22
Relativistic laser-plasma interaction with prepulse generated liquid metal microjets D.S.Uryupina , K.A.Ivanov, A.B.Savel'ev (International Laser Center, Moscow State University of M.V. Lomonosov) A.V.Brantov, V.Y.Bychenkov (P.N. Lebedev Physical Institute of the Russian Academy of Sciences ) ICONO/LAT 2010, Kazan, Russia, 23-26 August, 2010 Symposium on Extreme Light Technologies

Relativistic laser-plasma interaction with prepulse

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Relativistic laser-plasma interaction with prepulse

Relativistic laser-plasma interaction with prepulse generatedliquid metal microjets

D.S.Uryupina, K.A.Ivanov, A.B.Savel'ev (International Laser Center,

Moscow State University of M.V. Lomonosov)

A.V.Brantov, V.Y.Bychenkov (P.N. Lebedev Physical Institute of the Russian Academy of Sciences )

ICONO/LAT 2010, Kazan, Russia, 23-26 August, 2010Symposium on Extreme Light Technologies

Page 2: Relativistic laser-plasma interaction with prepulse

Introduction

Experimental setup

Contrast effect

Optical pump-probe experiments

3D3P PIC simulations

Page 3: Relativistic laser-plasma interaction with prepulse

Introduction

I<1017W/cm2

micro-structured targethuge enhancement in:

hard x-ray yieldhot electron energy

ASE

>106I>1017W/cm2

preplasma

12ns

liquid metal target

our approach:

repetition rateup to 1 kHz

Page 4: Relativistic laser-plasma interaction with prepulse

Introduction

Experimental setup

Contrast effect

Optical pump-probe experiments

3D3P PIC simulations

Page 5: Relativistic laser-plasma interaction with prepulse

x-ray detectors (PMT with NaI(Tl) scintillator,

Si-PIN Amptek XR-100CR

half-wave plate

resistive heater vacuum chamberp=5·10-5 torr

target (melted Ga)

τ=55 fsλ=800 nmE=1 mJI~1017W/cm2

10 Hzcontrast 10-400

106

laser pulse from Ti:Sa laser system

Page 6: Relativistic laser-plasma interaction with prepulse

Ga plasma x-ray spectrum

Kα (Ga) – 9,3 keVKβ (Ga) – 10,3 keVKα (Cu) – 8,4 keV

I=1017 W/cm2

Page 7: Relativistic laser-plasma interaction with prepulse

Introduction

Experimental setup

Contrast effect

Optical pump-probe experiments

3D3P PIC simulations

Page 8: Relativistic laser-plasma interaction with prepulse

X-ray yield nanosecond contrast dependence

Best results at pulse contrast ~50

Corresponding prepulse energy – 20uJ

Page 9: Relativistic laser-plasma interaction with prepulse

Comparison with solid targets

Page 10: Relativistic laser-plasma interaction with prepulse

Kα yield contrast dependencies

Page 11: Relativistic laser-plasma interaction with prepulse

Introduction

Experimental setup

Contrast effect

Optical pump-probe experiments

3D3P PIC simulations

Page 12: Relativistic laser-plasma interaction with prepulse

Optical pump-probe shadowgraphy

Delay 1-15 ns

4%96%

CCD

KDP

BS

Pulse energy 200 uJ that corresponds to the contrast of 0.2 in main experiments

Page 13: Relativistic laser-plasma interaction with prepulse

Dense microjet formation

Page 14: Relativistic laser-plasma interaction with prepulse

Introduction

Experimental setup

Contrast effect

Optical pump-probe experiments

3D3P PIC simulations

Page 15: Relativistic laser-plasma interaction with prepulse

Electron acceleration along jetsMandor code http://mandor.ilc.edu.ru/mandor3

Laser pulse- Duration 50 fs- Focal spot 3 um- intensity 5x1016-1018 W/cm2

Preplasma:-Proton+electrons-Density changes from 0 to 1.2x1021 cm-3

-Thickness 4 um

Target:-Proton + electrons-Density 1022 cm-3

-thickness 1 um

Jet:-Protons + electrons- Density 1022 cm-3

- Jet length 5 um- Jet diameter 0.5 um

Page 16: Relativistic laser-plasma interaction with prepulse

Electron acceleration along jets

Page 17: Relativistic laser-plasma interaction with prepulse

Electron acceleration along jets

Page 18: Relativistic laser-plasma interaction with prepulse

Electron acceleration along jets

Page 19: Relativistic laser-plasma interaction with prepulse

Electron acceleration along jets

Page 20: Relativistic laser-plasma interaction with prepulse

Electron from 3D3P PIC modeling

--- no jet--- with jet

--- no jet--- with jet

5x1016 W/cm2

1018 W/cm2

Page 21: Relativistic laser-plasma interaction with prepulse

Conclusions

Action of the pre-pulse leads to formation of micro jets of liquid metal. This enhances hot electron energy and hard x-ray yield from the plasma.

Our approach opens up the road to implementation of new schemes for electron and ion acceleration at much higher, relativistic intensities.

Page 22: Relativistic laser-plasma interaction with prepulse

Thank you for your attention!