scatteringof beamelectronsin the anodefoil of a beamgeneratingdiode causesa momentumdistributionwhich is typical for such a relativistic electronbeam.This propertyis discussedin the nextsection.As a resultof this scatteringit often is not correctto treata relativistic electronbeamas a coldbeam: above a certain average scatter angle kinetic theory has to be used, below this anglehydrodynamic theory, describing cold and modestly warm beams, is appropriate.Physically thisdistinctionis explainednoticing that, as soonas the velocity of a groupof beamparticlesprojectedonthe direction of the phase velocity of some unstablewave coincideswith this phase velocity theinstability receivesits energyratherfrom this group of particles thanfrom the entire beam(inverseLandaudamping).Therefore,with increasingscatteranglean instability becomesweaker and someotherweak instability with a phasevelocity outsidethe beamvelocity region may becomethe moreimportantone. Regardingthe growth rate of the beam—plasmainstability, Hammer[50]remarkedthat‘it hasbeencalculated[148],recalculated[149],reviewed[147]and thencalculatedagain[150—152]forever more “realistic” conditions’. Nevertheless,as we show in section 3 of the present paper,improvement is still possible. Experimentally the distinction betweenhydrodynamic and kineticbehaviourwas studied too: The useof cold beams(thin anodefoils) leads to stronger interactioncomparedto “scattered”beams.Consequently,when cold beamsare used,energytransferis moreefficient and characteristicinteraction lengthsare shorter. Also the measuredvelocity distributionofbeamparticlesafter the interaction is different [52].

Page 9: Relativistic electron beams and beam-plasma interaction .pdf

P.C. de Jaghereta!., Relativisticbeam—plasmainteraction 185

The high energycontentandpowerlevel of relativistic electronbeamsmadethem a promisingtoolto heata plasmato fusion temperatures.Apart from heatingof linearly confinedplasmasalsoheatingoftoroidally andinertially confinedplasmas[153—155,156, 157] were considered.The fact that relativisticelectronenergiesarenecessaryto attainthesehigh powerlevels, implies that relativistic effectsshowupin the interaction. We already mentionedthe negativemass instabilities. Furthermore,a completerelativistic treatmentimplies that fieldshave to be treatedas electromagneticfields. This meansthat theinfluence of transversewaves should be regardedbesidesthe longitudinal electrostaticwaves thatdominatenon-relativisticbeam—plasmainteraction.Another relativistic effect is founddeterminingthewave energylevel, at which trappingof beamelectronssaturatesthe two-streaminstability: Althoughthe beam velocity and the phase velocity of the most unstablewave are nearly the samein thelaboratory frame, when transformedto the wave frame the beamelectronscan still haverelativisticenergies[158].

After the first reports on REB—plasmainteractionwere published,a largenumber followed. Theearly publicationsreporteddiamagneticloop measurementsof the dependenceof the perpendiculartemperatureon beamandplasmadensities.A reviewof theseexperimentaldata [47—49,159—171] wascompiledby Thode [151].He noticed satisfactoryagreementas well as discrepancieswith theory andnumericalsimulations.Later publicationsreportedmorecomplexmeasurements.The influenceof thebeamscatteranglewastested,parallelplasmaandbeamdistributionsweremeasuredandthe influenceof plasmaturbulencewas investigated[171—181].Finally several comprehensiveexperimentalstudieswere published[50—53].

Also the computeris usedto investigatebeam—plasmainteraction.Simulatingbeam—plasmasystemsa phenomenonlike particle trappingcan clearly be seenand theoreticalmodelscan be studiedandadjusted[182—197].

Gradually it becameclear that plasmaheating by a REB is causedby processessimilar to thoseobservedwhenstudyingnon-relativisticbeams.Dependingon the scatterangle(beam“temperature”)a weaklyor strongly turbulentwavespectrumis built up [198]. Interactingwith this wave spectrumtheplasmais heated.Accordingly, turbulentspectraand energytransportdue to wave—waveinteractionand quasi-linearprocesseswere studied [198—214].Also a new non-linear process attractedtheattention.If the beamis cold and the beam-to-plasmadensityratio is not very muchsmallerthanone,the oscillatingtwo-streaminstability setsin. Herewavepressurebreaksup a wave train andcollapsingsolitary wave packetsare formed. This instability is closely related to the modulationalinstability[215—219],an instability which can be regardedas a four-wave decayinstability: two high-frequencycomplexconjugatedwavesdecayto a low-frequencyone, a decayprocessput forward by Nishikawa[220].Zakharov,who studiedthis processregardingthe interactionbetweenplasmaandion acousticwaves, showedthat a modelfor the processis given by the non-linearSchrödingerequation[57,55].Also experimentallythe occurrenceof the oscillatingtwo-streaminstability was tested.Measuringthedistribution function of an initially cold relativistic beam,after it hadpassedthrough a plasma onefound that beamscatteringcould be causedby afew large amplitudewave packets[52,221]. Connectedto the presenceof solitary wave packetsin the plasma,the stateof the plasmais regardedstronglyturbulent; thisstrongturbulence(“Langmuir turbulence”)can be describedin termsof an ensembleofinteractingsolitary waves [222—228].Now energytransferto the plasmaoccurswhen a solitary wavecollapses:as soonas the solitary wave hasshrunkto a Debye length,Landaudampingleadsto a ratherlocal heatingof the plasmaand,dueto convection,hot tails in the plasmavelocity distributiondevelop.

A few topics mentionedabove will be commentedon in the next sections.First we comparethevarious beamdistribution functionsthat are met in the literature. Then, in section3, we survey the

Page 10: Relativistic electron beams and beam-plasma interaction .pdf

186 P.C. de Jag/seeet a!., Relativistic beam—plasmainteraction

linear wavedispersionof a REB—plasmasystemin a waveguide.Finally, in section4, we makesomeremarkson the processof beam-trappingrelatedto the dispersivepropertiesof the system.

2. The momentum distribution of a relativistic electron beam and its moments

2.1. Introduction

In this sectionwe discussthe kinetic propertiesof relativistic electronbeams.To do so we startcomparingthe various modelsthat can be used. In section 2.2 we list the modelsthat aremet mostfrequently and we add one more. In section 2.3 we compare these models with experimental data andwe select one for further use. Finally, in section 2.4, we calculatethe momentsof the distributionfunction in order to determine the hydrodynamic properties.

Topicslike beampropagation,limiting currents,etc.,althoughof greatexperimentalimportance,arenot discussedin this paper. Thosewho areinterestedin thesesubjectsare referredto the referencesmentionedin the introduction.

2.2. The momentumdistribution of a relativistic electron beam

Experimentally, relativistic electron beamsare generatedby discharginga capacitor (of a Marxgenerator)over the beamgeneratingdiode. This diodehasa thin metal foil as an anode. In this foilmultiple Rutherfordscatteringincreasesthe spreadof the momentumdistributionof the beamelectronsthat are passing through. Since Rutherford scatteringhardly affects the energy of the scatteredelectrons,the beamdistribution function can be approximatedby

fb(P)=~b g(cosx), (2.1)2~rp0

where p0 is the absolutevalue of the momentumandg(cosx) is half a bell-shapedfunction of x, havingits maximum at x = 0, x = arctan(p±/p~).The function g is normalizedaccordingto

J g(cosx) sin x d~=1. (2.2)

In the literaturevarious models for fb can be found (cf. e.g. [229]). Apart from the approximation

fb -~~(p~— p0)exp(—p~I2mTj, which disregardsthe parallel momentumspreadand consequentlydoesnot treatthe kinetic two-streaminstability correctly,thoseapproximationsareapproximationsforg(cosx). Theones that areusedmost frequentlyarethe onederivedby Moliere [230]andBethe[231]:

onewhich is exponentialin cosx: g~andonewhich is quadraticin cosx: g0. Expressionsfor thesefunctionsread

= x~2{g0(~) + B1g1(~) + B2g2(~) + . . .} (2.3)

with

Page 11: Relativistic electron beams and beam-plasma interaction .pdf

P.C. de Jagheretal. Relativistic beam—plasmainteraction 187

0 —x2g(x)=2eg’(x) = 2e~2(x2— l){Ei(x2) — log(x2)} — 2(1 — 2e~2), (2.4)

g~(cosx) = 2 sinha~e~ x , (2.5)

( \J(31a3)(cosx—1+a)2, cos~>l—a, 26

gQ~cos~)—~0 cos~<1—a.

Moliere and Bethe calculatedthe width of the distribution, x~,using a theory of multiple scattering.

They found

x~=x~V~, (2.7)

with

2 e2 Z(Z—1) N

0tXc~’’~ 2 — (2.8)47rE0 (p0u0) A

and B beingthe solution of

I N0t / Fl \2 0.783(Z+ 1)Z”3B—logB=logl4lT —i- — I

I f3~\mc/ l.167A(1.13+ 3.76a2)

_ (668.Ot Z~3(Z+1) ‘~_ (668.0t~

— log~ /3~ A(l + 3342)) — log~ ~ ). (2.9)

HereN0 = 6.02x 10~~is Avogadro’snumber,A andZ arethe atomicweightandthe atomicnumberof

the foil material, t is the foil thicknessmeasuredin kg/m2 (N

0tIA being the numberof foil atomspersquaremeter),p0 = y0mu0, ~ = u0Ic anda = Ze

2I4~re0hv.

The parameteraE that characterizesg~can be used to calculatethe averageof cosx:

cosXE=fcosXg~(cosx)sinxdx=cotanhaE—l/aE. (2.10)

Similarly one finds, usingg0, for the averagedcosx

cos~1=1—~a. (2.11)

Of the three models we listed, the one derived by Bethe is believed to describe the multiple scatterdistribution best. Furthermore it gives the averaged scatter angle in terms of the foil properties and thebeam energy. The second possibility, the use of g~,facilitatesrathercumbersomeanalyticalcalculus.The third one, which obviously is a rather crude approximation, has the advantage that analyticalcalculus becomes far further practicable, whereas it still remains a model in which kinetic phenomenacan be studied.

Page 12: Relativistic electron beams and beam-plasma interaction .pdf

188 P.C. de Jag/seeet a!., Relativisticbeam—plasmainteraction

An accurate examination of Bethe’s model reveals that g~in fact is a solution for small total scatterangle(sin x is replacedbyx at afew places).Onthe otherhand,the totalscatteranglein the laboratoryhas, for moderatelyrelativistic beams,values of IT/i

0 to irI5. This meansthat usinggB one neglectsgeometriceffectsthat would leadto deviationsof afew percent.Analytic studieswhicharesupposedtotreat large angle scatteringbetter are given by Goudsmit and Saunderson[232], Jacob [233] andrecently by Landron and Toumi [234]. Also some Monte Carlo calculations have been published[235—237].In thesestudiesit often is assertedthat at largescatterangles,single scattereventsdominatethe process,so a single scattercross-sectioncan be used.One should be awareof the fact that theseassertionsoften refer to very thin targets.Noneof the modelswe just mentionedaremet in the currentliteratureon intenserelativistic electronbeams.

A simplemodel to studymultiple scatteringup to largeanglesis obtainedby regardingtheprocessasa diffusion on a sphericalsurfacein momentumspace.This meansthatone regardsthe limit for aninfinite numberof infinitely small scatterings.The diffusion equationfor this processreads

1ô~g(x,T) = —----— sin x e9~g(x,T), (2.12)

wherethe time T is scaledto put the diffusioncoefficient equalto unity. Thesolution of eq. (2.12)canbe representedby the seriesexpansion

g = a~eAiTPi(cosx), (2.13)

where P~is a Legendrepolynomial, A. = —i(i + 1) and a~has to be determinedto fit the initialcondition. The initial condition,f(p, t = 0) = nb6~3~(p— p

0l~)~transformedto polar coordinatesleadsto

g(x,T=0)=26(cosx—l). (2.14)

Using the orthogonalityrelation for Legendrepolynomials,

J P~(cosx) Pm(cosx) sin X d~= 26nm/(2n + 1), (2.15)

one finds the coefficientsa.. This leadsto

g(x, T) = ~ 2z+ 1 exp{—i(i + l)r} P~(cosx). (2.16)

The variable T in this function is proportionalto the time the diffusion processlasts. Again using eq.(2.15) one can calculatethe momentsof g. Using these,oneobtainsfor the first two momentsof thedistributionfunction fb

J fb(P)d3p=Jfb(X,r)sinXdX=nb, (2.17)

Page 13: Relativistic electron beams and beam-plasma interaction .pdf

P.C. de Jaghereta!., Relativisticbeam—plasmainteraction 189

f p~fb(P) d3p f p0 cosx fb(x’ T) sin x d~= nbpoe_

2T. (2.18)

Using eq. (2.17) and eq. (2.18) one can expressthe parameterr in the experimentallyobservableaveragedcosine of the total scatterangle:

r = — ~log cosx1 x1 = arccos(~cosx)). (2.19)

This facilitates the comparisonof a measureddistribution function with the one from this diffusionmodel, i.e. from eq. (2.16) one finds

2j+1 exp~~ logcosxi] P~(cosX). (2.20)

For total scatteranglesin the orderof IT/i0 and larger,eq. (2.20)yields sufficiently accuratenumerical

valuestaking alonga dozenof termsfrom theseries,whichmakesit suitablefor numericalcalculations.Comparingeq. (2.20) with resultsgiven in refs. [232—235],one notices that they look like ours.

Those results should be better since detailed information regarding the cross-sectionfor a singlescatteringis takenalong. The solutionof the diffusion model (a distributionfunction whichdependsononeparameteronly) however,yields a somewhatsimpler expression,whichstill suits our aim: it followsfrom a physically acceptablemodelandit providesan expressionwhichcan beusedeasilyfor numericalcalculations.

2.3. A comparisonof the various models

In the previous section we met four modelsfor the distribution function of a relativistic electronbeam,i.e. in eq. (2.3)—(2.6) we listedg~,g~andg

0 and eq. (2.20) gives the solutionof a diffusionmodelwhichwe shalldenoteby gD~A measurementof the distribution functionswas performedby DcHaanet al. [238].Theycomparedit with the function derivedby Bethe—Molière,~ This comparisonshoweda discrepancyof about 10% (too manyparticlesscatteredovera largeanglewere measured).

In fig. 2.1 we showgraphsof g(cosx) sinx (the numberof particlesscatteredinto an angle intervalaroundx) for the four functionsg8,g~,g0 and ~ In fig. 2.la we do so for x1 = O.1IT, in fig. 2.lb for

= O.l5IT andin fig. 2.lc for x1 = O.2IT. In all casesthe functionsarenormalizedaccordingto eq. (2.2)

andparameterizedwith x1~the averagedcosx. The parametersx~and B thatoccurin Bethe’smodel,

cf. eqs. (2.7)—(2.9), were calculated for a 0.8MeV beampassing through a Ti foil of appropriatethickness.

Comparing the graphs of g~andg~one notices that g~showsmoreparticlesat large angles than g~does. This indicates that g~would describe the observed experimental data better. Unfortunately,accuratevaluesof the measureddata arenot available,so we cannotmakea moreprecisestatement.Neverthelesswe think the diffusion modelgives a better description,at least for largeaveragescatterangles.

Comparing the exponential and the diffusion model, good agreement is observed. This means thatboth can be used to make accurate calculations. We think g~should be used if one wishesto obtainanalyticalexpressionsin a closed form whereasthe use of g~leadsto less cumbersomecalculationswhich makesit preferablefor numericalwork.

Page 14: Relativistic electron beams and beam-plasma interaction .pdf

190 P.C. de Jag/seeet al., Relativistic beam—plasmainteraction

3.2 a 9o

0102030405060

1.~ __________ ~ \XI~3~

0 15 30 45 60 75 90 0 20 40 60 80 100 120

Fig. 2.1. (a) Momentumspacedistributionfunction for beam particleswith averagedcosine of thescatteranglex~= arccos(cosx) = Our. Thecurvesrepresentthedistributionaccordingto Bethe—Molière,g~,thediffusion model, g

0 theexponentialmodel,g~,andthequadraticmodel, g0.Apparentlyg0 and gE nearly coincide. (b) As (a) with x = 0.l5ir. (c) As (a) with ~ = 0.

2sr.

Finally, the quadraticmodel appearsto deviateat leasta few percentfrom all the others.However,it can still give a qualitatively correctpictureof kineticprocesses.Furthermoreit hastheadvantagethatit leadsto fairly easyalgebraandlittle time consumingcomputerprograms.For this reasonwe chosetouse it here.

2.4. Hydrodynamicparametersfor relativistic electron beams

Using the conventional definitions from the relativistic kinetic gas theory, cf. e.g. de Groot et a!.[239],hydrodynamicparameters for relativistic electron beams can be calculated.

Substitutingthedistributionfunction from eq. (2.1) in the definition of the particleflow four-vector,one finds

N~:=cfp~fd3p/p0=nbc(l,0,0,Q~), (2.21)

with

= p0/y0mc= u0Ic, Yo = + p~/m

2c2, (2.22)

and

Page 15: Relativistic electron beams and beam-plasma interaction .pdf

P.C. de Jag/sereta!., Relativistic beam—plasmainteraction 191

Q0 =Jcos~ g(cos~)sin xd~. (2.23)

From eq. (2.21) one obtains the hydrodynamic four-velocity of the beam

~ = cy(i, 0,0, 13), (2.24)

with

13=u/c=Q0130, y=1/\/1—/32. (2.25)

Note that nb denotes the particle density measured in the laboratory frame; for the particle density inthe hydrodynamic rest frame ~b’ one obtains from eq. (2.20) ‘~b= ~b’Y~ The use of laboratory framedensitiesis customaryin experimentalplasmaphysics sincethesecan easilybe obtainedfrom electriccharge or current density measurements (i.e. p ~a q~n~j=~ ~

Using the definition of the particle energy—momentumdensitytensor,one finds

1 0 0 f30Q0

0 20 ~/32P 0 0T~:=cj pv~pPfd3p/p=nbyomc 0 0 ~f3~P

1 o (2.26)

f30Q0 0 0 /3~(l—P1)

where

P1 = f sin2x g(cosx) sin xd~. (2.27)

Accordingto the proceduresof relativistic kinetictheory, thepressuretensorP~is definedwith the aidof the projection operator ii’~” := g~— U”U7c2. From eq. (2.20) one obtains

y4132(i—P1 ~ ~ 0 y

4/3(i—P1—Q~)

P:=”~TA~j~_—nbyOmc2f3~ ~ ~ . (2.28)

y4f3(1— P1 — Q~) 0 0 y~(i— P1 — Q

20)

The hydrodynamic quantities we just calculated can be used if one wishes to compare results fromkinetic calculations with their hydrodynamic counterparts: eqs. (2.21)—(2.25) suggest that a relativisticelectron beam with a distribution function according to eq. (2.1), can be regarded as having ahydrodynamic velocity

u = Q0f30c (2.29)

and an anisotropic pressure tensor that can be compared with a thermally anisotropic situation

Page 16: Relativistic electron beams and beam-plasma interaction .pdf

192 P.C. deJag/seeet a!., Relativisticbeam—plasmainteraction

(P = ~b T) where(cf. eq. (2.28) with a Lorentz transformation to the hydrodynamicrestframeappliedto it)

T~= ~y0mc2f3~P

1(2.30)

T~= y0mc213~(l— Pi — Q~).

As usual,hydrodynamicquantitiesare defined in termsof momentsof the distribution function; wealready met Q

0 and P1. For future use we define

~n,m = Jsin~xcosmx g(cosx) sin x d~,

(2.31)P,~=P~

0, Q~=P~1.

Using the function g0 from eq. (2.6) one obtainsfor the first few moments

Q0=’l—~a, P1=~a(l—~a) (2.32)

and

i—P1—Q~=~a2. (2.33)

Evidently, Q0 and P1 are convenient parametersto characterizethe distribution function. In the

literature the averagescatterangle ,~, ~ = j~x g(cosx) sin x d~,is often used for this purpose.Inorder to keepthe formulaetransparentandto facilitate comparisonwith the literaturewe shall use theanglex1,

x1 = arccosQ0, (2.34)

as the parameter to characterize the distribution function. For angles of experimental interest(O.lIT < ,y1 <O.

3IT) the two anglesarerelatedaccordingto x1 i.09~±1%. A simple approximation,

which has an accuracy of 5% is given by

xiVT~, (2.35)

where, as usual, a is the parameterfor the functiong0.

