35
22.56 - lecture 3, Fourier imaging Reciprocal Space Fourier Transforms Outline Introduction to reciprocal space Fourier transformation Some simple functions • Area and zero frequency components • 2- dimensions Separable Central slice theorem Spatial frequencies Filtering Modulation Transfer Function

Reciprocal Space Fourier Transforms - California …web.ipac.caltech.edu/staff/fmasci/home/astro_refs/...22.56 - lecture 3, Fourier imaging Reciprocal Space Fourier Transforms Outline

Embed Size (px)

Citation preview

Page 1: Reciprocal Space Fourier Transforms - California …web.ipac.caltech.edu/staff/fmasci/home/astro_refs/...22.56 - lecture 3, Fourier imaging Reciprocal Space Fourier Transforms Outline

22.56 - lecture 3, Fourier imaging

Reciprocal Space

Fourier Transforms

Outline• Introduction to reciprocal space• Fourier transformation• Some simple functions• Area and zero frequency components• 2- dimensions• Separable• Central slice theorem• Spatial frequencies• Filtering• Modulation Transfer Function

Page 2: Reciprocal Space Fourier Transforms - California …web.ipac.caltech.edu/staff/fmasci/home/astro_refs/...22.56 - lecture 3, Fourier imaging Reciprocal Space Fourier Transforms Outline

22.56 - lecture 3, Fourier imaging

Reciprocal Space

real space reciprocal space

Page 3: Reciprocal Space Fourier Transforms - California …web.ipac.caltech.edu/staff/fmasci/home/astro_refs/...22.56 - lecture 3, Fourier imaging Reciprocal Space Fourier Transforms Outline

22.56 - lecture 3, Fourier imaging

Reciprocal Space

In[3]:= periodic = Join @face , face , face , face , face , 80<D;

In[5]:= f = Fourier @periodic D;

In[6]:= ListPlot @RotateLeft @Re@f D, 128D, PlotJoined -> True , PlotRange -> Al l ,

PlotStyle - > Thickness @0.01DD

50 100 150 200 250

-10

-5

5

10

15

20

In[1]:= f a c e = 80, 0, 0, 0, . 2 , . 4 , . 7 , . 9 , 1 .2, 2 . , 2 .5, 3 .1, 3.25, 3 .2, 3 .1, 2 .9, 2 .9, 3, 3 .1, 2 .8,

2 .9, 2 .8, 2 .7, 2 .6, 2 .8, 2 .9, 3, 2 .9, 2 .7, 2 .3, 2 .1, 1 .7, 1 .4, 1 .2, 1, . 8 , . 8 , . 7 ,

. 7 , .65, . 6 , . 5 , . 4 , . 3 , . 2 , . 1 , 0, 0, 0, 0, 0<;

In[33]:= L istP lot @f a c e, PlotJoined - > T rue , Axe s - > Fa l se , P lotSty le - > Th ickness @0.01DD

Page 4: Reciprocal Space Fourier Transforms - California …web.ipac.caltech.edu/staff/fmasci/home/astro_refs/...22.56 - lecture 3, Fourier imaging Reciprocal Space Fourier Transforms Outline

22.56 - lecture 3, Fourier imaging

Reciprocal Space

50 100 150 200 250

-10

-5

5

10

15

20

50 100 150 200 250

-7.5

-5

-2.5

2.5

5

7.5

L istP lot @RotateLeft @Im@f D, 128D, PlotJoined - > True ,

P lotRange - > A l l ,

P lotSty le - > Th ickness @0.01DD

real

imaginary

Page 5: Reciprocal Space Fourier Transforms - California …web.ipac.caltech.edu/staff/fmasci/home/astro_refs/...22.56 - lecture 3, Fourier imaging Reciprocal Space Fourier Transforms Outline

22.56 - lecture 3, Fourier imaging

Reconstructionf i l t e r @n_D : = Table @I f @i < n , 1, I f @i > 256- n , 1, 0DD, 8i , 1, 256<D;

expand@n_D : = L istP lot @Take@R e@Four ie r @f f i l t e r @nDDD, 54D,

8PlotJoined - > True , P lotRange - > A l l , A xe s - > Fa l se , P lotSty le - > Th ickness @0.01D,

DisplayFunction - > Ident ity <D

8 Fourier components

16

32

64

128

Page 6: Reciprocal Space Fourier Transforms - California …web.ipac.caltech.edu/staff/fmasci/home/astro_refs/...22.56 - lecture 3, Fourier imaging Reciprocal Space Fourier Transforms Outline

22.56 - lecture 3, Fourier imaging

Fourier Transforms

For a complete story see: Brigham “Fast Fourier Transform”Here we want to cover the practical aspects of Fourier Transforms.

