Recoverability in quantum information theory

Embed Size (px)

Citation preview

  • 8/21/2019 Recoverability in quantum information theory

    1/23

    Recoverability in quantum information theory

    Mark M. Wilde

    Hearne Institute for Theoretical Physics,

    Department of Physics and Astronomy,Center for Computation and Technology,Louisiana State University,

    Baton Rouge, Louisiana, USA

    [email protected] 

    Beyond i.i.d., July 5-10, 2015, Banff, Alberta, Canada

    Mark M. Wilde (LSU) 1 / 23

  • 8/21/2019 Recoverability in quantum information theory

    2/23

    Main message

    Entropy inequalities established in the 1970s are a mathematicalconsequence of the postulates of quantum physics

    They are helpful in determining the ultimate limits on many physicalprocesses (communication, thermodynamics, uncertainty relations)

    Many of these entropy inequalities are equivalent to each other, so wecan say that together they constitute a fundamental law of quantuminformation theory

    There has been recent interest in refining these inequalities, trying to

    understand how well one can attempt to reverse an irreversiblephysical process

    This poster presentation discusses progress in this direction

    Mark M. Wilde (LSU) 2 / 23

  • 8/21/2019 Recoverability in quantum information theory

    3/23

    Background — entropies

    Umegaki relative entropy [Ume62]The quantum relative entropy is a measure of dissimilarity between twoquantum states. Defined for state  ρ  and positive semi-definite  σ  as

    D (ρ

    σ)

    ≡Tr

    {ρ[log ρ

    −log σ]

    }whenever supp(ρ) ⊆ supp(σ) and +∞  otherwise

    Physical interpretation with quantum Stein’s lemma [HP91, NO00]

    Given are  n  quantum systems, all of which are prepared in either the stateρ  or σ. With a constraint of  ε ∈ (0, 1) on the Type I error of misidentifying  ρ, then the optimal error exponent for the Type II error of misidentifying  σ   is  D (ρσ).

    Mark M. Wilde (LSU) 3 / 23

  • 8/21/2019 Recoverability in quantum information theory

    4/23

    Background — entropies

    Relative entropy as “mother” entropy

    Many important entropies can be written in terms of relative entropy:H (A)ρ ≡ −D (ρAI A) (entropy)H (A|B )ρ ≡ −D (ρAB I A ⊗ ρB ) (conditional entropy)I (A;B )ρ ≡ D (ρAB ρA ⊗ ρB ) (mutual information)I (A;B |C )ρ ≡ D (ρABC  exp{log ρAC  + log ρBC − log ρC }) (cond. MI)

    Equivalences

    H (A|B )ρ  = H (AB )ρ − H (B )ρI (A;B )ρ = H (A)ρ + H (B )ρ − H (AB )ρI (A;B )ρ = H (B )ρ − H (B |A)ρI (A;B |C )ρ  = H (AC )ρ + H (BC )ρ − H (ABC )ρ − H (C )ρI (A;B 

    |C )ρ  = H (B 

    |C )ρ

    −H (B 

    |AC )ρ

    Mark M. Wilde (LSU) 4 / 23

  • 8/21/2019 Recoverability in quantum information theory

    5/23

    Fundamental law of quantum information theory

    Monotonicity of quantum relative entropy [Lin75, Uhl77]Let  ρ  be a state, let  σ  be positive semi-definite, and let N   be a quantumchannel. Then

    D (ρσ) ≥ D ( N (ρ)N (σ))

    “Distinguishability does not increase under a physical process”Characterizes a fundamental irreversibility in any physical process

    Proof approaches

    Lieb concavity theorem [L73]relative modular operator method (see, e.g.,  [NP04])

    quantum Stein’s lemma [BS03]

    Mark M. Wilde (LSU) 5 / 23

  • 8/21/2019 Recoverability in quantum information theory

    6/23

    Strong subadditivity

    Strong subadditivity [LR73]

    Let  ρABC  be a tripartite quantum state. Then

    I (A;B |C )ρ ≥ 0

    Equivalent statements (by definition)

    Entropy sum of two individual systems is larger than entropy sum of their union and intersection:

    H (AC )ρ + H (BC )ρ ≥ H (ABC )ρ + H (C )ρConditional entropy does not decrease under the loss of system  A:

    H (B |C )ρ ≥ H (B |AC )ρ

    Mark M. Wilde (LSU) 6 / 23

  • 8/21/2019 Recoverability in quantum information theory

    7/23

    Equality conditions [Pet86, Pet88]

    When does equality in monotonicity of relative entropy hold?