3. Linear theory

3.1. Introduction

In this section we discuss the dispersion of small amplitude waves in a beam—plasma system. Thismeansthat we study the solutionsof the dispersionequation

Page 17: Relativistic electron beams and beam-plasma interaction .pdf

P.C. de Jag/seeetal., Relativisticbeam—plasmainteraction 193

det(W_iwp,0 ~ 0, (3.1)

where

W=(k2—w2/c2)1—kk, (3.2)

and o~is the conductivity tensorfor particle speciesa, (f = ~a o~E)cf. e.g. [240]. Since we areinterestedin answering the question what kind of waves are unstabledue to the beam—plasmainteraction,we treat the dispersionequationas an equationresulting from a Fourier transformationregarding spatial dependence and a Laplacetransformationfor the time dependence.So the solutionofeq. (3.1) is the complex quantity w which depends on the real k-vector and on the plasma parameters.

The major part of the present section is devoted to the study of the influence of the kinetic propertiesof the electron beam on the growth rates of the high frequencyinstabilities.Thereforewe regarda coldelectron plasma with a beam, having the propertiesdiscussedin the previous section, streamingthrough. Furthermore we assume that both beam and plasma are homogeneous and that an externalhomogeneous magnetic field is present.

Theseassumptionsimply that wedo not discussseveralclassesof instabilitieswhich can beimportantin anexperimentalsituation:Sinceion motion is not taken along the Buneman instability [241](causedby the beam induced return current of the plasma electrons) is disregarded. The importance of thisinstability is discussed in several papers cf. e.g. [242—246].The fact that we assume that both beam andplasma are homogeneous means that influencesof radial (beam)densityprofiles (annularbeams),aswell as drift wave and surface wave instabilities are not covered. Those interested in these topics mayconsult[247—255].Treatingthe problemfor a homogeneousmagneticfield, meansthat deviceslike freeelectron lasers, cf. references cited in the introduction section 1.2.1, are not treated here. The implicitlymade assumption that the system is current neutral means that instabilities due to the self-field of thebeamarenot accountedfor, althoughtheyare of practicalimportancefor stable beam propagation. Wementioned the appropriate literature in the introduction cf. section 1.3.

Having restrictedour model this way, severalimportant instabilities remain. They are due to theinteraction between beam waves and plasma waves.Especiallythe cyclotronmodes,the spacechargemodes and the upper hybrid modes should be mentioned here. Furthermore instabilities due to the“thermal” anisotropyof the beamare present.The influence of parameterslike beamandplasmadensity, scatter angle of the beam electrons and magnetic field strength on these instabilities arestudied.

In the laboratory beam—plasma interaction is investigated usually using a beam with a diameter of afew cm propagating through a plasma in a cylindrical metal tube with a diameter of a few times the oneof the beam. This meansthat the perpendicularwavevectormustbe largerthan 30 m’ andthat thewaves carried by the beam have a wave vector with k

1 > 100 m’. To incorporatetheseexperimentalgeometric effects one must study the dispersionfor waveguidemodes.So the experimentallyimportantwaves are waves with a non-zero perpendicular wave vector.

As the dispersion equation soon becomes too complicated to find analytic solutions, we used thecomputer program Nullijn, cf. [257], to calculate and plot the dispersion diagrams. Similarly thecomputer was used to trace the parameter dependence of the point of maximum growth rate of theinstabilities, viz, the point where d Im(w(k))Idk = 0. Since numerical calculations need numericalvalues we chose two sets of typical experimental parameters to be used for these calculations. They arelisted in table 3.1.

Page 18: Relativistic electron beams and beam-plasma interaction .pdf

194 P.C. de Jaghereta!., Relativistic beam—plasmainteraction

Table 3.1Two typical setsof parametersfor the beam—plasmasystem

wp, I? w,,.~ Eh Xl

A 2—5 x 1010 3.5 x 1010 7.5 X I0~ 0.5 MeV 200_350

B 2—4 x 10” 3.5 x iO’° 2.5 x 10° 0.8MeV 20°—35°

To study the topics mentioned above we start reviewing a few well-known results for a coldbeam—plasma system. Then, in section 3, we treat the principal waves in case the beam has thedistribution function discussedin the previoussection.Having done so we know two limits of thedispersion of the waveguide modes for the scattered beam that is treated numerically in section 4.Finally, in section 5, we compare the various instabilities we meet.

3.2. Hydrodynamictheory for a cold beam—plasmasystem

In this section we treat a cold beam streaming through a cold plasma. This means that we solve eq.(3.1) using the hydrodynamic conductivity tensor

w~ iQ0w1~ WDUkI

2 ,lE~

0pa 1 —1[1WD ~ —ill uk1

a ~ y f12w2

a D wDuk± iQuk~L (w~—I?~) 2 2 +u2k~y WD

where

0 2 2= q~Blyma , w~= n~q~IE

0m~________ (3.4)

WD=wukZ, y=1/V1_u2/c2,

and B°denotesthe external magneticfield, a labels a plasma species,having a particle mass ma,density ~1a and chargeq0, streamingwith a velocity u. Both B°andu are parallel to the z-axis. Notethat eq. (3.3) is written down for k = k11~+ k~1~the result for an arbitrary k-vector is obtainedapplying the appropriate rotation matrices.

In figs. 3.1 and 3.2 we showsometypical dispersiondiagramsfor the cold beam—plasmasystem.Thesolid lines represent real solutions w = w(k~),while the dashed lines represent the real and imaginarypart of complex solutions. Figs. 3.id and 3.2c show the k1-dependence of the maximum of the growthrate of the various instabilities. These instabilities can be classified according to the type of waves thatinteract (cf. [258]).Possible candidates are the electron cyclotron-, whistler-, plasma- and upper-hybrid-wave interacting with the beam plasma- and cyclotron-wave. Especially from fig. 3.ld it is obvious thatfor small and for large kI values distinct types of instabilities are dominant. In the limiting cases k1 = 0and k1—~ analyticexpressionsfor the growth rates can be obtained. In case k1 = 0 the dispersionequation factorizes and only the equation for the parallel waves yields unstable solutions. This equationis the well-known equationfor the two-streaminstability, it reads

2 2W Wb 1

2 21. (3.5)w YYWD

Page 19: Relativistic electron beams and beam-plasma interaction .pdf

P.C. de Jag/seeet a!., Relativisticbeam—plasmainteraction 195

0~ci.ci. ~ 2.0-

.~ 2.0-3

3

‘V 0.0. ______________ ~ 10~ 1.0-

~0C -C - (0rU

0LflI-n __________________________________ * 0-0-I I-- —-- I‘V0. -

0.0,

-10-‘V ‘V______________________________ E -1.0_____ a _____ _____________________

I I I I I I I I I

0 1.0 2.0 3.0 0 1.0 2.0 3.0kzCR.)pe kzc/Wpe

a’0.

3

t 2.0-‘V0.

(0 - NNais N N

Na’ - N‘ti 10~C

‘V ~I-n I’,

*_____________________ E - / “/~ ~ 0.05- /0.

0,‘V -10 _

C o. ________________________________I I I II

0 1.0 2.0 3.0 i~2‘ ‘ i~1 i~0‘ i~kzC/Wpe kjC/wpe

Fig. 3.1. (a) Dispersiondiagram for parallel wavesin a cold (relativistic) beam—plasmasystem,for large values of the cyclotron frequency;i.e.= 10~°s~’,~2= 1.5>( 10

10s, ~pb = 4 x iO°s’ and Eb = 500keV (b) The sameas (a) exceptk~= 0.5 x w~~Ic.(c) The sameas(a) except= 5 xw~,/c.(d) A graphof thek

1-dependenceof thepoint ofmaximumgrowthratein a coldbeam—plasmasystem.The parametersaregivenin(a).

The location of the point where the growth rate of this instability reaches its maximum can be

calculatedtreatingA,

A = w~~I2y3w~~ (3.6)

as a smallquantity.Developingthe dispersionequationaroundthepoint w = Wpe~k5 = a0e!u,the point

of maximum growth rate is found to be located at (w0, k0),

k0 = (WpeIt1){i + ~A213+ O(A)},

Re(w0)= w~~{1— ~A”

3 + ~A213+ O(A)} , (3.7)

Im(w0) = Wpe{~\/~AV

3— ~‘./‘~A213+ O(A)}

These most unstable waves have phase and groupvelocitieswhich are given by

Vph = u{1 — ~ALI3 — ~A213}, (3.8)

Page 20: Relativistic electron beams and beam-plasma interaction .pdf

196 P.C. de Jaghereta!., Relativistic beam—plasmainteraction

01

kzc /wpe

E 025

i_1.oi III I 2’S i~~hio0iohio2

kzc/Wpe k1C/I~)pe

Fig. 3.2. (a) Dispersiondiagramfor parallelwavesin a cold (relativistic) beam—plasmasystem.Theparametersare: w,,,= iO’°s~’,(2 = 3 x io~s~’,Wpb = 5 x i0~s ~‘, Eb= 500 keV. (b) Thesameas(a)exceptk~ = 0.8 x wv,Ic. (c)A graphof thek1 of thepointof maximumgrowthratein a cold (relativistic) beam—plasmasystemat small valuesof (2. Note thatthemostunstablemodesoccuratlargevaluesof k1. Theparametersarethesameas in (a).

vg = u{ ~— ~A”3} — (k~— ko)(U2/Wpe)~A~113(~+ ~iV’~). (3.9)

In the limit k1 —~ ~ one finds a dispersionequation evaluating eq. (3.1) explicitly. This yields a

quadraticequationin k~.Equatingthe coefficientof k~in this equationto zero an asymptoticform isfound. It reads

— w2)(w~HB— w~)= ~ (3.10)

where

/ 2 2 / 22 2 3

c0UH = V11 + Wpe~ WUHB = V 111Y + COpb/Y . (3.11)Equation (3.10) has unstablesolutions;the point wherethe growth rate reachesits maximum can beapproximatedby

kZ=(WUH+WUHB)/u, W=WUH+~ . (3.12)

Page 21: Relativistic electron beams and beam-plasma interaction .pdf

P.C. deJagheret a!., Relativisticbeam—plasmainteraction 197

Here6 is thesolution of 62(2WUHB — 6) = ~ In two limiting casesan approximation for8 can be found. In the caseof a strongmagneticfield, i.e. if

3 2 227Y00UHBWUH>4Wpe~pb~

one has

= Wp~O)p~, (3.14)

~

otherwiseone obtains

8 = (e~b)”~(1 + ~ (3.15)2YWUH

It is interestingto notice that thesemost unstablewaveshavea phasevelocity

Uph = u(w~~+ 8)!(w~~+ WUHB)

and a groupvelocity,

Vgr = u(2WUHB—26)/(4au~n36), (3.16)

which lies in between~u and~u. Finally we calculatedthe width of the unstableregion,we found2 2 2 2

d w u 2(2o~HB— ô)(4WUHB — 6wUH36 + 36 )

dk2 — 6 (4WUHB — 33)3

2* * 2* *which lies betweenu 6 /468 and 2u 6 /968

It is interestingto comparethe growth rate of this upper hybrid instability with the one of thetwo-streaminstability. As an example fig. 3.3 comparesthe wPb-dependenceof the 11-independenttwo-streaminstability with the growth rate of the nearly perpendicularupper hybrid instability at a

Li07 lb8 _Wpb

Fig. 3.3. A graph of thew~5-dependenceof thepointof maximumgrowth rateof the (11,-independent)beam—plasmainstability (marked—I—-I——)compared to the nearly perpendicularupperhybrid instability at variousvalues of (1. The figure wasmade for w~,= lOlas~,Eb= 500keV and106<Wpb <5 x iO~s’. Calculating the beam—plasma instability we took k~= 0. The curves for the upper hybrid instability we calculated at

k1 = 104w

0,/u0 and 11 successively0, 5 x 10k, 2 x iO~and 1.5 x 10~~s~(marked respectively by v v , ~‘ V , 0 0 ande * ). Note that only at large values of 11 the beam—plasma instability is the one with the largest growthrate.

Page 22: Relativistic electron beams and beam-plasma interaction .pdf

198 P.C. de Jaghereta!., Re!ativistic beam—plasmainteraction

number of values of 11. The curves were numerically calculatedusing the full dispersionequation.Denoting Im(w) from eq. (3.7) by 6~and Im(w) from eq. (3.14) or (3.15) by 6~one finds, using eq.(3.14)

= ~21/3\ ~(WpbW~e)

1~3W~2W ~O.73(~) (YP~b), (3.18)II ph UH UHB

or, using eq. (3.15),

= (Y2(OPe)h13 (3.19)611 ~

From eq. (3.18) or eq. (3.19) it is obviousthat for moderatemagneticfields, or for largevaluesof y,the upperhybrid instability is the strongerone.

As a consequenceof the abovenoticeddistinctionbetweenmost unstablewave typesoneshouldbeawareof the fact that onemight be dealingwith strong upperhybrid waveswhenone investigatesthelater, non-linear,evolution of the beam—plasmainteraction.An importantdistinction betweenthesewavesandthe nearlyparallelplasmawavesis that theyhavean importantperpendicularcomponentinthe electricfield, whereasthe electric field of plasmawavesis nearlyparallel.Furthermoretheir phasevelocity is smaller thanthe one of the plasmawaves.

Of course,phenomenadiscussedin this sectionare only describedcorrectly if the hydrodynamicapproximationis valid. Generallyspeakingthis is the caseas long as the wavesthat aretreatedhavephasevelocitiesthat lie outsidethe regionswherethe velocity distributionsof particlespecieshavetheirsupportandas long asthe perpendicularwavelengthsarelargecomparedto the (thermal)gyrationradiiof the particles.

3.3. Kinetic theory

In this sectionwe discussthe conductivity tensorthat is to be used to treat the wave dispersionkinetically. An expression for the relativistic kineticconductivity tensorcan beobtainedfrom ref. [259].In order to useit for the beamdistributionfunction from eq. (2.1) we transformit to the coordinatespand x~p = \/~+ p~,x = arctan(p

1/p~).Having done so the expressionfor the conductivity tensorreads

= — ~ w b

2rno J dp J dx P S1fl X ~ K~ID~, (3.20)

where

~ (3.21)

and, taking k= k111 + ~

Page 23: Relativistic electron beams and beam-plasma interaction .pdf

P.C. de Jagheretal., Relativistic beam—plasmainteraction 199

~ = p2 sin2x (nIz)2J~F1, ~ = p

2 sin2x J~2F1

= p2 cos2xJ~F~, ~ = ip2 sin2x(nIz)J~J~F

1, (3.22)

K55 = p2 sin x cosx (n/z)J~F

1, K~= —ip2 sinx cosx J~J~F

1, etc.,

with

F1= ~ (sinxô +!cosXô — k5 )fhpsin,y ~ p X y~mw ~b

(3.23)

F~= 1 (cos x o — sin ~ ~ + nilp cosx P p X y~wpsin x x

and

z=~~sinx, 1l=eB°Im, y~=~1+p2Im2c2,

m (3.24)

J~=J~(z), J~=J~(z).

As usualJ,~denotesthe Besselfunction of the first kind and ordern andJ~its derivative [260].Substitutingfb from eq. (2.1) thep-integrationin eq. (3.20) can be performed.Thenwe replacethe

Bessel functions by their Taylor series.Having doneso the x-integrationin eq. (3.20) leadsto integralsof the type

1(w) = J P(sin2x~cosx) sinx d~ (3.25)w—nulb—vOkZcosX

where P is a polynomialin sin2xandcosx. Theactualform of P can be found in appendixA wherethecalculationdescribedabove is listed.

Obviouslythe integral in eq. (3.25) leadsto logarithmicsingularitiesin 1(w). They are locatedin thesingularpoints

= v0k5+ ~ (3.26)

and

= —v0k5+ ~~b’ (3.27)

or, if the function g from eq. (2.6) is used

w~=vOkZ(i—a)+nflb. (3.28)

As eq. (3.25) is found after a Laplace transformationthe integral can be used to calculate1(w) ifIm(w) >0. For Im(w) ~ 0, 1(w) must be calculatedvia analytic continuation.This meansthat the

Page 24: Relativistic electron beams and beam-plasma interaction .pdf

200 P.C. de Jaghereta!., Relativistic beam—plasmainteraction

branch cutsthat endin the singularpointsw ,~ lie in theimaginarynegativehalf-plane.Becausewe wantto interpret results as an interaction betweenwaves and possibly resonantparticles we choosethebranch cuts parallel to the imaginaryw-axis.

This choice for the branchcuts leads to discontinuitiesin the dispersiondiagram: Branchesthatrepresentdampedwavesend whenRe(w)E {w~jn= —x,. , , , oo}

3.4. Principal wavesin the beam—plasmasystem

The wave dispersionwe study at presentis describedby eq. (3.1) with 0e from eq. (3.3) for theplasma componentand 0b from eq. (3.20) for the beamcomponent.This complicateddispersionequationsimplifies somewhatwhenprincipal waves(waveswith eitherk

1 = 0 or k5 = 0) are treated.First we regardthe parallel waves(k1 = 0). For thesewavesone has,as is shown in appendixA,= = = o’~= 0. Dueto thisthe dispersionequationfactorizesandtwo separateequationscan

be obtained:one for transversewaves

det(W1 — iw/.L0(U0 + o’b)I) = 0, (3.29)

andone for longitudinal waves

W5~— ~W~(O’e + O’b)zz = 0. (3.30)

An exampleof a dispersiondiagram in which branchesof both transverseand longitudinal parallel

wavesarepresentis shownin fig. 3.4. In the captionof this figure the variousinstabilities, that can be

ir-i- •‘ -.

- -2 ~ I II~iIiI ~

kzvo/Qb

Fig. 3.4. Dispersiondiagram for parallel wavesin a beam—plasmasystem. In order to showall phenomenain the samefigure, we took allcharacteristicfrequencieswithin the sameorderof magnitude:Wpb = 2 x 10105_I, ~ 3.5 x lOb ~

1’1b = 8 X i09 ~ E6= 500 keY, x1 = 400. The

axismeasureunits (l~and11/v. Thefour instabilitiesthatarepresentarethebeam—plasmainstability (marked:—o~~-0< ), thebeamcyclotronmaserinstability (marked II II ) aninstabilityof theright handpolarizedelectromagneticwave(marked~ ~ ), andan instabilityof theelectroncyclotronwave (marked M M). The slow beam—plasmaand beamcyclotron branchesare notpresentin this diagram, they wouldrepresentstrongly dampedwaves.

Page 25: Relativistic electron beams and beam-plasma interaction .pdf

P.C. de Jagheret al., Relativisticbeam—plasmainteraction 201

seen,are listed. As could be expectedwe seethe beam—plasmainstability of the longitudinalwaves.However, in contrastto what is found studyingcold beams,we seein fig. 3.4 weak instabilitiesof thewhistlerwaveandof anelectromagneticwave.The formerinstability is similar to the onetreatedin ref.[261],wherethe influenceof a gyrating electronstreamon the whistler mode is studied. The latterinstability was studiedin ref. [262]as a possiblecandidatefor wavegenerationin the sub-mmrange.Furthermorewe see near k5 = 0 a strong instability. This instability is as we shall see,a kineticinstability of the transversewavesthat can surpassthe beamplasmainstability in growthrate. First weshall investigatethis transverseinstability. After that we shall discusshow the beam—plasmainstabilitybehavesin the presentsituation.

3.4.1. The parallel transverse wavesTo investigatethe instability of the transversewavesneark5 = 0 and w = + uk5 we expandthe

dispersionequationaround this point. This calculationcan be found in appendixA. Adopting thenotation from this appendix, cf. eq. (A.1), (A.12), we have for transversewaves the dispersionequation

c2k~—w2—

11—2w~bN~=O. (3.31)

From eq. (A.17) we haveneark5 = 0

* 1 w—uk vkN=2— —w+uk±Qb~O80~~D 2vk

+ ~(1— 1Iy~)P1(—w+ uk5 ±~ilb)2{~+ O(~a~:)}]~ (3.32)

where,cf. eq. (2.31), (2.32),P1 = ~a(1— ia). Note that at k5 = 0 eq. (3.32)deliversan exactrelation.Substitutingit into eq. (3.31), the one with the plus sign, yields

w2 - c2k~+ W~eQ 00 + Wpb {w-UkZ +

2130P1 (p~+k)2}0. (3.33)

In caseP1 = 0 or if w2 = c2k~ this equationis the sameas the one for a cold beamplasmasystem.

Consequentlyit has4 realzerosthen. Sothe complexsolutionsobservedin fig. 3.4 only occurif P1 ~ 0.

A remark,which is oftenmaderegardingequationslike eq. (3.33), is that a relativistictreatmentis alsoneededto find the phenomenadescribedby it since$~tendsto zeroin the non-relativisticlimit c—* ~.This, however,is not altogethertrue since the factor $0ck5, which occurs as well, is constant whentaking the limit. As can be seenin ref. [261],a non-relativistictreatmentleadsto a similar equationinwhich only the term proportionalto f3~w lacks. Obviously a relativistic treatmentis only neededforwaveswith phasevelocities comparableto or larger than c.