Define the Fourier Transform as:

There are slight variations on this definition (factors of π and thesign in the exponent), we will revisit these latter, i=√ -1.

Also recall that

!

G(k) =" g(x){ } = g(x)e#ikx

dx

#$

$

%

!

e"ikx

= cos(kx)" isin(kx)

Page 7: Reciprocal Space Fourier Transforms - California …web.ipac.caltech.edu/staff/fmasci/home/astro_refs/...22.56 - lecture 3, Fourier imaging Reciprocal Space Fourier Transforms Outline

22.56 - lecture 3, Fourier imaging

Reciprocal variables

k is a wave-number and has units that are reciprocal to x:x -> cmk -> 2π/cm

So while x describes a position in space, k describes a spatialmodulation.Reciprocal variables are also called conjugate variables.

Another pair of conjugate variables are time and angular frequency.

-4 -2 2 4

-1-0.75-0.5-0.25

0.250.50.75

1

-4 -2 2 4

-1-0.75-0.5-0.25

0.250.50.75

1

!

",k =2#

"

Page 8: Reciprocal Space Fourier Transforms - California …web.ipac.caltech.edu/staff/fmasci/home/astro_refs/...22.56 - lecture 3, Fourier imaging Reciprocal Space Fourier Transforms Outline

22.56 - lecture 3, Fourier imaging

Conditions for the Fourier Transform to Exist

The sufficient condition for the Fourier transform to exist is that thefunction g(x) is square integrable,

g(x) may be singular or discontinuous and still have a well definedFourier transform.

!

g(x)2dx <"

#"

"

$

Page 9: Reciprocal Space Fourier Transforms - California …web.ipac.caltech.edu/staff/fmasci/home/astro_refs/...22.56 - lecture 3, Fourier imaging Reciprocal Space Fourier Transforms Outline

22.56 - lecture 3, Fourier imaging

The Fourier transform is complex

The Fourier transform G(k) and the original function g(x) are both ingeneral complex.

The Fourier transform can be written as,

!

" g(x){ } =Gr (k)+ iGi (k)

!

" g(x){ } =G(k) = A(k)ei#(k )

A = G = Gr2 +Gi

2

A $ amplitude spectrum, or magnitude spectrum

#$ phase spectrum

A2 = G 2 =Gr

2 +Gi2 $ power spectrum

Page 10: Reciprocal Space Fourier Transforms - California …web.ipac.caltech.edu/staff/fmasci/home/astro_refs/...22.56 - lecture 3, Fourier imaging Reciprocal Space Fourier Transforms Outline

22.56 - lecture 3, Fourier imaging

The Fourier transform when g(x) is real

The Fourier transform G(k) has a particularly simple form when g(x)is purely real

So the real part of the Fourier transform reports on the even part ofg(x) and the imaginary part on the odd part of g(x).

!

Gr (k) = g(x)cos(kx)dx

"#

#

$

Gi (k) = g(x)sin(kx)dx

"#

#

$

Page 11: Reciprocal Space Fourier Transforms - California …web.ipac.caltech.edu/staff/fmasci/home/astro_refs/...22.56 - lecture 3, Fourier imaging Reciprocal Space Fourier Transforms Outline

22.56 - lecture 3, Fourier imaging

The Fourier transform of a delta function

The Fourier transform of a delta function should help to convinceyou that the Fourier transform is quite general (since we can buildfunctions from delta functions).

The delta function picks out the zero frequency value,

!

" # x( ){ } = # x( )e$ikxdx$%

%

&

!

" # x( ){ } = e$ik0 =1

# x( )%1

x k

Page 12: Reciprocal Space Fourier Transforms - California …web.ipac.caltech.edu/staff/fmasci/home/astro_refs/...22.56 - lecture 3, Fourier imaging Reciprocal Space Fourier Transforms Outline

22.56 - lecture 3, Fourier imaging

The Fourier transform of a delta function

So it take all spatial frequencies to create a delta function.

In[1]:= de lta @n_, x _D = Sum@Cos@k xD, 8k , - n , n , 1<D;

In[7]:= P l o t @de lta @1, x D, 8x , - 3, 3<, P lotRange - > A l l ,

P lotSty le - > Th ickness @0.01DD

-10 -5 5 10

20

40

60

Page 13: Reciprocal Space Fourier Transforms - California …web.ipac.caltech.edu/staff/fmasci/home/astro_refs/...22.56 - lecture 3, Fourier imaging Reciprocal Space Fourier Transforms Outline

22.56 - lecture 3, Fourier imaging

The Fourier transform

The fact that the Fourier transform of a delta function exists showsthat the FT is complete.

The basis set of functions (sin and cos) are also orthogonal.

So think of the Fourier transform as picking out the unique spectrumof coefficients (weights) of the sines and cosines.