    D (ρσ) = D ( N (ρ)N (σ)) iff  ∃ a recovery map RP σ, N   such that

    ρ = (RP σ, N  ◦ N )(ρ), σ  = (RP σ, N  ◦ N )(σ)

    This “Petz” recovery map has the following explicit form [HJPW04]:

    RP σ, N (ω) ≡ σ1/2 N †

    ( N (σ))−1/2ω( N (σ))−1/2

    σ1/2

    Classical case: Distributions  p X   and  q X  and a channel N (y |x ). Thenthe Petz recovery map R

    (x |y ) is given by the Bayes theorem:RP (x |y )q Y (y ) = N (y |x )q X (x )

    where  q Y (y ) ≡

    x  N (y |x )q X (x )

    Mark M. Wilde (LSU) 7 / 23

  • 8/21/2019 Recoverability in quantum information theory

    8/23

    More on Petz recovery map

    Linear, completely positive by inspection and trace non-increasing

    becauseTr{RP σ, N (ω)} = Tr{σ1/2 N †

    ( N (σ))−1/2ω( N (σ))−1/2

    σ1/2}

    = Tr{σ N †

    ( N (σ))−1/2ω( N (σ))−1/2}

    = Tr{N (σ)( N (σ))−1/2

    ω( N (σ))−1/2

    }≤ Tr{ω}For N (σ) positive definite, the map perfectly recovers  σ   from N (σ):

    RP σ, N ( N (σ)) = σ

    1/2

     N † ( N (σ))−1/2 N (σ)( N (σ))−1/2σ1/2

    = σ1/2 N † (I ) σ1/2= σ

    Mark M. Wilde (LSU) 8 / 23

  • 8/21/2019 Recoverability in quantum information theory

    9/23

    Functoriality

    Normalization [LW14]

    For identity channel, the Petz recovery map is the identity map:RP σ,id  = id. “If there’s no noise, then no need to recover”

    Tensorial [LW14]

    Given a tensor-product state and channel, then the Petz recovery map is atensor product: RP σ1⊗σ2, N 1⊗N 2  = RP σ1, N 1 ⊗RP σ2, N 2 . “Individual actionsuffices for ‘pretty good’ recovery of individual states”

    Composition [LW14]Given N 2 ◦ N 1, then RP σ, N 2◦N 1  = RP σ, N 1 ◦ RP  N 1(σ), N 2 . “To recover ‘prettywell’ overall, recover ‘pretty well’ from the last noise first and the firstnoise last”

    Mark M. Wilde (LSU) 9 / 23

  • 8/21/2019 Recoverability in quantum information theory

    10/23

    Petz recovery map for strong subadditivity

    Strong subadditivity is a special case of monotonicity of relativeentropy with  ρ = ωABC ,  σ = ωAC  ⊗ I B , and N   = TrAThen N †(·) = (·)⊗ I A  and Petz recovery map is

    RP C →AC (τ C ) = ω

    1/2

    AC  ω−1/2

      τ C ω−1/2

    C    ⊗I Aω

    1/2

    AC 

    Interpretation: If system  A   is lost but  H (B |C )ω  = H (B |AC )ω, thenone can recover the full state on  ABC  by performing the Petzrecovery map on system  C   of  ωBC , i.e.,

    ωABC   = RP C →AC (ωBC )

    Mark M. Wilde (LSU) 10 / 23

  • 8/21/2019 Recoverability in quantum information theory

    11/23

    Approximate case

    Approximate case would be useful for applications

    Approximate case for monotonicity of relative entropy

    What can we say when  D (ρσ)− D ( N (ρ)N (σ)) = ε  ?Does there exist a CPTP map

     R that recovers σ  perfectly from

     N (σ)

    while recovering  ρ  from N (ρ) approximately?   [WL12]

    Approximate case for strong subadditivity

    What can we say when  H (B 

    |C )ω

    −H (B 

    |AC )ω  = ε  ?