At presentwe areonly interestedin the instability neark5 = 0. So the causeof this instability doesneed a relativistic explanation.This explanation is found in the relativistic masscorrectionon thedynamicsof the cyclotronmotion.As suchit can be characterizedas a negativemassinstability which isvery similar to the beamcyclotronmaserinstability, cf. e.g. [263,264]. This cycl&ron maserinstability

Page 26: Relativistic electron beams and beam-plasma interaction .pdf

202 P.C. de Jag/seeeta!., Relativistic beam—plasmainteraction

is the one that is responsiblefor the generationof high powermicrowavesin devicescalled gyrotrons[265].The differencebetweenthe situationwe studyat presentandthe onein thoseelectrontubes,isthat we studya beamwith a certainspreadin momentumspace(insteadof a beamof cold gyratingelectrons)propagatingthrougha cold electronplasma(insteadof throughvacuum). In the sequelwerefer to this instability as to the beamcyclotron maserinstability.

In order to investigatethis instability further we substitute

w=ilb+ukZ+6 (3.34)

in eq. (3.28). Next we multiply it with 62(12— fib — Uk5 — 6). This leadsto

O(8~) + 32[{(fl + uk5)2 — c2k~}(ul— fib — uk

5) + W~e(u1b+ uk5)

+ (w~~/y0){(fl— fib — uk5)(~f3~— 1) + (lb — 13~(~b+ uk5)}]

+ 6(w~b/yO)[(.II— (lb — uk5){—Qb+ f3~(~b+ Uk5)) — ~/3~{(~b + uk5)2 — c2k~}]

+ (w~~/yØ)~f3~(il— (lb — uk5){(Qb+ uk5) — c

2k~} 0 (3.35)

where

= (1— 1Iy~)P1. (3.36)

As we arelookingfor zerosnear6 = Owemay neglectthe termsof O(6~)in eq. (3.35). Onemaycheckthat the equationwhich then remainscan havea pair of complexconjugatesolutionsprovided thequantity

~f3~{((lb+ukZ)2—c2k~} Wpb 337

— (fib + uk~)2— c2k~+ (~b + Ukz)W~e/(Q — ~b — uk5) y0

is sufficiently large.The instability, that occursin that case,has a growth rate which can be calculatedsolving the equation.An apparentlystraightforwardway to calculatethe point wherethe growth ratereachesits maximumappearsto bethe calculationof the point where 6 2 reachesits extremum.As canbe seenfrom eq. (3.37) this will leadto a value of k5 havingthe order of magnitudefib/U, while theorder of magnitudeof 6 2 will be ~13 ~w~b/V~.The hydrodynamicapproximation,we are using atpresent,however,is only valid if 16/v0k51>~a ~13~If3~cf. eq. (3.32), (A.17). Consequently,forcommonexperimentalsituations,where

11b ~ WpbIV~,results from the above indicatedprocedurearenot valid. A better result is found taking k~= 0 and estimatingthe width of the unstableregion by

= O(f3~f3i1wPbv~’).Doing so we find for the growth rate

[{fl~(y -1) + + (w~~/y)((y- 1)(~13~-1) + 1- 13~)}~13~(y-1)

- flbWpb - (w~~/4y){(y- 1)(f3~-1) -

Im(w) - fl~(y-1) + W~e+ (w~~/y){(y- 1)(~13~-1) +1-

(3.38)

Page 27: Relativistic electron beams and beam-plasma interaction .pdf

P.C. deJagheret a!., Relativisticbeam—plasmainteraction 203

Fig. 3.5. The dependenceof the growth rate of the beamcyclotron maserinstability on thescatterangle~. The parametersare: wi,, = 10105_I,

11, = 1.2 x 10106, Wpb = 3 X iO~s~1,Eb= 800 keY. The curve marked I I was calculatedusing the full dispersionequation.The curve

marked y v follows from eq. (3.38). Obviously thethresholdwe found in the theoreticalapproximationdoesnot exist in a full numericalcalculation.

If the beamis sufficiently weak, this expressioncan be approximatedby

b ~ ~132(y—1) 11/2

Im(w) = ~b ~ 1. W~e+ fl~(y

0 — 1) (3.39)

In fig. 3.5 we give graphsof points of maximumgrowth. The theoreticalcurves in this figurecorrespondto eq. (3.38). Apparently eq. (3.38) is a sufficiently accuraterelation for most cases.Furthermorewe notice, looking atfig. 3.4a,that, althougheq. (3.35)suggestsso, thereis no thresholdfor this instability. Consequentlythe formulaewe derivedarenot correctfor small valuesof x1.

3.4.2. Theparallel longitudinal wavesTo proceedwe studythe parallellongitudinal waves.From eqs. (3.30) and eqs. (A.1), (A.14) we

find the dispersionequation

— — ~ w~fdT g(T) 1 + P~v~(1— r2) =0 (3.40)

with D0 = w — k5v0r, /3~= v0/c. If the phase velocity of a wave deviates sufficiently from the

hydrodynamicbeamvelocity, u = u0(1 — ia), eq. (A.15) can be usedto find a hydrodynamicapproxi-mation. Accordingto eqs. (A.18), (A.19) the dispersionequationthenreads

2 W~bw(1+f30y0P1) 2 (/3~a2\ ( a~ \Wpe + y3 (w — uk

5)2 — O~—~—)+ 0k~(D~)2)~ (3.41)

This equationhasthe sameform as eq. (3.5), consequentlythe most unstablewavesarecharacterizedby eq. (3.7) through(3.9) with

A Wpb (1+13~y~P1).

2y00pe

Page 28: Relativistic electron beams and beam-plasma interaction .pdf

204 P.C. de Jag/seeeta!., Relativistic beam—plasmainteraction

At this point we noticethat the hydrodynamictype of dispersiongiven in eq. (3.41) resultsfrom aseriesexpansion,cf. eq. (A. 15). This expansionis not convergentif the phasevelocity of thewave liesin the region (1 — a)v0< Vph < v0. However, for (1 — a)v0 ~ VPh ~ (1 — ~a)v0the seriescan be usedbeingan asymptoticexpansion.

In order to investigatewhat happenswhen (1 — a)v0< <v0 we performthe integration in eq.(3.40) explicitly using eq. (2.6) for g(T). Here it is convenientto introduce

K=!.’!.~i, 6=-~-—1, ~= 1(1+8—K) , (3.42)

~~pe 00pe V0 K

andthe function h(~)to representthe integral, cf. eq. (A.20) through (A.23). Now eq. (3.40) reads

6 + ~62 = A(1 + ~)2 h(~), (3.43)2 32

with A = wPb/2y 00pe~Inspectingeq. (A.20), (A.22) we seethat h(~)containsthe term 3/(a~).One

maynoticethat thepresenceof suchan O( ~_1) termin the dispersionequationis aconsequenceof thediscontinuity of the distribution function when projectedon the k

5 direction. Indeedintegrating byparts,one seesthat eq. (3.40) containsa term g(1)I~.

At thisstateweobservethat the treatmentof the dispersionequationcannotproceedtheway it doesfor a beamwith a thermaldistribution function. In contrastto the procedurefor the “bump on tail”dispersionthe beamterm cannotbe regardedas a small perturbation;the above-mentionedO( ~._1)

term must be treatedas a zerothordercontributionin a perturbationexpansion.Another distinctionfrom the “bump on tail” dispersionis found inspectingthefunctionh(~)for ~> 0. In this region h( ~‘)

is real for real ~. Thereforethe fastbeambranchin the dispersiondiagramwill alwaysbe connectedtothe plasmabranchat k5 = 0 and it will always representundampedwaves.So a transitionto a “bumpon tail”-like topology of the dispersiondiagram(cf. [266])will not take place.

To continueour calculationwe substitutethe solution 60(K) of the zerothorderdispersionequation

= A(1 + ~)2 3I(a~0), (3.44)

where~ = (1 + 6~— K)IK, into eq. (3.39). Writing6(K) = 6

0(K) +6

1(K), h = h + 3Ia~0anddisregardingtermsof order 0(62), O(A61h) and O(A6) we obtain

6 — A(~0+1)2~~h(~’

0) 3451 ~ + A(~0+ 1)2{3(1 - ~~)Ia- ~~(1+ ~) dh(~0)/d~0}~ (. )

Within the contextof the presentapproximationwe mayreplacedh/d~0by h1/ir~0,with h1 given by eq.(A.23). Doing so we find

WpeA(~o+ 1)2~~h1(~0)Im(w) =

00pe Im(61)= ~ + A(~+ 1)2{3(1 — ~0)Ia— ~ + ~) h~0)/~} (3.46)

As we regardvaluesof ~ in the interval(— a, 0) it is obviousthatthedenominatorin the right handsideof eq. (3.46) is positive if h1 is. ConsequentlyIm(w) hasa maximum for somevalueof ~ inside theinterval — a < ~ <0. The point wherethe growth rate reachesits maximumis founddeterminingthe

Page 29: Relativistic electron beams and beam-plasma interaction .pdf

P.C. deJagheret al., Relativistic beam—plasmainteraction 205

value of ~ for which d Im(w) Id~ = 0. The solution of this equationcannotbe found analytically.Approximate solutions in various different parameterregions can be obtained. To find such anapproximatesolutionwe factorizethe right handsideof eq. (3.46) in sucha way that one of the factorsis a functionf~(~) having a maximumin the region a < ~ <0, while the otherfactor is more or lessconstantaround the maximumof f1. Then the point x0 where f1 reachesits maximum leadsto theapproximatedposition of the maximum of the growth rate. In table 3.2 we list a series of suchfactorizations,the regionswheretheycan be used,andx0, the valueof ~ at the approximatepoint ofmaximumgrowth. Fromthis table it is seenthat 5 different regionscan be distinguished:cases1 and3apply to a relativistic beam,2 and 4 to a “non-relativistic” situation;1 and2 to small scatterangles,3and 4 to large ones (when evensome beamparticles are moving backwards).Case5 refers to aninstability of backwardpropagatingwavesthat occursas soonas someparticlesaremoving backwards.

To calculatethe point wherethe growth is maximalonecalculatesx0 usingthe expressionfrom table3.2 that applies; this value is used to calculate 8~from eq. (3.44). Next K follows from K =

(1 + 6~)I(1 + x0). Finally 6~or Im(81) can be calculatedwith the aid of eq. (3.46).Now we know how to find the point of maximum growth for the presentapproximation,it is

interestingto calculatethe propertiesof thesemost unstablewaves. Obviously, in all casesthe phasevelocity of these waves can be approximatedby V~h= v0(1+ x0). For small values of a one hasx0 = — ~a+ 1!6y~f3~,or, in thenon-relativisticcase,x0 = — ~a.So in bothcasesthe orderof magnitudeof Im(w) can be found from eq. (3.46) with ~ = — ~a.Disregardingtermsof higher orderin a we find

00pe~47T2(1+ ay~/3~)Ia2

Im(w) 1 + B(1 + ~(1 + ay~13~))’ (3.47)

whereB = 27A14a3. The width of the unstableregion can be calculatedfrom

d2 d 2 2—rlm(w).

Table 3.2

Factonzationof the right hand sideof eq. (3.46)

f1 Suitable if

1 1/2

(1) (~+a){1—(y2-l)(2~+(3+a)~+a

1)} y2-l>, a<1 -l(l+a)+ i{i(a5_2a+3)+ 3y23}

(2) y2_ l~—~-—~,a<1 x~+9Ax0/a+6A=0:

A-~ ~1a3:; = —(6A)”3,

A~’iia°:x0= —~a

3 1/2

(3) (1+ ~)3{l—(y2-1)(2~~+(3+ a)~+a)) y~-1>~, a>~1 —~(4+a)+){a2_2a+ ~ + 272_2}

(4)~0~J y2_i~±_, a~l x~+5Ax0/a+2A/a=O:

A‘~3/a: x0=

(5) (a+~0)(i+C0)2 a>l, x~<—1 —(1+2a)/3

Page 30: Relativistic electron beams and beam-plasma interaction .pdf

206 P.C. deJagheret a!., Relativisticbeam—plasmainteraction

For values of a which aresmall comparedto one, an approximationfor this width is given by

d2 V20 6irA I --6B 3(3B — B

2) 2 2 / 2B 9B — 3B2’\1

~Im(w)= w~(1+B)3a~h+B — 2(1+B)2 —y0130a~6+1+B + 2(1+B)2)I’ (3.48)

A third property of the unstablewavesis their groupvelocity. Again in the approximationa ‘~ 1 and= — ~a,we obtain

Vgr = V0 B fi + B [3—2 log2+9ay~13~+ 1 B [6+2 log 2— ay~13~(3—2 log2)]}}.

(3.49)

Having calculatedthe propertiesof the mostunstablewavesin the kinetic approximationthe only thingwe needis a criterion to decidewhento useit insteadof the hydrodynamicone. From eq. (3.47) it isobviousthat the kinetic modeloverestimatesIm(w) for small valuesof a, whereasonemayinfer fromeq. (3.41) andeq. (A.18) that the hydrodynamicmodel doesso for largevaluesof a. So, comparingthemaximum growth ratespredictedby both models,we find that if

A(1 + ~ay2j3~)> (V~/4~r)312a3 (3.50)

the hydrodynamic model is the better and otherwisethe kinetic one is.As an illustration fig. 3.6 representsa comparisonbetweenthe numerically calculatedmaximum

growth rateandthe onepredictedby the approximationswegave.Fromprintedoutput from theseandsimilar calculationswe concludedthat the variouscriteria we gave in table3.2 to choosebetweenthedifferentapproximations,aresuitablebut not very strict.

At this point it is interestingto comparethe resultsobtainedin this sectionwith the literature.The

fl\~ i0.~2

0 20 40 60 1o8 ~Xl Wpb

Fig. 3.6. (a) Dependenceof themaximumof thegrowth rateof theparalleltwo-streaminstability on themeanangularmomentumspreadXl, for aplasmafrequencyWv, = 1010 ~_b abeam—plasmafrequencyw~

5= 5 x io~s1 andabeamenergyEb = 0.5 MeV. Thelinemarked I I follows

from thenumericalsolutionof thecompletedispersionequation;theline marked ~ showstheresultof the analyticalapproximationswegive. The variousirregularitiesin the theoreticalcurveoccur at theplaceswherethe calculationswitchesover from theone approximationto theother. (b) Dependenceof themaximumof the growthrateon thebeam—plasmafrequency~a

06.For the plasmafrequencywe tookw0, = 1010 s’ andE,= 0.5 MeV for the beam energy.The 4 pairs of curvesare calculatedat = 00, 10~,20°,600. Eachtime a theoretically and a numericallycalculatedcurvearedrawn.The variouscurvesaremarkedasfollows: at00 by ~ I , v v ; at 10°by —V-—-V—, 0 0 at 20°by

* ~-, II II ; at 60°by w w , ~-Pt~-N—. Eachtime the secondmarkertyperefersto the theoreticalmodels.

Page 31: Relativistic electron beams and beam-plasma interaction .pdf

P.C. deJaghereta!., Relativisticbeam—plasmainteraction 207

two-stream instability excited by a relativistic beam has been treated in many publications, acomprehensive list is given in the introduction,section 1.3. The influenceof the shapeof the beamdistribution function on the instability is discussed in [267—269].For the hydrodynamic type ofdispersion our result can be retrieved from a comprehensiveexpressionin ref. [269]. In the otherpublications the influenceof the scatterangleappearedwith a different power. Our treatmentof thekinetic dispersion differs from the current literature. Regardingan O( ~_1) term in the dispersionequation as a zeroth order quantity,we found a distinction betweenrelativistic and semi- (or non-)relativistic beams. A criterion given in table 3.2 is

2>1+4a+a 1 1y < 4a+a

2 4~•

In the literature, wherethe entire contributionof the beamis treatedas a smallquantity, a similarcriterion is found: x

1-r ~ 1, cf. [268], but thereit is misinterpretedas a criterion to decidebetweenakineticandahydrodynamictreatment.Finally, the criterionwe find for the distinctionbetweenkineticandhydrodynamicdispersion,eq. (3.50), alsodeviatesfrom anotheronegiven in ref. [268]:we arrivedat a factor (\1~/4ir)

312 0.05, whereasthat criterion leadsto a similar formula but with a factor0.17 ±0.1. This discrepancy,however,is not too serious sincewe foundour resultcomparinggrowthratesobtainedin both models,whereasthe criterion from ref. [268]is obtainedempirically comparingthe non-linearstagesof the interaction in computersimulations.Of course,a criterion to distinguishbetweenthe ultimate non-linearphenomenais physically moreinteresting,but at the momentwe areonly studyingwavedispersion,viz, the infinitely small amplitude limit. Remarksregardingnon-linearinteractionsare postponeduntil section4.

3.4.3. TheperpendicularwavesNow we proceedwith the discussionof the wave dispersionfor perpendicularwaves (k

5 = 0). Thesimplification that occurshereis that the transcendentalfunctionsF~,. . . , H~,cf. eq. (A.9), (A.10)becomerational. Therefore, if we truncate the k-summationin eq. (3.20), the dispersionequationbecomesrational too. This meansthat its zerosare realor pairsof complexconjugatedones.Secondlywe remark that thedenominatorsin the matrix elementsof the equivalentconductivity tensorareeither—00 + nfI~or (—w + n~b)

2.This meansthat the dispersionequation,det(W— iw~L0u)= 0, contains

terms proportional to (—w + n12b), i = 1,. . . , 6, nI >0. Therefore, we expect sets of six possibly

complexzeros (threepairs associatedwith each of the directionsof polarization)associatedwith thebeamcyclotron frequencyand eachof its harmonics.

Because the dispersion equation is too complicatedto calculateits solutionsanalyticallywe baseourfurtherdiscussionof the dispersion of perpendicularwaveson resultsof computercalculationsandon aratherrough perturbationanalysis. Our starting point is the dispersionof a cold plasma.A typicaldispersionof a cold plasmacontainsthree branchesrepresentingthe ordinary and the extraordinaryelectromagneticmodesand an extraordinaryplasmamode. Thesemodeshavecutoffs at, respectively,

00R’ 00pe and 00L; the plasmamodehasa resonanceat~ Thesecharacteristicfrequenciesareorderedaccordingto 00L < 00pe< 00UH <

In casea cold beamis presentin such a plasmaa beamcyclotronbranchis addedto the dispersiondiagram.This branchis locatednearthe beamcyclotronfrequency11b = lily.

At presentwe arestudyinga beamwith an angularspreadin momentum.As we explainedthisleadsto the addition of sets of six branchesneareach of the beamcyclotron harmonics.The dispersion

Page 32: Relativistic electron beams and beam-plasma interaction .pdf

208 P.C. de Jagheret a!., Relativisticbeam—plasmainteraction

diagramswe obtainednumerically for this systemcan be understoodif we rememberthat the beamplasmafrequencyis smallcomparedto the electronplasmafrequency.Thereforethe beamtermsin thedispersionequationcan be regardedas small perturbationsaddedto the plasma dispersionfunctionexceptwhenthe frequencyis closeto oneof the beamcyclotronharmonics.In thoseregionsthe termswhich are proportionalto (—w+ nflb)~can becomecomparableto the electronplasmaterms.

In order to find an approximationof the dispersionequationin theseregionswe write down thedispersionequationin coordinatesin which the tensorW— iw~oo~is diagonal.A transformationwhichbringsthis tensorinto this form is

cosi~ i sin‘q 0 / w 11w ‘\

U= isin~j cos?) 0 , ~ = ~ arctan(\—y9- 2 2). (3.51)0 ü i ck1fl—w

The dispersionequationfor the beamplasmasystemthenbecomes

A1—S1 iS3 S5det iS3 A2S2 iSo =0. (3.52)

—iS6 A4—S4

The functionsA1, i = 1, 2, 4, representthe cold plasmabranches.Eachof the functionsS1, i = 1,. . . , 6,which can be approximatedby, cf. eq. (A.24),

£~ +L~13~(nQ~)2}, (3.53)

representsthe influenceof the beam.Note that we took only one term of the n-summationin eq.(A.24). The functionsK~andL~are integralsover the distributionfunction, cf. eq. (A.26), (A.27).Their ratio L 1K is, for small scatter angles and small values of k~, proportionalto the squaredscatterangle. Near the point where a plasma branch, let us say the one which representsthe dispersionequationA1 = 0, intersectsthe line w = nflb, the dispersionequationcan be approximatedby

Al(k±,nflb)—Sl=0. (3.54)

This is so becauseall the functionsS~are of the sameorderof magnitudewhile A2 ~ A1,A3 ~‘ A1,A1 S1. Therefore all the other terms in the dispersionequation, eq. (3.1) can be disregarded.Consequentlythe dispersionequationlocally looks like

A(k1) = —a/6 + 13/62, 6 = w—nllb. (3.55)

This equation has a pair of complex solutions for 6 if a2 + 4A(k

1)13<0. When A is varied the

imaginarypart of the solutionhasa maximumvalue if A = — a 2/213. In that casethe solutionsare

6 = (—1 ±i)/31a . (3.56)

This rathercrudeapproximationexplainsthe local topology of the dispersiondiagrams.Furthermoreit gives an approximation for the maximum growth rate of the perpendicularbeam cyclotroninstabilities:

Page 33: Relativistic electron beams and beam-plasma interaction .pdf

P.C. deJag/seeet a!., Relativisticbeam—plasmainteraction 209

6 — (1 ±i)nflbf3~L~/K’fl. (3.57)

Note that the coefficientsin this equationare connectedto the coefficientsL and K from eq. (A.24)through the transformationU, cf. eq. (3.51).