!

cos(k1x)cos(k2x)dx ="(k1 # k2 )#$

$

%

Page 14: Reciprocal Space Fourier Transforms - California …web.ipac.caltech.edu/staff/fmasci/home/astro_refs/...22.56 - lecture 3, Fourier imaging Reciprocal Space Fourier Transforms Outline

22.56 - lecture 3, Fourier imaging

The Fourier transform of the TopHat Function

Define the TopHat function as,

The Fourier transform is,

which reduces to,

!

G(k) = g(x)e"ikx

dx

"#

#

$

!

g(x) =1; x "1

0; x >1

# $ %

!

G(k) = 2 cos(kx)dx

0

1

" = 2sin(k)

k= 2sinc(k)

Page 15: Reciprocal Space Fourier Transforms - California …web.ipac.caltech.edu/staff/fmasci/home/astro_refs/...22.56 - lecture 3, Fourier imaging Reciprocal Space Fourier Transforms Outline

22.56 - lecture 3, Fourier imaging

The Fourier transform of the TopHat Function

For the TopHat function

The Fourier transform is,

!

g(x) =1; x "1

0; x >1

# $ %

!

G(k) = 2 cos(kx)dx

0

1

" = 2sin(k)

k= 2sinc(k)

-20 -10 10 20

-0.5

0.5

1

1.5

2

Page 16: Reciprocal Space Fourier Transforms - California …web.ipac.caltech.edu/staff/fmasci/home/astro_refs/...22.56 - lecture 3, Fourier imaging Reciprocal Space Fourier Transforms Outline

22.56 - lecture 3, Fourier imaging

The Fourier reconstruction of the TopHat Function

-20 -10 10 20

-0.5

0.5

1

1.5

2

In[33]:= square @n_, x_D: =

2 + Sum@H2 Sin @kDêkL * Cos@k xD, 8k , 1, n<D;

In[36]:= Table @Plot @square @n , xD, 8x , - 2, 2<,

PlotRange -> Al l , PlotStyle - > Thickness @0.01DD,

8n , 0, 128<D

Page 17: Reciprocal Space Fourier Transforms - California …web.ipac.caltech.edu/staff/fmasci/home/astro_refs/...22.56 - lecture 3, Fourier imaging Reciprocal Space Fourier Transforms Outline

22.56 - lecture 3, Fourier imaging

The Fourier transform of a cosine Function

Define the cosine function as,

where k0 is the wave-number of the original function.The Fourier transform is,

which reduces to,

cosine is real and even, and so the Fourier transform is also real andeven. Two delta functions since we can not tell the sign of thespatial frequency.

!

G(k) = cos(k0x)e"ikx

dx

"#

#

$

!

g(x) = cos(k0x)

!

G(k) = cos(k0x)cos(kx)dx

"#

#

$ = % &(k " k0 )+&(k + k0 ){ }

Page 18: Reciprocal Space Fourier Transforms - California …web.ipac.caltech.edu/staff/fmasci/home/astro_refs/...22.56 - lecture 3, Fourier imaging Reciprocal Space Fourier Transforms Outline

22.56 - lecture 3, Fourier imaging

The Fourier transform of a sine Function

Define the sine function as,

where k0 is the wave-number of the original function.The Fourier transform is,

which reduces to,

sine is real and odd, and so the Fourier transform is imaginary andodd. Two delta functions since we can not tell the sign of the spatialfrequency.

!

G(k) = sin(k0x)e"ikx

dx

"#

#

$

!

g(x) = sin(k0x)

!

G(k) = i sin(k0x)sin(kx)dx

"#

#

$ = i% &(k + k0 )"&(k " k0 ){ }

Page 19: Reciprocal Space Fourier Transforms - California …web.ipac.caltech.edu/staff/fmasci/home/astro_refs/...22.56 - lecture 3, Fourier imaging Reciprocal Space Fourier Transforms Outline

22.56 - lecture 3, Fourier imaging

Telling the sense of rotation

Looking at a cosine or sine alone one can not tell the sense ofrotation (only the frequency) but if you have both then the signis measurable.

Page 20: Reciprocal Space Fourier Transforms - California …web.ipac.caltech.edu/staff/fmasci/home/astro_refs/...22.56 - lecture 3, Fourier imaging Reciprocal Space Fourier Transforms Outline

22.56 - lecture 3, Fourier imaging

Symmetry

Even/odd

if g(x) = g(-x), then G(k) = G(-k)

if g(x) = -g(-x), then G(k) = -G(-k)

Conjugate symmetry

if g(x) is purely real and even, then G(k) is purely real.

if g(x) is purely real and odd, then G(k) is purely imaginary.

if g(x) is purely imaginary and even, then G(k) is purely imaginary.

if g(x) is purely imaginary and odd, then G(k) is purely real.