    Is  ωABC  approximately recoverable from  ωBC  by performing arecovery map on system  C   alone? [WL12]

    Mark M. Wilde (LSU) 11 / 23

  • 8/21/2019 Recoverability in quantum information theory

    12/23

    Other measures of similarity for quantum states

    Trace distance

    Trace distance between  ρ  and  σ   is ρ − σ1  where A1  = Tr{√ A†A}.Has a one-shot operational interpretation as the bias in success probabilitywhen distinguishing  ρ  and  σ  with an optimal quantum measurement.

    Fidelity [Uhl76]Fidelity between  ρ  and  σ   is  F (ρ, σ) ≡ √ ρ√ σ21. Has a one-shotoperational interpretation as the probability with which a purification of  ρcould pass a test for being a purification of  σ.

    Bures distance [Bur69]

    Bures distance between  ρ  and  σ   is  D B (ρ, σ) =

     2

    1− F (ρ, σ).Mark M. Wilde (LSU) 12 / 23

  • 8/21/2019 Recoverability in quantum information theory

    13/23

    Breakthrough result of [FR14]

    Remainder term for strong subadditivity [FR14]

    ∃  unitary channels U C   and V AC   such thatH (B |C )ω − H (B |AC )ω ≥ − log F 

    ωABC , (V AC  ◦ RP C →AC  ◦ U C )(ωBC )

    Nothing known from [FR14] about these unitaries! However, can conclude

    that   I (A;B |C ) is small iff  ωABC   is approximately recoverable from systemC  alone after the loss of system  A.

    Remainder term for monotonicity of relative entropy [BLW14]

    ∃  unitary channels U   and V   such thatD (ρσ)−D ( N (ρ)N (σ)) ≥ − log F 

    ρ, (V ◦ RP σ, N  ◦ U )( N (ρ))

    Again, nothing known from [BLW14] about U   and V .

    Mark M. Wilde (LSU) 13 / 23

  • 8/21/2019 Recoverability in quantum information theory

    14/23

    New result of [Wil15]

    New Theorem: Let  ρ  and  σ  be such that supp(ρ) ⊆ supp(σ) and let N be a quantum channel. Then the following inequality holds

    D  (ρσ)− D  ( N (ρ)N (σ)) ≥ − log

    supt ∈R

    ρ,RP ,t σ, N  ( N (ρ))

    ,

    where RP ,t 

    σ, N   is the following rotated Petz recovery map:

    RP ,t σ, N  (·) ≡ U σ,t  ◦ RP σ, N  ◦ U  N (σ),−t 

    (·) ,

    RP 

    σ, N 

      is the Petz recovery map, and U 

    σ,t   and U  N (σ),−t  are defined from

     U ω,t  (·) ≡ ωit  (·) ω−it ,  with  ω  a positive semi-definite operator.

    Two tools for proof : Rényi generalization of a relative entropy differenceand the Hadamard three-line theorem

    Mark M. Wilde (LSU) 14 / 23

  • 8/21/2019 Recoverability in quantum information theory

    15/23

    Rényi generalizations of a relative entropy difference

    Definition from [BSW14, SBW14]

    ∆α (ρ,σ, N ) ≡   2α

      log N  (ρ)−α/2 N  (σ)α/2 ⊗ I E U σ−α/2ρ1/2

    2α,

    where  α ∈ (0, 1) ∪ (1,∞),  α

    ≡ (α − 1)/α, and U 

    S →BE   is an isometricextension of  N .

    Important properties

    limα→1

    ∆α (ρ,σ, N ) = D  (ρσ)− D  ( N  (ρ) N  (σ)) .∆1/2 (ρ,σ, N ) = − log F ρ,RP σ, N  ( N  (ρ)) .