As an illustration fig. 3.7 showsa typical dispersiondiagramfor perpendicularwaves.This diagramwas selectedfrom a ratherlarge setwe madeandwhich all had nearly the samecharacteristics.Thesecharacteristicsare: The complexbeamcyclotronbranchesfor “transversewaves”(the beamcyclotronmaserinstabilities) all appearat the side of smallk1 (or large w) of the cold plasmabranchesandtheinstabilitiesdue to the interactionwith ordinaryelectromagneticwavesalways havegrowth ratesthatare smallerthan thosethat can be attributedto the interactionwith extraordinarywaves.A physicalexplanationof thistopology is found by notingthat the energysourcefor theseinstabilitiesis the kineticenergyof the perpendicularmotion of the beamelectrons.So if wave energyis withdrawn from thisenergysource the relativistic mass correctiondecreaseswhich makesthe beamcyclotron frequencyincrease.So we expect the real part of the frequencyof the unstablewavesto lie slightly abovethefrequency of the correspondingbeam cyclotron harmonic. Another general characteristicis that“longitudinal” solutionssometimesare complexat largevalues of k1. The imaginary parts of all thecomplexsolutionstendto zero when k1—*0, exceptfor the branchat the beamcyclotron frequencyitself. Here the discussionwhich we gavein the previoussubsectionapplies.Concerningeq. (3.57) itcan be said that it gives a correctorderof magnitudefor the growth ratesof the instabilities. As thegrowth rate of the strongestinstability is comparableto the one of the beamcyclotron instability atk5 = 0, a roughestimateof the orderof magnitudeof the growth ratecan be foundfrom eq. (3.39).Wesuspectthat the many instabilitieswe seenearelectromagneticbranchesare the instabilities that areresponsiblefor radiationof electromagneticwaves.Fromthis andotherdiagramswe made,we observethat the relative importanceof the various instabilities is very sensitiveto the tuning of the beamcyclotronfrequency:In fig. 3.7we see stronginstabilitiesat the third cyclotronharmonic,a frequency

-2-- ~-~Ii:III

Fig. 3.7. A dispersiondiagram for perpendicularwaves.To obtain a good illustration we choosethe parametersin such a way that the variousinstabilities can be shown in the same picture; i.e. wi,, = 2 X 1010 ~_b 11, = 3 X 1010 s~,~a00= 8 X iO~~ E0= 500 keV, x1 = 60°. The variousinstabilitiesthat areshownare: thebeamcyclotronmaserinstability (curves2,2’), aninstability dueto the interactionbetweenthebeamcyclotronwaveand an“upperhybrid” wave(curves 1, 1’); instabilitiesat thesecondbeamcyclotronharmonicfrequencydueto interactionwith theordinaryelectromagneticwave (curves3,3’) and theupperhybrid wave(curves6,6’); at the third beamcyclotron harmonicfrequencywe seeinstabilitiesdue to interactionwith the ordinary electromagneticwave (curves5,5’) and with theextraordinaryelectromagneticwave(curves 4,4’); at largevalues of k1 we see a “longitudinal” instability at thethird cylotron harmonic(curves7,7’). We called this last instability “longitudinal” becausecoupling with the transverseelectromagneticwavescannot be observed.

Page 34: Relativistic electron beams and beam-plasma interaction .pdf

210 P.C. de Jag/seeet a!., Relativistic beam—plasmainteraction

which lies justabovethe cutoff for right handpolarizedelectromagneticwavesandalsojust abovetheupperhybrid frequencyof the plasma.

3.5. The waveguidemodes

To proceedwe discussthe dispersionfor the waveguidemodesin the systemwe regardat present.To study thesemodes,modeswith a fixed non-zerovalue for k1, we need to solve w(k5) from thecompletedispersionequations,eq. (3.1), (3.3) and (3.20). Since this equationis too complicatedtoinvestigateanalytically, weonly havenumericalmethodsat our disposal.To understandthesesolutionswe can do no morethan look at the limiting situationswe know. This knowledgemainlyrefers to thelimit ~1—*0, to the dispersionneark5 = 0 (cutoffs of the waveguidemodes)and to the limit k~—+0.

In the limit of small scatterangles,x1 —*0, the theory for a cold beamplasmasystemapplies.For arelativistic beam,in a moderatemagneticfield, threeunstableregionscan be distinguished,i.e. thereareinstabilities respectivelydueto the interactionbetweena beamplasmawaveandan electronplasmawave,due to the interactionbetweena beamcyclotronwaveandan electronplasmawaveanddue tothe interaction between a beam cyclotron wave and a whistler wave. For small magnetic fields,

<~b~VY~only an interactionbetweena beamplasmawave andan electronplasmawave is worthmentioning.This instability changesinto an upper hybrid instability when k1 increases.In the nextsubsection,3.5.1, we investigatehow the growth ratesof theseinstabilitieschangewhenx1 increases.

In subsection3.4.3 we studiedthe perpendicularprincipal waves. The solutionsw(k1) we foundtherein factarethe cutoffs of the waveguidemodes.This meansthat, becauseof continuitypropertiesof the dispersionfunction,we expectin a dispersiondiagramfor waveguidemodesat most 8 electronplasmabranches,2 beamplasmabranchesandsetsof 6 branchesassociatedwith the beamcyclotronfrequencyandeachof its harmonics.Thesesetsof 6 branchescan beregardedasconsistingof 3 pairsofbranches,eachpair associatedwith one of the eigenvectorsof theconductivity tensor.This leadsto thesuspicionthat neareachplacewherea coldplasmabranchintersectsone of the lines w — V0k5 — =

0, a possibly unstableinteraction can be expected.At the same time a “Landau damping” effect(cyclotron damping) can influencethe rate of instability substantially,cf. [270].Furthermore,becauseof branchcuts, seesection3.3, the numberof branchesin the dispersiondiagramcanchangeneartheseinstabilities.

Except for an instability nearthe beamcyclotronfrequencyitself, all cyclotronharmonicinstabilitieshavea kinetic character:they vanishwhen~1--*O.In section3.5.2 we investigatethesekinetic beamcyclotron instabilities.

The featureof the wavedispersionwe are interestedin most is the maximumof the growth rate ofunstablewaves.As soonaswe know all suchmaxima,wecan determinewhich of the unstablewavesisthe mostunstableone andtherefore,which will bemost likely to becomedominantin anexperiment.As we explainedin theparagraphsabove,thewaveguidemodeswe studyhere,can beunstabledueto alargevariety of interactions.At the sametimea dispersiondiagramconsistsof a rather largenumberofbranches.In order to keep the figures surveyablewe do not give full diagramsbut only interestingdetailsandgraphsof pointsof maximum growth.Another restrictionwe pose,in orderto keepthe sizeof this section limited, is that weonly regardparametervaluesthat areof interestfor somelaboratoryplasmas,namelyvaluesthat correspondto the casesA andB from table3.1. So we only studyhow thedispersionfor theseplasmasdependson k1 andx1. A third restrictionwe aresubjectedto follows fromthe remark aboveeq. (A.3): the numericalcalculationsbecometoo time consumingwhenV0k~sin x0/11h> 10.

Page 35: Relativistic electron beams and beam-plasma interaction .pdf

P.C. de Jag/seeet a!., Relativisticbeam—plasmainteraction 211

3.5.1. Dependenceof the “cold” instabilities on the scatterangleIn this subsectionwe restrict ourselvesto beam—plasmasystemshaving characteristicfrequencies

which areof interestfor laboratorysituations.Especiallythe parametersfor the situationsA andB metin section3.1 will be used(cf. table3.1). FromsituationA we will use both the lower and the upperboundof the electronplasmafrequency,thesetwo casesare denotedby Al and A2 respectively.

This choicemeansthat we treatthreesituationsin whichthe characteristicfrequenciesareorderedindifferentways, i.e. for situationAl onehasWpe> ~‘1> 00pb’ for A2: (1> 00Pe> 00pb andfor situationBonehas00pe ~‘ 1lb 00pb Furthermorewe noticethat in the situationsA all frequenciesareof the sameorderof magnitudewhereasin situationD the plasmafrequencyis over an order of magnitudelargerthanthe otherfrequencies.A consequenceof thesedifferencesis that the topology of the dispersiondiagramsis different too.

In the calculationswe make,we usethe beamcyclotron frequency,11b = lily, as the quantity inwhich all otherfrequenciesareexpressed.This is donebecausewe want to pay attentionto phenomenawhicharerelatedto thisfrequencyandits harmonics.As a unit in which wave vectorsaremeasuredweuse fib/Vp. This way it is easyto see whetheran instability can lead to strong interactionswith beamparticles. Using the figures from table 3.1 we find a value for this unit: flbIVo = 67 m1 and

(lb/Vo = 50 m’ for, respectively,casesA and B.Both situationsA andB refer to experimentswhich werecarriedout with the sameapparatus,only

the plasmasourceand the beamwerechanged.This meansthatin both casesthe interactionchamberandthe externalmagneticfield were the same.The minimumvaluesof the perpendicularwave vectorthat fit inside the interactionchamberis 30 m’ andinside the beam100m’. So we suspectthe 3rd or4th order waveguidemode to be the one that is most likely excited by perpendicularbeamwaves.Thereforewe suspectthe modesthat exist in the experimentto havea k

1 vectorof about 1.5 [fib/Vp]

and 2 [(lb/volin, respectively,cases A and B. As the experimentwas carriedout in a cylindricalchamberwhereasour model refersto a rectangularwaveguideminor deviationsmay be expected.

In the cold beam—plasmasystemwith parametersaccordingto situationA threetypes of unstablewaveguidemodescan be distinguished,namelythe two-streaminstability andtwo instabilitiesdueto aninteractionbetweenthe beamcyclotronwave and,respectively,theplasmawave andthe whistlerwave.

In the cold beam—plasmasystemwith the parameterscharacteristicfor situationD two unstableinteractionsexist: the two-streaminstability and an instability due to interaction betweenthe beamcyclotronwave andthe whistler wave showup.

As a point of referencefor the furthercalculationswe show in fig. 3.8 the dependenceof the growthrateof the variouscoldinstabilitieson k~(the waveguidemodenumber).Looking at this figure we seethat in thesituationsA all typesof instability can havegrowth rateswithin thesameorderof magnitudewhereasin situationB the instability which is relatedto interactionwith thewhistlerwave,alwayshas agrowth rate which is much smaller than the other one. Furthermoreit should be kept in mind that

> 1.5, respectively,2 [fib/Vol in casesA and B. This meansfor situationA that the beamplasmainstability at the lowestordermodehasa growth ratewhichis just slightly abovethe growth rateof theupperhybrid instability at high ordermodes.In situationB the upperhybrid instability at high orderwaveguidemodesis always the fastestgrowing one in the cold beamcase.

In fig. 3.9 weshow thedependenceof the maximumof the growth ratesof the variousinstabilitiesonthe scatter angle for the lowest order waveguide mode, i.e. for k~= 1.5 (caseA), respectively,k1 = 2.0[Qb/Vd] (caseB). In fig. 3.9awe presentthe graphfor situationAl. In the captionof the figurewe list the variousinstabilitiesthat areshown.We seethat thecurvefor the instability dueto thebeamcyclotron—whistlerwave interaction,markedby triangles,shows sharpbendsnear = 320 and near

Page 36: Relativistic electron beams and beam-plasma interaction .pdf

212 P.C. deJag/seeetal., Relativisticbeam—plasmainteraction

k1v0

10b

100••’

0 ~ b CI ~ I I ‘ I

0.1 1 10 100 1 10 100kjv

0/Qb kiV0/Qb

Fig. 3.8. (a) The k 1-dependenceof the growth rate of the cold beam—plasmainstabilities in awaveguide.Herethe low density limit of situationAfrom table 3.1: “case Al” is presentedi.e. = 2 x 1010 ~-b ~ = 3.5 X 10~°~ WOb = 7.5 X i0

9 s~’,Eb= 500 keV. The curvesthat areshownrepresentthebeam—plasmainstability (marked I I ) and instabilitiesdueto interactionsof thebeamcyclotron wavewith thewhistlerwave(marked V V ) and with the cyclotron (or upper hybrid) wave (marked ). Note that here,aswell as in fig. (b) thestrongestinstability is found at small valuesof k

1 exceptwhen the lowestorder waveguidemode hasa valueof k~which is largerthan 3 [11

01v01.In suchwaveguidesthe upperhybrid instability is thestrongestone. (b) The sameas (a). Here thehigh density limit of situationA from table 3.1: “caseA2” is presentedi.e. wp, = 5 x l0~°s’ The curvesaremarkedin thesamewayasin fig. (a). The minimum that appearsin thegrowth rateof thewhistler—beamcyclotron instability occurswhen thepolarisationdirectionof both wavesis mutually orthogonal.(c) Thesameas (a).HeresituationB from table 3.1 is presentedi.e. = 4 x lO~~_b ~ = ~ X iO’°s~

1,w00 = 2.5 X 1010 s’, E0 800keV.Note that theupper hybrid instability is

theone with the largestgrowth rate.The instability due to the beamcyclotron—whistlerinteraction is always very weak.

x1 = 420. Thesebendsoccurat the places where the phase velocity of the unstablewavebecomesequalto v0(l — a), respectively,v0(l — a) + fib/k5. This indicatesthat the enhancementof the instability atlarger values of x1 is due to Landaugrowth. The disappearanceof the beam cyclotron—cyclotroninstability at x1 30 is explained by the fact that thisinstability mergeswith the beamplasma—cyclotroninstability.

The graph for situationA2, which is given in fig. 3.9b looks like the one for situationAl. Exceptthat, becauseof differentphasevelocities,no Landaugrowth is observedandthat the beam-cyclotron—whistler instability is not presentbecausethe direction of polarizationof the two waves is nearlyorthogonalin this situation.

In fig. 3.9c we showagraphfor situationB. Obviouslythe growth rateof the beamplasmainstabilityis always the larger one.

Page 37: Relativistic electron beams and beam-plasma interaction .pdf

P.C. de Jaghereta!., Relativisticbeam—plasmainteraction 213

‘°iIIiI

~

I I I I I I I I ~ I I0 20 40 60 0 20 40 60

Fig. 3.9. (a) This figure shows how the growth rate of the instabilities of fig. 3.8a changeswhen the scatterangle x1 increases.We tookk1 = l.51151v0,a valuethat correspondsto the lowestorderwaveguidemodein theexperimentwe studyhere.The curvesare markedin thesamewayas in fig. 3.8a.The enhancementof thegrowth rateof thebeamcyclotron—whistlerinstability abovex1 = 32°can beascribedto Landaugrowthas soonasthebeamplasma,andlater,above42°,thefastbeamcyclotrontermscontribute.(b) This figure is rathersimilar to fig. (a); weonly took ahighervalue for theplasmafrequency,which makesit agraphfor situationA2. (c) This figure showshowthegrowth rateof the instabilitiesof fig.3.8c, changeswhen the scatteranglex1 increases.We took k1 =

2llbIUO, a value that correspondsto the lowest order waveguidemode in theexperimentbeing studied.

/ Na :_____

ibo ds ibo

kivO/f?b kjvo/Qb

Fig. 3.10. (a) The k1-dependenceof thegrowth ratesof the sameinstabilitieswe showedin fig. 3.8a but now we took Xi = 25°.The curvesare

markedin thesameway as in fig. 3.8. (b) The k1-dependeneeof thegrowth ratesof thesameinstabilitieswe showedin fig. 3.8b but now we took

= 25°.The curvesaremarkedin thesameway asin fig. 3.8.

Page 38: Relativistic electron beams and beam-plasma interaction .pdf

214 P.C. de Jagheret a!.. Relativistic beam—plasmainteraction

In fig. 3.10 we presentthe k~-dependenceof the instabilitiesat the scatterangle x1 = 250 for the

situations Al and A2. Comparing this figure with fig. 3.8 we see that the relative importanceof thevariousinstabilities remainedthe same,only their growth rate becamelessby an orderof magnitude.At largerscatteranglessomeinterestingkinetic phenomenabecomevisible. Thesearediscussedin thenext subsection.

3.5.2. The kinetic instabilitiesIn thissubsectionwe discussthekinetic instabilitiesthat arepresentin thebeam—plasmasystemswe

study here. The adjective kinetic in the previoussentencemeansthat theseinstabilitiesvanishwhen

x1—*0.

The significantly presentkinetic instabilitieswe found for the situationsA areinstabilitiesof beamcyclotron harmonicwaves. It appearsto be useful to distinguishtwo different types of this instability,namely, instabilitiesof fastbeamcyclotronwaves(lw/k

5 I > V0) andslow ones (lw/k5 I <v0). We notethat the energysourcefor the fast instabilitiesis the energyof the perpendicularmotion of the beamelectronsandthat slow instabilitiesarefed by energycomponentsfrom the parallel motion. At a firstsight two typesof fast instabilitiescan be distinguished,namely, the instability of the beamcyclotronwave neark5 = 0 (i.e., the beamcyclotronmaserinstability, cf. section3.4.1) and instabilitiesof thefastcyclotron harmonicsthat can be foundnearthe placeswherethey interactwith the cold plasmawaveguidemodes.The slow instabilitiesarethe coldinstabilitieswe alreadytreatedandinstabilitiesathigherbeamcyclotronharmonics.For the situationswe investigated,this last typeof instability is not sovery important.We only foundweak instabilitiesat the secondharmonic.

For situationB all the dominantinstabilitieswe found are instabilitiesdueto the interactionwith theplasmawave.

To proceedwe studythe fast instabilitiesfor situationA. Thenwe treatthe slow instabilitiesfor thissituationandfinally we investigatesituationB.

In fig. 3.11 we showhow the maximumgrowth rateof the beamcyclotronmaserinstability dependson k1 at x1 = 25°,40°,60°.From this figure weseethat in all casesthe instability hasits largestgrowthat k1 0. In fig. 3.lla, wherewe tookthe parameterscharacteristicfor situationAl, we seethat theinstability atsmallervalues of x1 changesinto someothertypeof instability neark1 l.3(llb/Vd). Thisinstability is an instability of the upper hybrid cold plasma wave. In fig. 3.llb, where we took theparametervaluescharacteristicfor situationA2, such a transitiondoesnot occur becausethe cutoff ofthis modelies always abovethe beamcyclotronfrequency.In fig. 3.llc we took the parametersfromsituationB. For eachof thesesituationsweobservethatthe beamcyclotronmaserinstability alwayshasits maximum growth close to k~= 0 and w =

Apart from the beamcyclotronmaserinstability otherfastbeamcyclotroninstabilitiesexist. Lookingat fig. 3.7 the cutoffs of severalof them can be seen. In fig. 3.12 we presentthe k1 dependenceof themaximum growth rateof theseinstabilitiesfor situationsA. Here we restrict ourselvesto the strongerinstabilitiesup to the fifth cyclotronharmonic.In the caption of this figure the typeof instability thatcan be ascribedto the various curvesis listed. The differencesbetweenfig. 3.12a,wherewe took theparametersfor situationAl, and fig. 3.12b,which refersto situationA2, suchas the non-appearanceofinstabilities at the secondcyclotron harmonicin fig. 3.l2b, must be soughtin the difference of thecharacteristicfrequenciesfor both cases.One of the noticeablefeaturesof the instabilities of theelectromagneticwavesis that they reachtheir maximumgrowth closeto k5 = 0 and w =

Besidesthe instabilitiesof the fastbeamcyclotronharmonicswhich aredueto interactionwith thecold plasma modes,anothertype of beamcyclotron instability is found very close to the cyclotron

Page 39: Relativistic electron beams and beam-plasma interaction .pdf

P.C. de Jag/seeeta!., Relativistic beam—plasmainteraction 215

k1v0 ~b

k1v0/Qb k1v0/Qb

Fig. 3.11. (a) The k1-dependenceof the beam cyclotron maserinstability. Curves for x1 = 25°,40°,and 60°are shown.They are respectivelymarked, V V , and I I . The parametersare takento correspondto situationAl. (b) This figure is similar to fig. (a); theonly differenceis thatwe tookthehigherplasmafrequencyfrom situationA2. (c) This figure is similar to fig. (a); theonly differenceis thatwe tookthe parametersfor situation B.

harmonicfrequencieswhich areabovethe upperhybrid frequencyandat perpendicularphasevelocitiesbelow the light velocity. Fig. 3.12c showsthe growth rateof two of such instabilitiesfor situationA2.

Onemaynoticethat all the strongercyclotroninstabilitieshavegrowth rateswhich areof the orderof magnitudeof the beamcyclotron maserinstability. Thereforeone may estimatetheir importanceusingeq. (3.39).

In fig. 3.13 we give thek~dependenceof the maximumof the growth rateof the instability that canbe ascribedto the interactionbetweenthe beamcyclotronwaveandits secondharmonicwith the coldplasmawaveguidemodesfor situationsAl (fig. 3.13a)andA2 (fig. 3.13b). For both figures we tookx1 = 40°.To which type of instability the various curvesrefer is listed in the figure caption. In bothfigures we see that the growth rate of the instability at the slow second cyclotron harmonicliesconsiderablybelow the largestone.

Another remarkablefeatureof both figures is that somecurvesjust end somewhereat lower k~values.This is dueto the fact thatat that point twoinstabilitiesof the samecold plasmawavemerge.This effect was seen in fig. 3.9 too.

The most interestingproperty of fig. 3.13, comparingit with figs. 3.8 and 3.10 is, that the upper

Page 40: Relativistic electron beams and beam-plasma interaction .pdf

216 P.C. de Jagheeel a!., Relativistic beam—plasmainteraction

~III~I~I1

k1v0 ~b

0.10 b

Fig. 3.12. (a) The kr-dependenceof thegrowthrateof somefast cyclotroninstabilitiesfor situationAl. Theinstabilitiesshownhereare:Thebeamcyclotron maser instability (marked I I ); instabilities due to the interaction of the secondbeam cyclotron harmonicwith the ordinaryelectromagneticwave (marked ) and with the whistler (marked~-*— $ ); instabilities due to interaction of the extraordinaryelectromagneticwave and thethird andfourth cyclotron harmonic are marked 0 LI and V V . (b) The sameas(a) for situation A2.The instabilitiesshownhereare: The beamcyclotron maserinstability (marked~-f I ); instabilitiesdueto the interactionof thethird beamcyclotron harmonic with the upper hybrid wave (marked~-v ); at thefourth beamcyclotron frequencyan interaction with theordinaryelectromagneticwave (marked V~-V-—)is shown and at the fifth beam cyclotron harmonic frequencyan interaction with theextraordinaryelectromagneticwave(marked 0 0 ) is presented.(c)The sameas(a) for situationA2. The instabilitiesshownhereoccurat largervaluesofk1and atcyclotron harmonicsabovetheupperhybrid frequency.In a dispersiondiagramfor perpendicularwaves,like fig. 3.7,theyareinstabilitiesof the pair of beam cyclotron harmonic brancheswhich doesnot show a coupling with the electromagneticmodes.Thereforewe call themlongitudinal. The instabilitiesare instabilitiesof the fourth andthe fifth beamcyclotron harmonic(marked~ I and ~‘- ).

hybrid instability reachesits maximumgrowth ratesomewhereneark1 =4(~b’ vd). This meansthat the

secondor third orderwaveguidemodesbecomethe onesthat aremosteasily excited.The reasonforthis differencewith the situationwhenthe scatterangle is smallermustbe soughtin the factsthat theoscillating behaviourof the Besselfunctionsin the kernel of the integral for the conductivity tensorbecomesvisible at largervaluesof k

1 sin x and in the fact, which we alreadyobservedin fig. 3.9a,thatmoreterms, from the summationover cyclotron harmonics,contribute.

In situationB the dispersiondiagramlooksdifferent becausethe beamcyclotronfrequencyis muchsmallerthan the plasmafrequency.This meansthat only very high cyclotron harmonicscan interactwith the electromagneticmodes.Anotherdifferencewith the situationA is that the growth ratesof theinstabilitiesthataredueto interactionwith the whistler wave andthe beamcyclotronmaserinstabilityare always negligible comparedto thosethat arisefrom the interaction with the plasma(or upperhybrid) wave.

Page 41: Relativistic electron beams and beam-plasma interaction .pdf

P.C. deJaghereta!., Relativisticbeam—plasmainteraction 217

1o2

— I ~ i~

kivo/Ob klvO/Qb

Fig. 3.13. (a) Thek1-dependenceof thegrowthratefor someslow instabilitiesfor situationAl atx1 = 40°.Besidesthethreeinstabilitieswe showed

in fig. 3.10 an instability at the secondbeam cyclotronharmonic (marked U LI ) is showntoo. The othercurvesare markedasfollows: theinstability due to interaction betweenthe beam plasmawave andthe upperhybrid wave is marked V V , the instabilities due to theinteraction of the beamcyclotron wavewith the upperhybrid wave andwith thewhistlerwaveare markedby v and I I . Thewavy shapeof thecurvesfor thegrowth ratereflectstheoscillatingcharacterof theBesselfunctionsin thekernelof the integral representationoftheconductivity tensor. (b) This figure is similar to fig. (a); the only differenceis that we took thesomewhathigherplasmafrequencyfor situationA2.

In fig. 3.14we give adetail of a dispersiondiagramthat showsthisinteraction. In this figure we seefour instabilities. Their origin is listed in the caption of the figure. It is worth noticing that for thissituationthe strongestinstability is dueto the interactionwith the slow beamcyclotronwave.

In figs. 3. l5a, b we show respectively the x1 and the k1-dependenceof the growth rate of theinstabilities that appearin fig. 3.14. In fig. 3.l5b we see at decreasingvaluesof k1 that all beamcyclotron instabilitiesvanish. An inspectionof dispersiondiagramswe madefor k1 =

6Qb/vd andk1 =

7~b’ Vd shows that the instability of the secondbeamcyclotron harmonicvanishesbecauseitmergeswith the two-streaminstability. A similar phenomenoncan be observedin fig. 3.15a.

I IIIIIIIII

kzVo “nb

Fig. 3.14. Detail of thedispersiondiagramfor situationB atk1 = 1011,/v0.x1 = 25°.Thebranchesthat areshownarethefastplasmabranch(1, 1’),

theslow plasmabranch(4,4’) and two upper-hybridbeambranches(2,2’ and 3,3’) of which the onenearthe slow beam cyclotron frequency(3,3’) is themostunstable.Note thetwo instabilitieson theslow plasmabranchof whichtheoneneartheupper-hybridbeamwaveis thestrongercomparedto the kinetic two-streaminstability.

Page 42: Relativistic electron beams and beam-plasma interaction .pdf

218 P.C. de Jag/seeeta!., Relativistic beam—plasmainteraction

~ a _____ 0 bI I I I I I IIIIIIIIII

0 5 10 15 20 25 2 4 6 8 10kjVo/~b

Fig. 3.15. (a) The x1-dependenceof the instabilitiesshown in fig. 3.14. The curvesare markedasfollows: thewarm beamplasmainstability by

I I , an instability near the slow beam cyclotron branchby V V and near the fast beam cyclotron branchby LI LI . Theinstability due to thebeamupper-hybridwave(marked v v ) appearsto be thestrongestinstability assoonasthebeam—plasmainteractiongets a kinetic character.(b) The k1-dependenceof the instabilitiesshown in fig. 3.14. The curvesare markedthesameway as in fig. (a).

3.5.3. A comparisonof the various instabilitiesFromthe previoussubsectionit is clear that the interactionbetweena relativistic electronbeamand

a coldplasmaleadsto a ratherlargenumberof unstablemodes.It is alsoobviousthat dependingon theorderingof the characteristicfrequenciesratherdistinct phenomenaaredominant.In all caseswe sawimportant effects at beamcyclotron harmonics. In situationA we found an interaction with elec-tromagneticwaveswhich was not seenin situationB. For situationB however,we found an unstableinteraction betweenbeamcyclotron harmonicsand the plasma wave which was hardly presentinsituationA.

Looking in more detail to the various instabilities we found for situationA, we see that, withincreasingscatterangle, the cold instabilitiesbecomelessimportantwhile the growth ratesof the fastcyclotroninstabilitiesincrease.Comparingfig. 3.9 with figs. 3.11 and3.12we seethat for somevalueof

x1 between25°and40°bothtypes of instabilitieswill haveequalgrowth rates.Furthermorewe noticethat for larger scatteranglesthe valueof k1 at which the largestgrowth rate occursis rathersensitivefor the tuning of the variouscharacteristicfrequenciesandfor the geometryof the waveguide.So, inthose cases it is not a priori obviousthat the lowest orderwaveguidemode is the one that will beexcited.

ForcaseB the situationis different. Comparingfig. 3. llc with fig. 3.l5a wenotethatthe instabilitiesat theplasma(or upperhybrid) frequencyhavegrowthrateswhich aremuchlargerthantheonesof theotherinstabilities.An interestingobservationcan be madelooking at fig. 3. l5b. Therewe seethat,justlike in fig. 3.8c, the strongestinstabilitiesoccur at largevalues of k1. Theseinstabilities,however,areno longer dueto the two-streaminstability, but to an instability of the beamcyclotron(or beamupperhybrid) waves.Also in fig. 3.14 this differencecan clearlybe seen.

Comparingthe variousresultsfor, respectively,situationA andB, onesurmisesthat theemissionofnearlyperpendicularextraordinarywavesat beamcyclotronharmonicfrequencies(the beamcyclotronmaser instability) can be an important loss mechanismfor the perpendicularbeamparticle energy,provided the correspondingfrequencyis not too small comparedto the plasma frequencyand thescatterangle is sufficiently large. In otherwords we think that in such situations, the first stagein thebeam—plasmainteractionwill lead to a decreaseof the perpendicularbeamparticlevelocities ratherthanto effects on parallelvelocities.

Page 43: Relativistic electron beams and beam-plasma interaction .pdf

P.C. de Jag/seeet a!., Relativisticbeam—plasmainteraction 219

The observationsmadein the paragraphsabovesuggestthat one should usefor the explanationofthe later, non-linear, stagesof the beam—plasmainteraction,theorieswhich are more comprehensivethanthosewhichtreat Langmuirwavesonly. In manycaseselectromagneticwavesandbeamcyclotronwaves such as the beam upper hybrid wave and the fast beamcyclotron harmonicscan play animportantrole in the onsetof the interaction.

4. Non-linear theory

4.1. Introduction

In the previoussectionwe met severalinstabilities that maybe presentin a beam—plasmasystem.The presenceof an instability meansthat somefree energysourcefeedsenergyinto the unstablewave.This causesthe wave to grow up from a (thermal)noiselevel to a level at which the processof lineargrowth saturates.Thereareseveralreasonswhy thismayhappen:the unstablewavemayhave travelledto a region of spacewithout an unstablesituation(outsidethe beamregion), or the wave mayhavegrown to a level wheresomenon-linearprocess,that drainswave energy,balancesthe lineargrowth,orthe unstablewavemayhavechangedthe dispersivepropertiesof the systemin suchaway that it is notan unstablewave anymore. What actually happensdependson the dispersionof the unstablewave.Thereforewe havea closerlook at somelinearly unstablewave.

In the next subsectionwe discussgeneralpropertiesof wave spectrathat havedevelopeddue to alinearly unstablesituation.We give aheuristicderivationof a criterion to distinguishsingle waveandmultiple wave interaction with some particle.Also a typical relativistic effect is pointed at: After aLorentz transformationto the framein which the phasevelocity of the unstablewavevanishes,it mayoccur, especiallywhenthe beamis hot, thata considerableamountof beamparticlesis movingfasterthan the backgroundplasma.Theseresultsareworked out in more detailin the last sectionwhereweinvestigatetheir implications for the parallelwave spectrumof the two-streaminstability we treatedinsection3.4.2.Throughoutthis sectionour attentionwill be focussedmainly at the non-linearprocessofparticle trapping in a largeamplitudewave.

4.2. Generalcharacteristicsofa linearly unstablewavespectrumandits interaction with a beam—plasmasystem

The dispersionequation,eq. (3.1), wasfound as the solvability conditionfor the Fourier—Laplacetransformedlinearized equation W E = iwjs~j= iwjs0o . E. The solution of this equation,E(k, w),regardedas a function of w, has poles at w = w1(k), where w1(k) is the solution of the dispersionequationfor the jth mode.Using this property the inverseLaplacetransformationleadsto

E(k, t) = ~ E1(k)e10 . (4.1)

At sometime, sayt = 0, the field startsgrowing from noiselevel. We assumethat E1(k) = E0 describes

this noise field, i.e. E(k, t = 0) is independentof k. This assumptionreflects the ideathat~the noisespectrumis extremelywide comparedto the k-intervalwe will be dealingwith. Now we havefor thedispersionaroundthe most unstablewave(which occursat k =

Page 44: Relativistic electron beams and beam-plasma interaction .pdf

220 P.C. de Jag/seeet a!., Relativisticbeam—plasmainteraction

W(k)=Wo+Vg’(k_ko)+ ~v~:(k—k0)2+.”, (4.2)

with 000 = + ~(U

1, Vg = dw/dk purely real and = d2w/dk2 complex (Im(v~) <0). Using eqs. (4.1)

and(4.2) weperformthe inverseFourier transform.For the waveguidemodewith wave vectork1 this

leads to

E(x, t) = E0A1(z, t) A1(x,y,k1) e~’e_~t_k0~5) (4.3)

whereA1 denotessomethinglike &~h1.t~or “m(13n’) e’m~and

A11(z, t) = Jdk5exp[i(k. — k0)z] expf—it[v~ (k5 — k0) + ~v~(k5— k0)

2]}

= ~ exp[~i (z~Vg~t)] (4.4)

where v denotes(v~)55if v~is diagonal.Otherwiseit is obtainedfrom v~with the aid of somevector

algebra. So the most unstablewaves (w = w~, k = k0, Vph = w0/k0) manifestthemselvesas Gaussianwave packetsmoving with a group velocity vg and having an increasingwidth iXl = O(~— v Im(v~)t).(When~—* only an infinitely long wave train at the very maximum of the instability remains.)

It is interestingto haveacloser look at the amplitudeof the field which is experiencedby a particlethat is moving in the z-directionwith a velocity vi,. Substitutingz= z~(t)= z~,+ v~,tinto eqs. (4.3),(4.4) we find an amplitudeproportionalto

(v—v)2

A11(z~, t)~exp{_~ + (~— PC )~}. (4.5)

Consequently,dependingon the sign of Re(w1 — (v0 — vg)2/2iv~),the particle experienceseither anexponentiallygrowing or a transientfield. For threevelocitieswe inspect the situation.First we take

= 0. This leadsto the observationthat if

w1 + (v~/2Iv~2) Im(v~)>0 (4.6)

the field measuredatsomefixed point in an experimentis exponentiallygrowing, otherwisea transientfield is seen.So eq. (4.6) discriminatesabsoluteandconvectiveinstabilities.

Next we regarda resonantparticle; i.e. we take v~,=t’ph~ Now we concludethat if

w~+ [(vPh— Vg)2l2Iv~I2lIm(v~)>0 (4.7)

a resonantparticleexperiencesa growing field amplitude.So the particleis trappedin the wave packetand the interactionbetweenwave and particlecan be regardedas an interactionwith a single wave.This type of interaction is often referredto as hydrodynamic. If inequality (4.7) doesnot hold, aresonantparticleremainstrappedin the wavepacketalimited time only, i.e. only as longas the field ofthe withdrawingwave packetexceedsthe noise field. In thiscasethe responseof the resonantparticle

Page 45: Relativistic electron beams and beam-plasma interaction .pdf

P.C. de Jaghereta!., Relativisticbeam—plasmainteraction 221

to the unstablewaveswill bethe resultof a passagethroughseveral(or evena largenumberof) wavepackets.Assumingthat the phasesof succeedingwave packetsare not correlated,a random phaseapproximationmaybe usedto calculatetheaverageresponseof theparticle. So, if inequality (4.7) doesnot hold, quasi-lineartheorycan be used to describethe system.This situationis often referredto askinetic.

The third situationto consideris the onewherea typical particlevelocity, suchas thehydrodynamicbeamvelocity, or somethermalvelocity, is substitutedfor in eq. (4.5).Again aninequality like (4.7)is obtained,and again it discriminatesa single wave (or strong) and a randomphase,stochastic(orweak) interaction,but now it refers to non-resonantparticles that may becometrappedin a largeamplitudewave. For the beamplasmainstability the groupvelocity is generallymuchsmallerthanthebeamparticle velocities and the phase velocity, whereasthe latter two nearly coincide. Thereforecriterion (4.7) will nearly coincide with the criterion for trappingof the beamin the unstablewave.Furthermore,as soonas a beamparticleis trappedin the unstablewave it startsperforminga bouncemotion making its averagevelocity equalto the phasevelocity. Consequentlyeq. (4.7) can be usedasthe criterion to determinewhetherthe beamwill becometrappedor not,or, in otherwords,whetherthe interaction is a strong, “single wave” or aweak, “multiple wave”, “stochastic”,“quasi-linear”one.

Having consideredthesepossibilitieswe note we only regardedthe influenceof Im(v~).However,especiallyfor kinetic interaction,it can happenthatRe(v~)~° Im(v~).So it is interestingto investigatethe meaningof the Re(v~)term in the exponentfrom eq. (4.4). Dependingon the phasesof theamplitudesin the wave packet,Re(v~)can leadto a factor

(v —z/t)2cos( 2lv~I2 Re(v~)t)

or to a factor

i(v — z/t)2exp( 2IV~I2 Re(v~)t).

In the first form we are dealing with an additional amplitude modulation under the Gaussianenvelope.In the secondcaseit leadsto a shiftedfrequencyand phasevelocity of the high-frequencywave under the Gaussianenvelope.

In the first casea trappedparticleexperiencesperiodicallya phasejump IT of the wave potentialinwhich it is trapped.This meansthat, althoughthe interactionremainsa “single waveinteraction” thetrappedparticle motion becomeschaotic. Although we think it to be a nice idea to havechaoticbehaviourin betweena deterministicregularandastochasticsituation,the reasonfor this first situationto occur in reality is a subject to be studiedfurther.

In the secondcasethe phaseof the waveunderthe Gaussianenvelopeis given by

1/ Re(v’) \ / Re(v’)t(,.00~_~ vg)t(~kz 2lu~I2(2v~—zlt))z

The velocity at which this phaseis asymptoticallystationary, the shifted phasevelocity v~,0,is found

equatingthis phaseto zero. Thus one obtains

Page 46: Relativistic electron beams and beam-plasma interaction .pdf

222 P.C. de Jag/seeeta!., Relativistic beam—plasmainteraction

= 2(vPh —VgA) (4.8)PS l~2VgA+Vl+4A(VPh~Vg)

where A = Re(v~)/2k0Iv~l2.Obviously, in this secondcase, the phase velocity that occurs in the

criterion which discriminatesweak from strong interaction,eq. (4.7), must be replacedby its shiftedvalue

To proceedwe investigatewhat happenswhen the instability hasbeen saturated.At sometime,when, due to non-lineareffects,linear growth terminates,let ussayafter N e-folding times, r

0 = N/w1,we are dealingwith wavepacketswith a width ~l which have propagated over a distance L,

= \/~2Im(v~)Nlw1,L = NVglWj

To investigatethe interactionbetweenthe unstablewaves and the beamparticles we perform aLorentztransformationto theframewhich is moving with the phasevelocity of the wave f

3ph = w~/ck0

In this frame a particle with the laboratory frame velocity /3 = v/c is moving with a velocity

P = (P — 13~)1(~— 13/3ph) andhas a kinetic energy (‘y — 1)mc2, ~ = n~h(l— /313~h).Note thathereand

in the sequel,wave frame quantitiesare denotedby the samesymbol with a tilde. The wave packetfrom eq. (4.3) transformedto the wave frame is given by

E = E0 A1(~,j

7, k1) Au(i, ~)exp[wIyPh(i+ PPhx/c)] exp(ikZi/y~h), (4.9)

wherethe variouswave frame quantitiesaregiven by

x= x, ~7=y, i= yPh(z— PPhct), t=~YP~(t— PPhz/c); (4.10)

E0 = YPh(Eo — PPhBo~), ~0Y = y~(E~+ /3PhBo), E

0 = E0 (4.11)

A11(I, 1) = 2V~/~lexp{—(i— ljgI~2/(~1)2}; (4.12)

Al— ~ ‘Yg — ,~2\—1/2 , — 13g —Pph — Vg— ‘ yg — t~ Pgi ‘ ~‘g— 1 — ~ —‘Yg PgPph c

The situationinvestigatedmost is the onewherethe E5 componentis the strongest.In this casethe

(order of magnitude of the) value of the electric field amplitude,E~1= E0 e~T°at which strong

wave—particle interactionsaturateslinear growth is reachedwhen the kinetic energyof the particleequalsits energyin the wave potentialct:

ecI3 eEfllyPh/kO = (j — l)mc2 . (4.14)

By this time the particle startsperforminga bouncemotion in the wave potentialwith a wave framebouncefrequencywhich, in case — 1 4 1, is given by

i k2 \1/2 ck= (eE~

1k0/y~hm)112= ((j — l)c2 —4-) = (j~— 1)1/2~ . (4.15)

Yph ‘Yph

Page 47: Relativistic electron beams and beam-plasma interaction .pdf

P.C. deJagheret a!., Relativisticbeam—plasmainteraction 223

The considerationsthatleadto eq. (4.14) and(4.15)arenon-relativistic.Whenrelativisticbeamsareusedboth maybecomeimproper.