    Mark M. Wilde (LSU) 15 / 23

  • 8/21/2019 Recoverability in quantum information theory

    16/23

    Hadamard three-line theorem

    Let  S 

     ≡ {z 

     ∈C : 0

    ≤Re

    {z 

    } ≤1

    },  and let  L (

    H) be the space of bounded

    linear operators acting on a Hilbert space H. Let  G   : S  → L (H) be abounded map that is holomorphic on the interior of  S  and continuous onthe boundary. Let  θ ∈ (0, 1) and define  p θ  by

    1

    p θ =

     1

    −θ

    p 0 +

      θ

    p 1 ,

    where  p 0, p 1 ∈ [1,∞]. For  k  = 0, 1 define

    M k  = sup

    t ∈R

    G  (k  + it )p k  .

    ThenG  (θ)p θ ≤ M 1−θ0   M θ1 .

    Mark M. Wilde (LSU) 16 / 23

    Th ( ) li f

  • 8/21/2019 Recoverability in quantum information theory

    17/23

    Three (or so) line proof 

    Pick

    G  (z ) ≡ [ N  (ρ)]z /2 [ N  (σ)]−z /2 ⊗ I E U σz /2ρ1/2,p 0  = 2,   p 1  = 1, θ ∈ (0, 1)   ⇒ p θ  =   2

    1 + θ

    Then

    M 0  = supt ∈R

     N  (ρ)it /2 N  (σ)−it /2 ⊗ I E U σit ρ1/22≤ ρ1/2

    2= 1,

    M 1  = supt ∈R

    G  (1 + it )1  =

    supt ∈R

    ρ,RP ,t σ, N  ( N  (ρ))1/2

    .

    Apply the three-line theorem to conclude that

    G  (θ)2/(1+θ) ≤

    supt ∈R

    ρ,RP ,t σ, N  ( N (ρ))θ/2

    .

    Take a negative logarithm and the limit as  θ 0 to conclude.Mark M. Wilde (LSU) 17 / 23

    SSA fi i l

  • 8/21/2019 Recoverability in quantum information theory

    18/23

    SSA refinement as a special case

    Let  ρABC  be a density operator acting on a finite-dimensional Hilbert

    space HA ⊗HB  ⊗HC . Then the following inequality holdsI  (A;B |C )ρ ≥ − log

    supt ∈R

    ρABC ,RP ,t C →AC  (ρBC )

    ,

    where RP ,t 

    C →AC   is the following rotated Petz recovery map:

    RP ,t C →AC  (·) ≡ U ρAC ,t  ◦ RP C →AC  ◦ U ρC ,−t 

    (·) ,

    the Petz recovery map

     RP C →AC   is defined as

    RP C →AC  (·) ≡ ρ1/2AC 

    ρ−1/2C    (·) ρ−1/2C    ⊗ I A

    ρ

    1/2AC  ,

    and the partial isometric maps U ρAC ,t   and U ρC ,−t  are defined as before.

    Mark M. Wilde (LSU) 18 / 23

    C l i

  • 8/21/2019 Recoverability in quantum information theory

    19/23

    Conclusions

    The result of [FR14] already had a number of important implications

    in quantum information theory.The new result in [Wil15] applies to relative entropy differences, has abrief proof, and improves our understanding of the input and outputunitaries (but see [SFR15] for the special case of SSA)

    By building on [SFR15, Wil15], we can now generalize these results:there is a universal recovery map which depends only on  σ  and N   andhas the form [SRWW15]:

     →    µ(dt )

     RP ,t σ, N (X )

    for some probability measure  µ.

    It is still conjectured that the recovery map can be the Petz recoverymap alone (not a rotated Petz map).

    Mark M. Wilde (LSU) 19 / 23

    R f I

  • 8/21/2019 Recoverability in quantum information theory

    20/23

    References I

    [BLW14] Mario Berta, Marius Lemm, and Mark M. Wilde. Monotonicity of quantumrelative entropy and recoverability. December 2014. arXiv:1412.4067.

    [BS03] Igor Bjelakovic and Rainer Siegmund-Schultze. Quantum Stein’s lemmarevisited, inequalities for quantum entropies, and a concavity theorem of Lieb. July2003. arXiv:quant-ph/0307170.

    [BSW14] Mario Berta, Kaushik Seshadreesan, and Mark M. Wilde. Rényi generalizations

    of the conditional quantum mutual information. March 2014. arXiv:1403.6102.