Equation(4.14) presupposesthat the beamparticlesbecometrapped.However,whendealingwithrelativistic beams,y ~° 1, the fact thatthe phasevelocity is a (large)fraction of the beamvelocity, whilethe beamvelocity is nearly equalto thevelocity of light, meansthatafterthe Lorentztransformationtothe wave framethe beamvelocity can be largerthanthe velocity of the plasmaelectrons.Thereforeitmayhappen,especiallyif w~/w~or if ,~ is large, that not the trappingof the beambut of the plasmaelectronsis the mechanismthat saturateslinear growths. So eq. (4.14) shouldread

eEflIyPhlkO~= me2min((~— 1), (‘Yph — 1)) . (4.16)

Equation(4.15) presupposesthat thebouncemotion of the trappedparticleis non-relativistic.Againtheuseof a relativistic beammaybeincompatiblewith this supposition:the ultra-relativisticlimit of thebouncefrequencyin a potential~ ~Dx2 is given by

= 1Tc/2x~= ~IT’s./~w8Vmc/u, W~n= D/m.

The bouncefrequencyfor a relativistic particlein a sinusoidal(wave)potential,~ = —(D1k2)cos(kx—

1), is calculatedin appendixC. So eq. (4.15) should read

WB = WB I( 22 xok) (4.17)

where the factor I containsan integral of which the value dependson the amplitude of the wavepotentialandon the phaseof this wave at which the bouncingparticlereachesits maximumpotentialenergy,cf. eq. (C.6). Fig. 4.1 representsthe x

0k dependenceof this factor for a seriesof valuesof thewavepotentialA = Dl(k

2me2).The fact that the bouncefrequencyof a relativistic particledependsonthe energyof the particle,meansthat relativistic particlestrappedin a wave potentialdo not oscillate

~i0- :~~II0IS III

xo lotFig. 4.1. The relativistic bouncefrequencycomparedto its non-relativistic,small amplitude limit as a function of the particle position at themaximumof itsbouncemotion.The valueof theamplitudeof thewave potential,A = DI(k2mc2),for which thevariouscurveswerecalculatedislistedin the figure.

Page 48: Relativistic electron beams and beam-plasma interaction .pdf

224 P.C. de Jag/seeeta!., Relativistic beam—plasmainteraction

synchronously.Consequentlythe waveamplitudeof the unstablewave that is saturateddueto particletrappingdoesnot show an amplitudemodulationwith the bouncefrequency,like in the non-relativisticcase: After a short time the phasemixing of the trappedparticle oscillationswill havedampedthisamplitude modulation.

4.3. The non-linearstageof the two-streaminstability in a REB—plasmasystem

To see what the theory from section4.2 leadsto, we investigatea specialcase,namely the paralleltwo-streaminstability in a REB—plasmasystem.The dispersionequationfor thissystemwas treatedinsection3.4.2.At presentweusethe exactdispersionequation,eq. (3.43), to obtain numericalresults.Especiallythe various criteria from the previoussectionwill be investigatedthus. Fromeq. (3.43) onemayinfer that we aredealingwith threemodelparameters;we useWpb/Wpe,x

1 andEb = (y — 1)mc2as

such. For our numericalsurvey we boundedthem accordingto

2Xl0~3~WPb/WPe�0.8, °°~Xi~450, 5x104~Eb�2Xl07eV.

For all parametervalueswe investigatedwefoundthe instability to be an absoluteone,cf. eq. (4.6).Resultswe found from the other criteria are presentedin figs. 4.2 and 4.3. In fig. 4.2 we show thesituationfor two fixed valuesof Eb,while in fig. 4.3 we do so for somefixed valuesof Wpb/Wpe. Eachfigure showssix lines. Threeof theselines representparametervaluesat which

+ (v — vg)2 Imlv~l2/2Iv~I= 0, (4.18)

with v respectivelythe phasevelocity Vph, the shiftedphasevelocity ~ cf. eq. (4.8) and the beamparticlevelocity v

0, cf. eqs. (2.1), (2.22).The otherthreelines areobtainedrequiringthat representedpoints arethoseat which just the entire beam,90% or 75% of the beamparticlesare trappedin the

0~0~io2 101 1 10 10 1WpblUpe ~pb~pe

Fig. 4.2. (a) Lines separatingregions of different behaviourof the two-streaminstability in parameterspace.In this figure thesituation in the

— ~‘~pb~p~ plane is representedfor a beamenergyE5 = 0.8 MeV. The linesmarked~i— I , and V V indicatewhere theequalityfrom eq. (4.18) holdswhen respectivelyv~,,,vp, andv0 aresubstitutedfor v. The lines marked ~ LI~-, —+~ and—ft—---41—-—indicatethepositionwhererespectivelyjust the entire beam,90% of thebeamand75% of thebeamparticlesaretrappedin theunstablewavebythetime this wavehasgrown to alevelwheretheelectronsof thebackgroundplasmabecometrappedin it. (b) Thesameas(a).Herethesituationfor E,,= 3MeV is shown.

Page 49: Relativistic electron beams and beam-plasma interaction .pdf

P.C. de Jagheret a!., Relativistic beam—plasmainteraction 225

LIII1o5 io~ io~

OLIIO~?10~ 10~ 1o7 10~ io6 io7Eb Eb

Fig. 4.3. (a) Lines separatingregionsof different behaviourof the two streaminstability in parameterspace.In this figure thesituationin theXi — Eb plane is shownat a beamto plasmadensity ratio = 0.1. The lines aremarkedthesameway theywere in fig. 4.2. (b) The sameas(a). Herethesituationfor = 0.25 is shown. (c) The sameas (a). Here thesituation for WpbIWp~= 0.5 is shown.

unstablewave by the time it has grown to the level where electronsfrom the backgroundplasmabecometrapped.The way the various lines aremarkedis listed in the caption of fig. 4.2a.

At this stagewe can comparethe criterion for strongor weak beamparticle—waveinteraction,eq.(4.7),with the criterion that distinguisheshydrodynamicfrom kineticgrowth of small amplitudewaves,cf. section3.4.2 from eq. (3.50) onward.Equation(3.50) containsa numericalfactor (\/~I4IT)3120.051. Along the line definedby eq. (4.18) we calculatedthe value of this factor, i.e., we calculatedwPb(l + ~ We found this value to lie in between2 x i0~and 6 x lO_2 for theparameterrangesinvestigated.So,generallyspeaking,thetransitionfrom strongto weakwave—particleinteraction takes place after the transition from hydrodynamic to kinetic wave dispersionif oneincreasesthe scatterangle(“beamtemperature”)or the plasmato beamdensityratio. However,sinceboth numerical factorsusually differ less than a factor 10 while they dependon the scatteranglethrough a power between4 and 6, both criteria are that much the samethat oneeasily takesthehydrodynamic—kineticcriterion for the weak—strongonewhen interpretingmeasurements.

Page 50: Relativistic electron beams and beam-plasma interaction .pdf

226 P.C. de Jagheret a!., Relativistic beam—plasmainteraction

Our next reflection to discussconcernsthe possibility that not the beamelectronsbut the plasmaelectronsbecometrappedin the unstablewave. In fig. 4.3 oneseesthat for Wpb/00pe<0.1 this occursatsomefixed scatterangle.Fig. 4.2 showsthat this value of the scatter angle decreases when the beambecomesmore relativistic. Measurementsof the scatterangle[271]indicatethat, dueto beam—plasmainteraction, it tendsto increasewhile the beampropagatesthrough the plasma.The existenceof amaximumscatterangleatwhich a stronginteractionbetweenall beamelectronsandthe unstablewavecan take place leads to an energy dependentupper bound for this scatter process: As soon asbeam—plasmainteractionhas widenedthe beamdistributionup to this bound, the unstablewave startslosing energyinteractingstrongly with the plasmaand furtherbeam—waveinteractionstops.Lookingonceagain at the measurementsof the scatterangle in ref. [2711one seesthat several measurementsdisplay a sharpdrop of the scatter angle during the first 20 ns of the interaction.The mechanismexplainedabovemayexplain this sinceit occursat the sametimescalethebeamreachesits peakenergyof 800keV, while alsothe magnitudeof the remainingscatterangleis compatiblewith the datafrom fig.4.2a.

Acknowledgement

A part of the researchreportedin this paperwas carriedout while the first author was employedwith the FOM-Institute AMOLF. As such a substantialpart of it was performedbeing part of theresearchprogramof the associationagreementbetweenEURATOM and the “Stichting voor Fun-damenteelOnderzoekder Maiterie” (F.O.M.) with financial support of the “NederlandseOrganisatievoor Zuiver-WetenschappelijkOnderzoek” (Z.W.O.) and EURATOM.

Appendix A. The equivalent conductivity tensor for the relativistic electron beam

A.1. Thegeneralcase

In this appendixwe study the conductivity tensor from eq. (3.20) with fb given by eq. (2.1) and(2.6). We do so to obtain the fast algorithm to evaluate0b which we need to solve the dispersionequation,eq. (3.1), numerically.

The integralsthat occur in eq. (3.20) all havethe form

N~= 2ITw J dpJd~p4 sinm+1Xcos2mX ~ ~ (A.1)

Here D~is given by eq. (3.21). The meaningof the parametersm, B~and F’~is listed in table A.!where we use the variable z from eq. (3.24) andthe quantitiesF

1 andF~which are given by eq. (3.23).Using eq. (2.1) for fb the p-integrationin eq. (A.1) can be performed.After this integrationthe

argumentof the Besselfunctionsis

(A.2)

Page 51: Relativistic electron beams and beam-plasma interaction .pdf

P.C. de Jagher eta!., Relativisticbeam—plasmainteraction 227

Table A.1Theparametersin eq. (Al). The prime denotesadifferentia-

tion of thefunction with respectto its argument

m F~,

I 2 n2J~(z)/z2 F

1

2 2 J~2(z) F

1

3 2 nJ~(z)J~(z)Iz F1

4 0 J~(z) F°2

5 1 nJ~(z)/z F1

6 1 J,(z)J~(z) F~

with, cf. eq. (2.22), f2,~= Q/y0. If this argument is not too large,i.e. if theperpendicularwavelengthisnot much smaller than the gyroradius,the functionsB~(z)maybe replacedby their Taylor series

B~(z)= ~ ,1~21+2mfhm. (A.3)

The coefficients that appearin this seriescan be calculatedwith the aid of the relations

J~(z)= (—1)~J_~(z), J~(z)= (nIz)J~(z) — J~÷1(z), (A.4)

= . 2j+2n— ‘~ ~ (2j + 2n)!(z/2) A 5

(j+n)!(j+n)!(j+2n)!j!

These relationslead to

13~~= ~ /3~=1, f3~~= -(j - 0.5)f3~~~/j~,

= (j + n - ~)/3~~~’{(J+ n)(2n +j)(2n + j - 1)},

= ~ /3~= (n(n + 2)) +j(j - 1)(n +j)I(j + n -

f3~= n(j + n)/3~,~, /3~= ~ f3~= (j + n)f3~. (A.6)

Equation (A. 6) defines a recursive algorithm for /3 and it gives the dependenceof the othercoefficients on them. To proceed we substitute eq. (A.3) in the expressionwe obtainedfrom thep-integrationof eq. (A. 1) andwe performthe substitutioncosx = ‘r. This leadsto

= — ~ p~,1(k1A)21+2IfI_mJ dr r2m(1 — r2)’~ nI

y n=—=1=o —1

I/3+2j+2~nI—m wf3~—v0kT\ r—v0klw 1D~ — D~ Z )g(T)+ D~z o~g(r)~(i~4), (A.7)

Page 52: Relativistic electron beams and beam-plasma interaction .pdf

228 P.C. de Jag/seeeta!., Relativistic beam—plasmainteraction

N4 = — ~ p~1(k1A)21+2InIf d~~2(1— T2)1~

Y fl~j=0 —1

~ {(3 + 2j+ 2~n~- w/3~_kZVOT)g(T) - ~— (i- T2 - ! ~~g(r)} (A.8)

where D~can be written as

D~= —x~+ yr, x,, = —w + nQb, y = —v0k~. (A.9)

The integralsin eq. (A.7), (A.8) can all be written in termsof the following integrals:

F~(x,y) = J dT (1— r2)~g(r)/(yr— x),

F~(x,y) = J dTr(1 — r2)~g(r) /(yr — x),

G~(x,y) = f dr (1 — r2)~g’(r)/(yr— x),

1 (A.10)

G~(x,y) = f dr T(1 — r2)~g’(r)/(yr — x),

H~(x,y) = — J dT (1— r2)°g(r)/(yr — x)2,

H~(x,y)=_Jdrr(1—r2)~g(r)/(yr—x)2.

The algorithm to calculatetheseintegralsis discussedin appendixB.With the aid of eqs. (A.7), (A.8) a subprogramto calculatethe dispersionfunction was written. In

this subprogramthe n- andthe j-summationare truncatedaccordingto

= ‘1m5 )mx(”)

~-*~ E.~~j0 ~1~1mx j0

The valuesfor nmx andjmx(~t)are determinedin sucha way that the inequalities

Page 53: Relativistic electron beams and beam-plasma interaction .pdf

P.C. deJag/seret a!., Relativisticbeam—plasmainteraction 229

Ii

II3nmx,o(I(iuIsin xo)2)m~’~<sometolerance,

2jm

5(n)

sin x0) II <sometolerance, (A.11)

n >max(~wmx/Qb~,Wmn/Qb~)mx —

hold for all valuesof i. Here Wmx andWmn arethe maximumand the minimumvalueof w — kZVdinsidethe region to be investigated.

A.2. Parallel waves

The two specialcases,namelythe onesfor which either k1 = 0 or k~= 0, whichwestudiedin section3.4 separately,are ones for which eq. (A.7), (A.8) simplifies somewhat.In casek1 = 0 nearlyall thetermsin the n-summationin eq. (A.1) vanish; the only ones that remainare

N1 = N2 = N~+ N,(A.12)

N3 = N~— N,

with

1 f Iw—v0kr 1 V02 2 2 2 1r1

N~=— I d’r~D~ —~(w — c k~)D~,jg(r), (A.13)c

—1 —

and

~2 1~ 1+(1—r2)(y2—1)N

4 = — —i j dT 2 g(T). (A.14)

Note that D~,(n = —1,0, 1), still has the meaninggiven by eq. (A.9). To be able to investigatethesituationfurtherwe needasymptoticexpressionsof N~andN4 for w/v0k5~—~~. Using the relations

1 1 f(u—vdr)kZl3 1 1 ~ (.~

1)1(UVdT)kZ

~ D~ I ‘ D~Dn j=o ~ D~ (A.15)

where,cf. eq. (2.29), u = Q0v0and

D~=—w+ukZ+nOb, (A.16)

we find

1 Iw—uk~+R~(1+w—uk~\ 22k2 2

N~= 2y 1. D~1 D~1 ~ + ~ Z (~~1+ R~) v~ (A.17)

c

Page 54: Relativistic electron beams and beam-plasma interaction .pdf

230 P.C. de Jagheeeta!., Relativistic beam—plasmainteraction

N4 = —3(D°)2{i + 2R~4) + (y2 — 1)(P

1 + 2R~~4r) + .. .} (A.18)

with

R~ dr g(r)(1 — r2)i(Qo —

i.e.,

R~°~1, R?=0, R02=P1~a(1—~a),

(A.19)R~=~(3a

2—a3), R°2=j~a

3.

Near wIk~= u, the abovegiven expansioncannotbe used.Here N4 must be calculatedintegrating

eq. (A.14) explicitly. Doing so we findN4— ~ 1 24 +2a—(y

2—1)(~a3+5a2+6a~+4a2~+4a~2)

y (k~v0)a

+ 2(a + ~){1 - (y2 - 1)[2~2+ (3 + a)~+ a]} log(~)}, (A.20)

where

~—w/v0k~—1. (A.21)

For furtheruseit is convenientto write

N4 = — 2__2 h(~)= — 2__2 (1~r(~)+ ih1(fl), (A.22)y (v0k~) y (v0k~)

where

= (a + ~){1 - (y2 - 1)[2~2+ (3+ a)~+ a]). (A.23)

A.3. Perpendicularwaves

In case k~= 0 the x-integration in eq. (A. 1) no longer leads to transcendental functions of(w — nfl

10Ik~)cf. eq. (A.9), (A.10), but to a rationalone. The resultof thep-integrationof eq. (A.1)can be written as

~ K~ 00 +L~p02 2 2’ (A.24)n=_= wfluI4, (w—n[2h)

Page 55: Relativistic electron beams and beam-plasma interaction .pdf

P.C. de Jagheeeta!., Relativistic beam—plasmainteraction 231

with

K~= —6~6~~ J~xcosx o~g(cosx) — ~ Jdxsinmxcos2mXy0o ‘y0o

x {sin x (3B,(z)+ zB’~(z))— B~cosx ~~)g(cosx), (A.25)

L~= ~ Jdxsinm+1X cos2 m~B~(z)g(cosx). (A.26)

Yo 0

The factor8~6~in eq. (A.25) indicatesthat the correspondingterm contributesa constantto N4 only.

Integratingeq. (A.25) by partsdelivers

K~= —ô~ — ~ J~x sinm~ cos2mX{mB~(z)+ zB’~(z)}g(cosx). (A.27)

yO ),00

The coefficientsin eq. (A.24) arefunctionsof k±vOIflb,cf. eq. (A.2). With the aidof eq. (A.3), (A.6),(2.31) and (B.12) these functions can be evaluatednumerically.This way we calculatedthe dispersiondiagramshownin fig. (3.7).

Appendix B. The numerical calculation of some integrals

In appendix A, eq. (A.10), we introducedthe functionsF’1(x, y), F~(x, y), etc. to representthek-integration in the expressionfor the conductivity tensor. To investigate the wave dispersionnumerically,oneneedsanalgorithmto calculatethesefunctionsefficiently. In this appendixwediscussthe related problems for P and F~. The other functions can be treated analogously. At several placeswe need an explicit expression for the function g(cos x), at thoseplaceswe usethe quadraticfunctionfrom eq. (2.6), which depends on the parameter a, a = 4(1 — (cosx)) 2~2.The wish to calculateF~andF~efficiently meansthat the computerprogrammustbesplit into two parts; in the first one, whichwill be executedonly once, parameters,dependingon a, N = max(n), etc., can be calculated; thesecondone can usetheseparametersto calculateF~, F~for n = 0, 1,. . . , N.

Evaluating the algorithm it becomes apparent that the finiteness of the computer precision ~i

(~= 248 1014 for the machinewe used)andthe desiredaccuracyof the result e (r = 10_8_10_12)

haveto be accountedfor.In casey—0, or rather y/x~< ~, the integralscan be approximatedby the first two terms of the

Taylor series,e.g.

pn(x,y)fdt(1_t2)ng(t)(~+~+...) (B.1)

As the coefficientsof (ylx)’ in this seriesare decreasing,the result hasthe desiredaccuracy.In the sequelwe assumethat y > r x . So we can restrict ourselvesto the study of the functions

Page 56: Relativistic electron beams and beam-plasma interaction .pdf

232 P.C. de Jag/seeeta!., Relativisticbeam—plasmainteraction

P(z) = J dt (1— t2)~g(t)/(t— z) (B.2)

and

F~(z)= f dt t(1 — t2)~g(t)/(t— z). (B.3)

In terms of the integrals ~n andQ,~,

= dt (1 — t2)ng(t), Qn = J dt t(1 — t2)~g(t), (B.4)

we find from eq. (B.2) the recursionrelations

F~— zF’~= P,~ , F~1+ (z — 1/z)F~= ~Q,,— P,~/Z. (B.5)

For n = 0, integrationof eq. (B.2) yields

F°=4 {a(z —1 + ~a)+ (z —1 + a)2log(1 1—z a)}~ (B.6)

Here we usedeq. (2.6) for g(t). Using the Taylor serieslog(1 — x) = —E7~x’/j one finds

(z_1+a)2log(11~Z~)=_a(z_1+~a)_(z_1+a)2{~(1a)+...}. (B.7)

This indicates that, if ~ja/(1 — z — a)~<~Ie,eq. (B.6) cannotbeusedto calculateF°within thedesiredaccuracy.In this caseone mayuse the series

0 —1 1 3 a 3i’ a \2 1F z—1+al~~ z—1+a~~z—1+a) +...1. (B.8)

Now we know how to calculateF°, eq. (B.5) can be usedto obtainP andF~for n taking valuesup toN. Unfortunatelythis algorithm is not always numerically stable: Fromeq. (B.5) one finds

N—I j+1

FN = (1- z2 )Nf F°- ~ (Q + z~)( 2) } (B.9)1=0 1—z

whereas, since

1 t+z .~ (1—t2\’

~ 1_z2~~~1_z2)

we have

= / 1 \j+1F°=~(Q

1+zP1)( 2) . (B.10)j=0 1—z

Page 57: Relativistic electron beams and beam-plasma interaction .pdf

P.C. deJagheret a!., Relativisticbeam—plasmainteraction 233

From eqs. (B.9), (B.10) one may infer that eq. (B.5) cannotbe usedto calculateFN from F°if— z2)”~1F°}~<pJe. In that caseF” must be calculatedusing

FN = ~ (Qn+j_i + ZPn+j_i)(1 —

jl (B.11)

F~’ = ~ (P~~1_1— P~~1+ zQ~~1_1)(1—

ThereafterP and F~,n = N— 1,... ,0, are foundusingeq. (B.5) in the reversedirection.The calculation of the integrals P,, and Q,, is subject to similar problemsregardingnumerical

stability. A recursionrelationis obtainedintegratingtheintegralsin eq. (B.4) by parts.Using eq. (2.6)we obtain

~ 2n+3~1~~1)~ P0=1,(B.12)

Q~={na(2+a)Q~_1—(1—a)P~}I(n+2), Q0=1—~a.

Equation(B.12) definesarecursionalgorithmto calculateP,, and Q,,, n = 1,.. . ,N. An analysisof theamplificationof the numericalinaccuracylearnsthatthis recursioncannotbe usedif a”’’> pis. Similarlyone finds that if a recursionis startedat n = N + m with m> (log r){log[a(1 + a)]}

1 and 1’N+m =

QN+m = 1, the accuracyof P~IQ~is better than e for all n � N. Dividing the values of P, and Q,~,n = N,.. . , 0, onefinds this way by the valuefound for P

0, sufficiently accuratevaluesfor the integralsare obtained.

Finally we makesomeremarksregardingthe analyticpropertiesof the functionsF~,F~,etc.Writinga computerprogramaccordingto the algorithm given above,the resultwill havea branchcut that isimplied by the way the complex log-function is implemented,cf. eq. (B .6). If this log-functionhasitsbranchcut alongthe negativereal axis, the functionsF~, F~,etc. havea branchcut alongthe realaxis

from 1 — a to 1. However,accordingto the analysisgiven beloweq. (3.28) we needbranchcutsparallelto the negativeimaginaryaxis. This can be achievedwriting the computerprogramaccordingto thealgorithm discussedabove and adding the residuein t = z to this result if Im(w) <0 and 1 — a <

Re(z)<1.

Appendix C. The relativistic bounce motion

In section4 wewantedto know the bouncefrequencyof an electronwhich is trappedin a sinusoidalwavepotential.The equationsof motion for suchaparticle read

x= v, (myv)~= —(Dik) sinkx. (C.1)

Integrating eq. (C.1) we obtain

y=A(coskx—1)+r+1 (C.2)

Page 58: Relativistic electron beams and beam-plasma interaction .pdf

234 P.C. deJag/seeet a!., Relativisticbeam—plasmainteraction

with A = D/mk2c2.The integrationconstanteis relatedto the energyof the particle: r = U/me2. As theparticleoscillateswe havefor its positionx = x(t), x~� x

0, wherex0 = (ilk) arccos(1— elA). So wehave

xl_<x0<irlk, E<2A. (C.3)

For s > 2A the particleis not trappedin the wavepotential.Equation(C.2)can beintegrated:solvingy in termsof I we find

I I A(coskx—1)+E+1cJ dt=J dx {(A(coskx~1)+e)(A(coskx~1)+E+2)}V

2

1 dy 1—Ay+r C4

~ ~1-(1-y)2 V~(A~-e)(Ay-r2) ( .)

To obtain the expressionbehind the secondequal sign we usedthe substitutiony = 1 — coskx. Thebounceperiod T = 21T/WB now follows from

Yo

~ T—1 f dy 1—Ay+r C5— k ~ ~2y— y2 V(Ay — r)(Ay — — 2)’

wherey0 = 1 — coskx0 = rIA.

Obviously eq. (C.5) is a completeelliptic integral. Using standardprocedures[272] it can beexpressedin terms of complete elliptic integralsof the first and the third kind. However, for anumericalcalculation, it is more convenientto perform the substitutiony= y0tI (t + 1). Doing so weobtain

IT~1— ~y0WBreI = WBnr I~+ e12 ~ (C.6)

where = \/~7~andthe integrals1~and ‘2’

f dt~ ~t[t+1I(1— ~y0)1(t+1+ ~r)

(C.7)

f dt

‘2J (t+1)~t[t+1I(1 ~y0)](t+l+ ~e)

are availableas numericallibrary subprograms,cf. e.g. [273],[274].With the aid of eq. (C.6), (C.7)andthe IMSL subprogramsfig. (4.1) was made.

Page 59: Relativistic electron beams and beam-plasma interaction .pdf

P.C. deJagheret a!., Relativisticbeam—plasmainteraction 235

References

Section1[I] G. Francis,The Glow Dischargeat Low Pressure,Handbuchder Physik,Vol. 22, ed. S. Flugge(Springer,Berlin, 1956).[2] W. Rogowski, Z. Phys. 114 (1939) I.[3] F.M. Penning,Physica6 (1926) 241.

[41L. Tonks and I. Langmuir, Phys. Rev. 33 (1929) 195.[51W.H. Bennett,Phys. Rev. 45 (1934) 890.[6] H. Alfvén, Phys. Rev. 55 (1939) 425.[7] H. Fetz, Z. Naturforsch.4a (1949) 623.[8] H. Fetz,Z. Naturforsch.4a (1949) 627.[9] A.V. Haeff, Phys. Rev. 74 (1948) 1532.

[10] JR. Pierce,J. AppI. Phys. 19 (1948) 231.[111D. Bohm and E.P. Gross,Phys. Rev.75(1949)1851.[12] Al. Akhiezerand Ya.B. Fainberg,DokI. Akad. Nauk SSSR69 (1949) 559.[13] GD. Boyd, L.M. Field and R.W. Gould, Phys. Rev.109 (1958) 1393.[14] M.T. Vlaardingerbroek,K.R.U. Weimer, H. Bodt and J.A.L. Potgiesser,Philips Tcchn. T. 27 (1965/66) 273 [in Dutch]; private

communication(1963).[15] iL. Hirchfield and V.L. Granatstein,IEEE Trans. MicrowaveTheory Tech. MTT25 (1977) 522.[16] P. Sprangleand AT. Drobot, IEEE Trans. MicrowaveTheory Tech.M1T25 (1977) 528.[17] V.A. Flyagin, AL. Gol’denbergandG.S. Nusinovich,InfraredandMillimeter Waves,Vol. 11, ed.,K.J. Button (AcademicPress,Orlando,

1984)part III, p. 179.[18] P. SprangleandL. Vlahos,Phys. Rev.A 33 (1986) 1261.[19] B.G. Danly and Ri. Temkin, Phys.Fluids 29 (1986) 561.[20] V.L. Granatsteinand P. Sprangle,IEEE Trans. MicrowaveTheory Tech. MTT25 (1977) 545.[21] P.C. Efthimion and S.P. Schlesinger,Phys. Rev. A 16 (1977) 633.[22] V.L. Granatstein,S.P. Schlesinger,M. Herndon,R.K. Parkerand iA. Pasour,AppI. Phys. Lett. 30 (1977) 384.[23] V.L. Granatstein,P. Sprangle,R.K. Parker,J. Pasour,M. Herndon,S.P. SchlesingerandiL. Seftor, Phys. Rev. A 14 (1976) 1194.[24] L.D. Smullin and W.D. Getty, Phys. Rev. Lett. 9 (1962) 3; Phys. Fluids 8 (1965) 1412.[25] IF. lUsarchenko,Ya.B. Fainberg,P.M. Nicolayev, E.A. Kornilov and E.A. Pendenko,NucI. FusionSuppl. 3(1962)1101.[26] M. Seidl andP. Sunka, Phys. Lett. 11(1964)31.[27] I. Alexeff and R.V. Neidigh, Phys. Rev. Lett. 13 (1964) 179.[28]T.L. Owens,J.H. Mullen, F.W. Baichy, WA. Davis,O.C. Eldridge and D.L. Hillis, Nucl. Fusion 23(1983)49.[29] A. Goede,P. Massmann,H.J. HopmanandJ. Kistemaker,Nucl. Fusion 16 (1976) 85.[30] H.W. Hendel, M. Yamada,SW. SeilerandH. Ikezi, Phys.Rev. Lett. 36 (1976) 319.[31] G.J.Brakenhoff, A. Baan andT. Matitti, PlasmaPhys. 15 (1973) 157.[32] W. Hermannand Ti. Fessenden,Phys. Rev. Lett. 18 (1967) 535.[33] L.S. Levine andM. Ury, IEEE Trans. NucI. Sci. NS2O (1973) 456.[34]T.G. Robertsand W.H. Bennett,PlasmaPhys.10 (1968) 381.[35] D.A. Hammerand N. Rostoker,Phys. Fluids 13 (1970) 1831.[36] J.L. Cox and W.H. Bennett,Phys. Fluids 13 (1970) 182.[37] J.W. Poukeyand A.J. Toepfer, Phys.Fluids 17 (1974) 505.

[38] R. Lee and RN. Sudan,Phys. Fluids 14 (1971) 1213.[391D.A. McArthur and J.W. Poukey, Phys.Rev. Lett. 27 (1971) 1765.[401KR. Chu andN. Rostoker,Phys.Fluids 16 (1973) 1472.[41] 0. Buneman,Phys. Rev. 115 (1959) 503.[42] R.V. Lovelaceand R.N. Sudan,Phys. Rev. Lett. 27 (1971) 1256.

[43] J. Guillory and U. Benford, PlasmaPhys. 14 (1972) 1131.[44] A.J.Toepferand J.W. Poukey, Phys.Fluids 16 (1973) 1546.[45] L.E. Thodeand RN. Sudan,Phys.Fluids 18 (1975) 1564.[46] K. Molvig and N. Rostoker,Phys. Fluids 20 (1977) 494.[47]A.T. Altyntsev, AG. Es’kov, O.A. Zolotovskii, V.!. Korotr’v, R.Kh. Kurtmallaev,V.D. MasalovandV.N. Semenov,Zh. Eksp. Teor. Fiz.

Pis’ma Red. 13 (1971) 197 [JETP Lett. 13 (1971) 139].[481D. Prono, B. Ecker,N. Bergstromand J. Benford, Phys.Rev. Lett. 35 (1975) 438.[49] Yu.I. Abrashitov, VS. Koidan, V.V. Konyukhov,V.M. Lagunov,V.N. Luk’yanov and 1K. Mekler, Zh. Eksp. Teor. Fiz. Pis’ma Red. 18

(1973) 675 [JETPLett. 18 (1973) 395];Sameauthorsand D.D. Ryutov, Zh. Eksp. Teor. Fiz. 66 (1974) 1324 [Soy.Phys. JETP39 (1974) 6471.

[50] D.A. Hammer,K.A. Gerber,W.F. Dove, G.C. Goldenbaum,B.G. Logan, K. Papadopoulosand A.w. Ali, Phys.Fluids 21(1978)483.[511MA. Greenspan,C. Ekdahl, iD. Sethian and C.B. Wharton,Phys.Fluids 23 (1980) 205.

Page 60: Relativistic electron beams and beam-plasma interaction .pdf

236 P. C. de Jagheretal., Relativisticbeam—plasmainteraction

[52] G.C.A.M. Janssen,J.H.M. Bonnie,E.H.A. Granneman,V.!. Krementsovand Hi. Hopman,Phys. Fluids 27 (1984) 726.[53] G.C.A.M. Janssen,E.H.A. Grannemanand Hi. Hopman,Phys. Fluids 27 (1984) 736.[54] B. JurgensandHi. Hopman,PlasmaPhys. 21(1980)227.[55] AC. Newell, Solitons in Mathematicsand Physics(Soc. for Industrialand Applied Mathematics,Philadelphia,Pennsylvania,1985) ISBN

0-89871-196-7.[56]G. Mayer-Kress,ed.,Dimensionsand Entropiesin ChaoticSystems(Springer,Berlin, 1986).[57] V.E. Zakharov,Zh. Eksp. Teor. Fiz. 62 (1972) 1745 [Soy.Phys.—JETP 35(1972)908].[58] P.Y. Cheungand A.Y. Wong, Phys.Fluids 28 (1985) 1538.[59] R.W. Boswell, PlasmaPhys. ControlledFusion27 (1985) 405.[60] L.D. Landau,i. Phys. USSR10 (1946) 25.[61] 0. Penrose,Phys. Fluids 3 (1960) 258.[62]MV. Nezlin, MI. Taktakishvili and AS. Trubnikov,Zh. Eksp. Teor. Fiz. 55(1968)397[Soy.Phys.—JETP 28 (1969) 208].[63] A.W. Trivelpieceand R.W. Gould, I. AppI. Phys. 30 (1959) 1784.[64] P.E. Vandenplas,ElectronWavesand Resonancesin BoundedPlasmas(Wiley, New York, 1968).[65]T.H. Stix, The Theory of PlasmaWaves (McGraw-Hill, New York, 1962).[66]w.P. Allis, Si. BuchbaumandA. Bers, Wavesin AnisotropicPlasmas(M.I.T. Press,Cambridge,Massachusetts,1963).[67]Ri. Briggs, Electron—StreamInteractionwith Plasma(M.I.T. Press,Cambridge,Massachusetts,1964).[68]MV. Nezlin, Soy. Phys.—JETP 14 (1962) 723; PlasmaPhys. 10 (1968) 337.[69] A.A. Vedenov,E.P. Velikhoy andR.Z. Sagdeev,Nuci. Fusion 1 (1962) 82; Nucl. FusionSupp. 2 (1962) 465.[70]WE. DrummondandD. Pines,Nucl. Fusion Supp.3 (1962) 1049.[71]CF. Kennel andF. Engelmann,Phys.Fluids 9 (1966) 2377.[72] B.B. Kadomtsev,PlasmaTurbulence,translated(AcademicPress,London, 1965).[73] Hi. HopmanandW. Ott, PlasmaPhys. 10 (1968) 315.[74]J.H.A. van Wakeren,Hi. Hopman,B. Jurgensand i. Kistemaker,PlasmaPhys. 16 (1974) 63.[75]J.H.A. van WakerenandHi. Hopman, i. PlasmaPhys. 13 (1975) 349.[76]HE. Singhaus,Phys. Fluids 7 (1964)1534.[77]TM. O’Neil and i.H. Malmberg, Phys. Fluids 11(1968)1754.[78]F.W. Crawford, Int. i. Electron. 19 (1965) 217.[79]J.H. Malmbergand C.B. Wharton,Phys. Rev.Lett. 17 (1966)175.[80]TM. O’Neil, Phys. Fluids 8 (1965) 2255.[81] K.W. Gentle andC.W. Robertson,Phys. Fluids 14 (1972) 2780.[82] K.W. Gentle andi. Lohr, Phys. Fluids 16 (1973) 1464.[83] C.W. RobertsonandK.W. Gentle, Phys. Fluids 14 (1971) 2462.[84]WE. Drummond,i.H. Malmberg,T.M. O’Neil and JR. Thompson,Phys.Fluids 13(1970)2422.[85]J.A.C. Cabral, PlasmaPhys.18 (1976) 719.[86] F.W. Crawford and G.S. Kino, Proc. Inst. Radio Engrs. (USA) 49 (1961) 1767.[87] Ya.B. Fainberg,PlasmaPhys. 4 (1962) 203.[88] MV. Nezlin, Usp.Fiz. Nauk 102 (1970) 105 [Soy.Phys.— Usp. 13(1971)608].[89] A.A. GaleevandR.Z. Sagdeev,NucI. Fusion 13 (1973) 603.[90] V.P. Kovalenko,Usp. Fiz. Nauk 139 (1983) 223 [Soy.Phys.— Usp.26 (1983) 116].[91]T.P. Hughesand E. Ott, Phys. Fluids 23 (1980) 2265.[92] V.K. Grishin and ST. Ivanov, PlasmaPhys. 23 (1981) 1007.[93]MV. Kuzelev, A.A. Rukhadzeand D.S. Filippychev,Fiz. Plazmy 8 (1982) 537 [Soy.J. PlasmaPhys. 8 (1982) 302].[94] VV. Vladimirov, AN. Mosiyuk and M.A. Mukhtarov, Fiz. Plazmy 9 (1983) 992 [Soy.J. PlasmaPhys. 9 (1983) 578].[95] A.A. Ivanov andN.G. Popkov, Fir. Plazmy 10 (1984) 106 [Soy.i. PlasmaPhys. 10 (1984) 60].[96] A.A. Ivanov, N.G. Popkov,I. Wilhelm and R. Winkler, Beitr. PlasmaPhys.24 (1984) 151.[97] K.J.G. Krusha andAN. Kondratenko,Beitr. PlasmaPhys.23 (1983) 105, 229.[981V.M. Malkin, Zh. Eksp. Teor. Fiz. 83(1982)88 [Soy.Phys.—iETP 56(1982)48].[99] V.M. Malkin, Zh. Eksp. Teor. Fiz. 86 (1984) 1263 [Soy.Phys.—iETP 59 (1984) 737].

[100]AM. Berezovskii,Al. D’yachenko and AM. Rubenchik,Zh. Eksp. Teor. Fiz. 88 (1985) 1191 [Soy.Phys.— JETP61(1985)701].[101]D.A. WhelanandR.L. Stenzel,Phys. Fluids 28 (1985) 958.[102]SM. Krivoruchko, V.A. Bashko andAS. Bakai,Zh. Eksp. Tcor. Fiz. 80 (1981) 579 [Soy.Phys.—iEl’P 53(1981)292].[103]S. lizuka, K. Saeki,N. Sato andY. Hatta, 1. Phys.Soc. Jpn. 54 (1985) 950.[104]i.E. Willett andY. Aktas, i. AppI. Phys. 56 (1984) 3132.[105]K.J.G. Kruschaand R.’W. Leven, Beitr. PlasmaPhys.25 (1985) 93.[106]IV. Bachin,V.B. Krasovitskii and A.M. Krymskii, Fiz. Plazmy 8 (1982) 593 [Soy. i. PlasmaPhys. 8 (1982) 336].[107]R.C. Davidsonand K.T. Tsang,J. AppI. Phys.54 (1983) 6284.[108]Yu.V. Mokhov and K.V. Chukbar,Fiz. Plazmy10 (1984) 1097 [Soy.i. PlasmaPhys. 10 (1984) 635].[109]S.V. Antipov, M.V. Nezlin and AS. Trubnikov,Zh. Eksp. Teor. Fiz. 78 (1980) 1743 [Soy.Phys.—JETP 51(1980)874].[110]5.V. Antipov, MV. Nezlin and As. Trubnikov, PhysicaD 3(1981) 311.