    [Bur69] Donald Bures. An extension of Kakutani’s theorem on infinite product measuresto the tensor product of semifinite  w ∗-algebras.  Transactions of the AmericanMathematical Society , 135:199–212, January 1969.

    [FR14] Omar Fawzi and Renato Renner. Quantum conditional mutual information and

    approximate Markov chains. October 2014. arXiv:1410.0664.

    [HJPW04] Patrick Hayden, Richard Jozsa, Denes Petz, and Andreas Winter. Structureof states which satisfy strong subadditivity of quantum entropy with equality.Communications in Mathematical Physics , 246(2):359–374, April 2004.arXiv:quant-ph/0304007.

    Mark M. Wilde (LSU) 20 / 23

    R f II

  • 8/21/2019 Recoverability in quantum information theory

    21/23

    References II

    [HP91] Fumio Hiai and Denes Petz. The proper formula for relative entropy and itsasymptotics in quantum probability.  Communications in Mathematical Physics ,143(1):99–114, December 1991.

    [Lin75] Göran Lindblad. Completely positive maps and entropy inequalities.Communications in Mathematical Physics , 40(2):147–151, June 1975.

    [L73] Elliott H. Lieb. Convex Trace Functions and the Wigner-Yanase-Dyson

    Conjecture.  Advances in Mathematics , 11(3), 267–288, December 1973.

    [LR73] Elliott H. Lieb and Mary Beth Ruskai. Proof of the strong subadditivity of quantum-mechanical entropy.  Journal of Mathematical Physics , 14(12):1938–1941,December 1973.

    [LW14] Ke Li and Andreas Winter. Squashed entanglement,  k -extendibility, quantumMarkov chains, and recovery maps.  October 2014. arXiv:1410.4184.

    [NO00] Hirsohi Nagaoka and Tomohiro Ogawa. Strong converse and Stein’s lemma inquantum hypothesis testing.  IEEE Transactions on Information Theory ,46(7):2428–2433, November 2000. arXiv:quant-ph/9906090.

    Mark M. Wilde (LSU) 21 / 23

    References III

  • 8/21/2019 Recoverability in quantum information theory

    22/23

    References III

    [NP04] Michael A. Nielsen and Denes Petz. A simple proof of the strong subadditivity

    inequality. arXiv:quant-ph/0408130.[Pet86] Denes Petz. Sufficient subalgebras and the relative entropy of states of a von

    Neumann algebra.  Communications in Mathematical Physics , 105(1):123–131,March 1986.

    [Pet88] Denes Petz. Sufficiency of channels over von Neumann algebras.  Quarterly 

    Journal of Mathematics , 39(1):97–108, 1988.

    [SBW14] Kaushik P. Seshadreesan, Mario Berta, and Mark M. Wilde. Rényi squashedentanglement, discord, and relative entropy differences. October 2014.arXiv:1410.1443.

    [SFR15] David Sutter, Omar Fawzi, and Renato Renner. Universal recovery map forapproximate Markov chains. April 2015. arXiv:1504.07251.

    [SRWW15] David Sutter, Renato Renner, Mark M. Wilde, and Andreas Winter.Universal recovery from a decrease of quantum relative entropy.  June 2015.arXiv:150?.?????.

    Mark M. Wilde (LSU) 22 / 23

    References IV

  • 8/21/2019 Recoverability in quantum information theory

    23/23

    References IV

    [Uhl76] Armin Uhlmann. The “transition probability” in the state space of a *-algebra.Reports on Mathematical Physics , 9(2):273–279, 1976.

    [Uhl77] Armin Uhlmann. Relative entropy and the Wigner-Yanase-Dyson-Lieb concavityin an interpolation theory.  Communications in Mathematical Physics , 54(1):21–32,1977.

    [Ume62] Hisaharu Umegaki. Conditional expectations in an operator algebra IV (entropyand information).  Kodai Mathematical Seminar Reports , 14(2):59–85, 1962.

    [Wil15] Mark M. Wilde.  Recoverability in quantum information theory. May 2015.arXiv:1505.04661.

    [WL12] Andreas Winter and Ke Li. A stronger subadditivity relation?http://www.maths.bris.ac.uk/∼csajw/stronger subadditivity.pdf, 2012.

    Mark M. Wilde (LSU) 23 / 23