Page 61: Relativistic electron beams and beam-plasma interaction .pdf

P.C. de Jag/see et a!., Relativistic beam—plasma interaction 237

[111]P.Y. CheungandA.Y. Wong, Phys.Fluids 28 (1985) 1538.[112]NV. Astrakhantsey,O.L. Volkov, Yu.S. Karavaevand G.N. Kichigin, PhysicsLett. A 110 (1985) 129.[113] I. Mon and K. Ohya, IEEE Trans. PlasmaSci. PS14(1986) 261.[114]P.K. Shukla, Phys. Fluids 29 (1986) 3488.[115] S. Humphries,J.i. Lee and RN. Sudan,AppI. Phys. Lett. 25 (1974) 20.[116]CL. Olson, Phys. Fluids 18 (1975) 585, 598.[117]H.S. Uhm and R.C. Davidson,Phys. Fluids 23 (1980) 813.[118] KG. Moses,R.W. Bauer and S.D. Winter, Phys. Fluids 16 (1973) 436.[119] G. Benford,PlasmaPhys. 15(1973)483.[120]E.P. Lee,Phys. Fluids 21(1978)1327.[121] E.i. Lauer, Ri. Briggs, F.i. Fessenden,RE. HesterandE.P. Lee, Phys. Fluids 21(1978)1344.[122] H.S. Uhm and M. Lampe,Phys. Fluids 23 (1980) 1574.[123]KG. Gureev, V.0. Zolotarevand S.D. Stolbetsov,Fiz. Plazmy 10 (1984)1167[Soy.i. PlasmaPhys. 10 (1984) 671].[124]ES. Weibel, Phys. Rev.Lett. 2 (1959) 83.[125] R. Lee and M. Lampe, Phys. Rev. Lett. 31(1973)1390.[126] CA. Kapetanakos,Appl. Phys.Lett. 25 (1974) 484.[127] K. Molvig, Phys. Rev. Lett. 35 (1975) 1504.[128]R.C. Davidson,B.H. Hui and CA. Kapetanakos,Phys. Fluids 18 (1975) 1040.[129] K. Molvig, U. Benford and W.C. Condit ir, Phys. Fluids 20 (1977) 1125.[130] Z. Segalov,Y. Goren,Y. Canneland A. Ginzburg, Appi. Phys. Lett. 36 (1980) 812.[131] T. OkadaandK. Nui, i. PlasmaPhys. 23 (1980) 423; 24 (1980) 483.[132]JR. Cary,L.E. Thode, D.S. Lemons,ME. JonesandM.A. Mostrom, Phys. Fluids 24 (1981) 1818.[133] P.K. Shukla, MY. Yu andU.S. Lakhina, Phys. fluids 25(1982)2344.[134] H. Lee and L.E. Thode,Phys. Fluids 26 (1983) 2707.[135] W.R. Shanahan,Phys.Fluids 29 (1986) 1231.[136]J. Benford andB. Ecker, Phys.Fluids 15 (1972) 366.[137] L.S. Levine, I.M. Vitkovitsky, D.A. Hammerand ML. Andrews,i. App!. Phys. 42 (1971) 1863.[138] KR. Chu and N. Rostokcr,Phys.Fluids 17 (1974) 813.[139] V.V. Demchenkoand N.M. EI-Siragy, PlasmaPhys. 16 (1974) 303.[140] G. Küppers, A. SalatandH.K. Wimmel, PlasmaPhys. 15 (1973) 429;PlasmaPhys. 16 (1974) 317.[141] i.W. Poukeyand A.i. Toepfer, Phys. Fluids 17 (1974) 1582.[142]E.V. Rostomyan,A.A. Rukhadzeand yB. Semikoz, Zh. Eksp. Teor. Viz. 67 (1974) 990 [Soy.Phys.— JETP40 (1975) 490].[143] O.D. Kiok, VI. Krementsov,P.S.Strelkov andAG. Shkvarunets,Zh. Eksp. Teor. Fiz. 67 (1974)1401[Soy.Phys.— JETP40 (1975) 696].[144] iL. Cox ir, Phys. Rev.Lett. 35 (1975) 944.[145] H.H. Fleischmannand R.E. Kribel, PlasmaPhys. 18 (1976) 179.[146] L.E. Thode, B.B. GodfreyandW.R. Shanahan,Phys. Fluids 22 (1979) 747.[147] B.N. Breizmanand D.D. Ryutov, NucI. Fusion 14 (1974) 873.[148] Ya.B. Fainberg,V.D. Shapiroand VI. Shevchenko,Zh. Eksp. Teor. Fiz. 57 (1969) 966 [Soy.Phys.— JETP30 (1970) 528].[1491LI. Rudakov,Zh. Eksp. Teor. Fiz. 59 (1970) 2091 [Soy.Phys.—JETP32 (1971) 1134].[150] R.L. Ferchand RN. Sudan,PlasmaPhys. 17 (1975) 905.[151] L.E. Thode, Phys. fluids 19 (1976) 831.[152] B.S. NewbergerandL.E. Thode, Phys. Fluids 25(1982)193.[153]D.A. Hammerand K. Papadopoulos,NucI. Fusion 15 (1975) 977.[154] A. Mohri, M. Masuzaki,T. Tsuzukiand K. Ikuta, Phys.Rev. Lett. 34 (1975) 574.[155] H. Knoepfeland D.A. Spong,NucI. Fusion 19 (1979) 785.[156] Mi. Clauser,Phys. Rev.Lett. 34 (1975) 570.[157]iA. HalbleibandT.P. Wright, Phys.Fluids 23 (1980)1612.[158] L.E. Thodeand RN. Sudan,Phys. Rev. Lett. 30 (1973) 732.[159] DR. Smith, Phys. Lett. A 42 (1972) 211.[160] P. Korn, F. Sandeland C.B. Wharton,Phys. Rev. Lett. 31(1973)579.[161] P. Korn, F. SandelandC.B. Wharton,i. AppI. Phys. 44 (1973) 4946.[162] PA. Miller andG.W. Kuswa,Phys. Rev. Lett. 30 (1973) 958.[1631AT. Altyntsev, B.N. Breizman,AG. Es’kov, A.O. Zolotovsky, VI. Koroteey,P.Kh. Kurtmullaev,V.L. Maslov, D.D. Ryutov andV.N.

Semenov,NucI. Fusion 12 Suppl. (1972) 161.[164]CA. Kapetanakosand D.A. Hammer,AppI. Phys.Lett. 23 (1973) 17.[165] G.C. Goldenbaum,W.F. Dove, K.A. Gerber andB.G. Logan,Phys. Rev.Lett. 32 (1974) 830.[166]B.G. Logan,W.F. Dove, K.A. GerberandG.C. Goldenbaum,IEEE Trans. PlasmaSci. PS2(1974) 1264.[167]RE. Kribel, C. Ekdahl,i. SethianandC.B. Wharton,Bull. Am. Phys.Soc. 18 (1973) 1264.[168]C. Ekdahl, M. Greenspan,RE. Kribel, i. Sethian andC.B. Wharton,Phys. Rev.Left. 33 (1974) 346.[169]PA. Miller, App!. Phys. Lett. 27 (1975) 107.

Page 62: Relativistic electron beams and beam-plasma interaction .pdf

238 P.C. de Jagheeet a!., Relativisticbeam—plasmainteraction

[170]W.F. Dove, K.A. Gerberand D.A. Hammer,App!. Phys. Lett. 28 (1976) 173.[171]C. Ekdahl, M. Greenspan,i. SethianandC.B. Wharton,Bull. Am. Phys. Soc. 20 (1975) 1270.[172]J.P. Van Devender,iD. Kilkenny and A.E. Dangor,Phys.Rev. Lett. 33 (1974) 689; i. App!. Phys. 47 (1976) 1955.[173]CA. Kapetanakos,W.M. Black and KR. Chu, Phys. Rev. Lett. 34 (1975) 1156.[174]R. Okamura,Y. NakamuraandN. Kawashima,Appi. Phys. Lett. 28 (1976) 701.[175]B. iurgens,Hi. Hopman,P.C. de iagher,A. Sinman and i.B. Vrijdaghs, PlasmaPhys. 18 (1976) 821.[176]B. iurgens,PH. deHaan,Hi. HopmanandP.C. deJagher,Phys. Rev. Lett. 39 (1977) 936.[177]iD. Sethian,D.A. Hammerand C.B. Wharton,Phys.Rev. Lett. 40 (1978) 451.[178]iD. Sethian andCA. Ekdahl, Phys. Rev.Lett. 42 (1979) 711.[179] P.H. deHaan,Hi. Hopmanand G.C.A.M. ianssen,Phys. Lett. A 86 (1981) 467.[180] M.D. Montgomery,i.V. Parker,KB. Riepeand R.L. Sheffield, AppI. Phys. Lett. 39 (1981) 217.[181]PH. deHaan,G.C.A.M. ianssen,Hi. HopmanandE.H.A. Granneman,Phys. fluids 25(1982)592.[182]TM. O’Neil, JR. Winfrey and i.M. Malmberg, Phys. Fluids 14 (1971) 1204.[183] CF. McKee, Phys.Fluids 14 (1971) 2164.[184]AT. Lin and i.E. Rowe, Phys. Fluids 15(1972)166.[185]N.G. Matsiborko, IN. Onishchenko,Ya.B. Fainberg,V.D. Shapiroand V.!. Shevchenko,Zh. Eksp. Teor. Fiz. 63(1972) 874 [Soy.

Phys.— JETP36 (1973) 460].[186]N.G. Matsiborko, IN. Onishchenko,V.D. Shapiroand VI. Sheychenko,PlasmaPhys. 14 (1972) 591.[187] S. Kainer,i. Dawson,R. ShannyandT. Coffey, Phys. Fluids 15(1972)493.[188] AT. Lin andi.E. Rowe,Phys. Fluids 15 (1972) 2034.[189]K.W. Gentle andJ. Lohr, Phys. Rev. Lett. 30 (1973) 75.[190] A.J. Toepferand i.W. Poukey, Phys. fluids 16 (1973) 1546.[191] M. Lampeand P. Sprangle,Phys. Fluids 18 (1975) 475.[192] L.E. Thode, Phys. Fluids 19(1976)305.[193] L.E. ThodeandB.B. Godfrey, Phys. Fluids 19 (1976) 316.[194] L.E. Thode, Phys. fluids 20 (1977) 2121.[195]B-. Goldstein, W. Carr, B. Rosen andM. Seidl, Phys. Fluids 21(1978)1569.[196] BA. Al’terkop. AS. Volokitin, V.E. Rosinskii, A.A. Rukhadzeand V.P. Tarakanov,Fiz. Plazmy 3(1977)173[Soy.J. — PlasmaPhys. 3

(1977) 100]; Zh. Tekh. Fiz. 50 (1980) 226 [Soy.Phys.— Tech.Phys. 25(1980)1401.[197] M. Tanakaand T. Sato, Phys. fluids 29 (1986) 3823.[198]A.A. Galeey,R.Z. Sagdeev,V.D. Shapiro and VI. Sheychenko,Zh. Eksp. Teor. Fiz. 72 (1977) 507 [Soy.Phys.— JETP45(1977)266].[1991CT. Dum andRN. Sudan,Phys.Fluids 14 (1971) 414.[200] B.B. KadomtsevandOP. Pogutse,Phys.fluids 14 (1971) 2470.[201]yB. Krasoyitskii, Zh. Eksp. Teor. Fiz. 62 (1972) 995 [Soy.Phys.—JETP 35(1972)525].[202]VU. Abramovichand VI. Sevchenko,Zh. Eksp. Teor. Fiz. 62 (1972) 1386 [Soy.Phys.— JETP 35(1972)730].[2031B.N. Breizman,D.D. Ryutov andP.Z. Chebotaev,Zh. Eksp. Teor. Fiz. 62 (1972) 1409 [Soy.Phys.— JETP 35(1972)741].[204]VV Tsytovich andL. Stenflo, Phys. Scr. 10 (1974) 194.[205]F.Kh. Khakimov and V.N. Tsytovich, Zh. Eksp. Teor. Fiz. 68 (1975) 95 [Soy.Phys.— JETP 41(1975)47].[206] B.N. Breizman andD.D. Ryutov,Zh. Eksp. Teor. Fiz. Pis’maRed.21(1975) 421 [JETPLett. 21(1975)192].[207] K. Papadopoulos,Phys. Fluids 18 (1975) 1769.[208] AS. Kingsep and VV. Yan’kov, Fiz. Plazmy 1 (1975) 722 [Soy.J. — PlasmaPhys. 1 (1975) 396].[209]B.N. Breizman, Zh. Eksp. Teor. Fiz. 69 (1975) 896 [Soy.Phys.—JETP 42 (1976) 457].[210] B.N. Breizman, Zh. Eksp. Teor. Fiz. 72 (1977) 518 [Soy.Phys.— JETP45(1977)271].[211]T. Tajima,i. PlasmaPhys. 19 (1978) 63.[212]T. Okazakiand T. Kato, J. Phys. Soc. Jpn. 49 (1980) 1524, 1532.[2131V.M. Malkin, Zh. Eksp. Teor. Fiz. 83 (1982) 88, 1725 [Soy.Phys.— iEl’P 56 (1982) 48, 997].[214]i.E. Willett andY. Aktas, i. App!. Phys. 56 (1984) 3132.[215]A.A. Vedenovand LI. Rudakov,Doki. Akad. Nauk SSSR 159 (1964) 767 [Soy.Phys.— DokI. 9 (1965) 1073].[216]AS. Kingsep,LI. Rudakovand RN. Sudan,Phys. Rev.Lett. 31(1973)1482.[217]E.i. Valeo and W.L. Kruer, Phys. Rev.Lett. 33(1974)750.[218]C.N. Lashmore-Davies,NucI. Fusion 15 (1975) 213.[219]Ya.N. Istomin and VI. Karpman,Zh. Eksp. Teor. Fiz. 67 (1974) 1693 [Soy.Phys. JETP 40 (1975) 843].[220] K. Nishikawa, J. Phys. Soc. ipn. 24 (1968) 916, 1152.[221]Hi. Hopmanand G.C.A.M. iansen,Phys. Rey. Lett. 52 (1984)1613.[222]L.M. Degtyarev,V.G. Makhan’kov and LI. Rudakov,Zh. Eksp. Teor. Fiz. 67 (1974) 533 [Soy.Phys.— JETP40 (1975) 264].[223] L.M. Degtyarevand yE. Zakharov,Zh. Eksp. Teor. Fiz. Pis’ma Red.21(1975)9 [JETPLett. 21(1975)4].[224] A.A. Galeev,R.Z. Sagdeev,Yu.S. Sigov, V.D. ShapiroandVI. Shevchenko,Fix. Plazmy 1 (1975) 10 [Soy.J. — PlasmaPhys. 1 (1975) 5].[225]i. Weinstock andB. Bezzerides,Phys.fluids 18 (1975) 251.[226] L.M. Degtyarev,yE. ZakharovandLI. Rudakov, Zh. Eksp. Teor. Fiz. 68 (1975) 115 [Soy.Phys.—JETP 41(1975)57].[227] Kh.O. Abdulloev,IL. Bogolyubskii and VU. Makhan’kov,NucI. Fusion 15 (1975) 21.

.4 1.~(~1~ ~ fl,ii,k 71 (197S~1766.

Page 63: Relativistic electron beams and beam-plasma interaction .pdf

P.C. de Jag/see et a!., Relativistic beam—plasma interaction 239

Section2[229]B.S. Newbcrgenand L.E. Thodc, Phys. fluids 25 (1982) 193.[230]U. Moliere, Z. Naturforsch.3A (1948) 78.[231]HA. Bethe,Phys.Rev. 89 (1953) 1256.[232] S. Goudsmitand iL. Saunderson,Phys. Rev. 57 (1940) 24; Phys. Rev. 58 (1940) 36.[233]i.H. Jacob,Phys. Rev.A 8 (1973) 226.[234] C. Landronand A. Toumi, i. Phys. F: Met. Phys. 16 (1986) 121.[235] H.E. Bishop,Proc. Phys. Soc. 85 (1965) 855.[236] R. Shimizu, T. Ikuta and K. Murata,J. AppI. Phys.43 (1972) 4233.[237] U. Love and V.D. Scott, i. Phys. D: AppI. Phys. 11(1978)1369.[238] P.R.dc Haan,G.C.A.M. Janssenand Hi. Hopman,PlasmaPhys.24 (1982) 691.[239] S.R. de Groot, WA. van Leeuwcn and Ch.G. van Weert, Relativistic kinetic theory, principles and applications(North-Holland,

Amsterdam,1980).

Section3[240]T.H. Stix, The Theory of PlasmaWaves(McGraw-Hill, New York, 1962).[241]0. Buneman,Phys. Rey. 115 (1959) 503.[242]L. Rudakov,Zh. Eksp. Teor. Fix. 59 (1970) 2091 [Soy.Phys.— JETP32 (1971) 1134].[243]R.V. Lovelaceand RN. Sudan,Phys. Rev. Lett. 27 (1971) 1256.[244]L.E. ThodeandRN. Sudan,Phys. Fluids 18 (1975) 1564.[245]MA. Greenspan,C. Ekdahl,iD. SethianandC.B. Wharton,Phys. fluids 23 (1980) 205.[246]T. Okazaki,i. Phys. Soc. ipn. 49 (1980) 1532.[247]L.E. Aranchuk,E.K. Zayoiskii, D.N. Lin andLI. Rudakoy,Zh. Eksp. Teor. Fiz. Pis’ma Red. 15 (1972) 33 [JETPLett. 15 (1972) 22].[248]G. Kuppers, A. Salat and H.K. Wimmel, PlasmaPhys. 15 (1973) 429; 16 (1974) 317.[249]K.R. Chu andN. Rostoker,Phys.Fluids 17 (1974) 813.[250]Ya.N. Isotoni~nand VI. Karpman,Zh. Eksp. Teor. Fiz. 67 (1974) 1693 [Soy.Phys.JETP 40 (1975) 843].[251]A. Ishidaand K. Nishikawa,i. Phys.Soc. ipn. 41(1976)240.[252]RH. FleischmannandRE. Kribel, PlasmaPhys. 18 (1976) 179.[253]K. Molvig and N. Rostoker,Phys.fluids 20 (1977) 504, 494.[254]T.P. HughesandE. Ott, Phys. Fluids 23 (1980) 2265.[255]V.K. Grishin, M.F. Kaneyskii and ST. lyanoy,Fiz. Plazmy7 (1981) 774 [Soy. i. PlasmaPhys.7 (1981) 423]; PlasmaPhys.25(1983)855.[256]M. Tanakaand T. Sato, Phys. fluids 29 (1986) 3823.[257]P.C. de iagher,Comput.Phys. Commun.15(1978)351.[258]Ri. Briggs, Electron—StreamInteractionwith Plasma(M.I.T., Cambridge,Massachusetts,1964).[259]D.E. Baldwin, lB. Bernsteinand MPH. Weenink,Advancesin PlasmaPhysics,Vol. 3, eds A. Simonand W.B. Thompson(Interscience,

New York, 1969)p. 1.[260]M. Abramowitzand IA. Stegun,eds,Handbookof MathematicalFunctions(Dover,New York, 1965) ISBN 486-61272-4(or alateredition).[261]T.F. Bell and 0. Buneman,Phys. Rey.133 (1964) A1300.[262]P. Sprangleand L. Vlahos, Phys. Rev.A 33(1986)1261.[263]V.V. Bogdanov,MV. Kuzelev and A.A. Rukhadze,Fix. Plazmy10 (1984) 548 [Soy.J. — PlasmaPhys. 10 (1984) 319].[264]H.S. Uhm and R.C.Davidson,Phys.Fluids 29 (1986) 2713.[265]V.A. flyagin, AL. Uol’denbergand G.S. Nusinovich,Powerful gyrotrons,in: Infrared and Millimeter Waves,Vol. 11, ed. K.i. Button

(AcademicPress,Orlando, 1984) part III, p. 179.[266]TM. O’Neil andi.H. Malmberg, Phys. fluids 11(1968)1754.[267]R.L. Ferch and RN. Sudan,PlasmaPhys.17 (1975) 346.[268]L.E. Thode, Phys. fluids 19 (1976) 831.[269]B.S. Newbergerand L.E. Thode,Phys. fluids 25 (1982) 193.[270]M. Bornatici,F. Engelmann,C. Maroli and V. Petrillo, PlasmaPhys. 23 (1981) 229.

Section4[271]G.C.A.M. iansen,i.H.M. Bonnie, E.H.A. Granneman,VI. Krementsovand Hi. Hopman,Phys.Fluids 27 (1984) 726.

AppendixC[272] L.M. Milne-Thomson,Elliptic integrals,in: Handbookof MathematicalFunctions,edsM. AbramowitzandIA. Stegun(Dover,New York,

1965)(or alater edition).[273]National Algorithms Group, NAV fortran library manualmark 11, Vol. 6 (Oxford, Illinois, 1984) Ch. S.[274] User’smanual,IMSL Library, Vol. III, Ch. M.