Page 21: Reciprocal Space Fourier Transforms - California …web.ipac.caltech.edu/staff/fmasci/home/astro_refs/...22.56 - lecture 3, Fourier imaging Reciprocal Space Fourier Transforms Outline

22.56 - lecture 3, Fourier imaging

The Fourier transform of the sign function

The sign function is important in filtering applications, it is definedas,

The FT is calculated by expanding about the origin,

!

" sgn x( ){ } =#2

ki

!

sgn(x) =1; x > 0

"1; x < 0

# $ %

Page 22: Reciprocal Space Fourier Transforms - California …web.ipac.caltech.edu/staff/fmasci/home/astro_refs/...22.56 - lecture 3, Fourier imaging Reciprocal Space Fourier Transforms Outline

22.56 - lecture 3, Fourier imaging

The Fourier transform of the Heaviside function

The Heaviside (or step) function can be explored using the result ofthe sign function

The FT is then,

!

" # x( ){ } ="1

21+ sgn(x)[ ]

$ % &

' ( )

="1

2

$ % &

' ( )

+"1

2sgn(x)

$ % &

' ( )

!

"(x) =1

21+ sgn(x)[ ]

!

" # x( ){ } = $%(k)&i

k

Page 23: Reciprocal Space Fourier Transforms - California …web.ipac.caltech.edu/staff/fmasci/home/astro_refs/...22.56 - lecture 3, Fourier imaging Reciprocal Space Fourier Transforms Outline

22.56 - lecture 3, Fourier imaging

The shift theorem

Consider the conjugate pair,

what is the FT of

rewrite as,

The new term is not a function of x,

so you pick up a frequency dependent phase shift.

!

" g x( ){ } =G(k)

!

" g x # a( ){ }

!

" g x # a( ){ } = g(x # a)e#ikxdx#$

$

%

!

= g(x " a)e"ik(x"a)e"ikad(x " a)"#

#

$

!

" g x # a( ){ } = e#ikaG(k)

Page 24: Reciprocal Space Fourier Transforms - California …web.ipac.caltech.edu/staff/fmasci/home/astro_refs/...22.56 - lecture 3, Fourier imaging Reciprocal Space Fourier Transforms Outline

22.56 - lecture 3, Fourier imaging

The shift theoremIn[18]:= d : = Table @Table @Cos@2 x + n 2 P i ê 1 6D, 8n , 0, 1 5<,

8x , - 1 0, 1 0, 20ê6 3<DD;

In[35]:= f = Table @RotateLeft @Four ie r @d@@nDDD, 3 2D, 8n , 1, 1 6<D;

In[19]:= ListP lot3D @d , 8PlotRange - > 8- 1, 1<, Mesh - > Fa l se <D

20

40

60

5

10

15

-1

-0.5

0

0.5

1

20

40

60

20

40

60

5

10

15

-2

0

2

20

40

60

20

40

60

5

10

15

-2

0

2

20

40

60

Page 25: Reciprocal Space Fourier Transforms - California …web.ipac.caltech.edu/staff/fmasci/home/astro_refs/...22.56 - lecture 3, Fourier imaging Reciprocal Space Fourier Transforms Outline

22.56 - lecture 3, Fourier imaging

The similarity theorem

Consider the conjugate pair,

what is the FT of

so the Fourier transform scales inversely with the scaling of g(x).

!

" g x( ){ } =G(k)

!

" g ax( ){ }

!

" g ax( ){ } = g(ax)e#ikx

dx

#$

$

% =1

ag(ax)e

#ik

aaxd(ax)

#$

$

%

!

" g ax( ){ } =1

aG(k

a)

Page 26: Reciprocal Space Fourier Transforms - California …web.ipac.caltech.edu/staff/fmasci/home/astro_refs/...22.56 - lecture 3, Fourier imaging Reciprocal Space Fourier Transforms Outline

22.56 - lecture 3, Fourier imaging

The similarity theoremIn[3]:= square = Table @

Table @I f @x < 64- n , 0, I f @x > 64+n , 0, 1DD, 8x , 1, 128<D,

8n , 1, 16<D;

In[13]:= f = Table @

RotateLeft @Four ie r @RotateLeft @square@@nDD, 64DD, 64D,

8n , 1, 16<D;

50

100

5

10

15

00.2

0.4

0.6

0.8

1

50

100

50

100

5

10

15

0

1

2

3

50

100

Page 27: Reciprocal Space Fourier Transforms - California …web.ipac.caltech.edu/staff/fmasci/home/astro_refs/...22.56 - lecture 3, Fourier imaging Reciprocal Space Fourier Transforms Outline

22.56 - lecture 3, Fourier imaging

The similarity theorem

50

100

5

10

15

00.2

0.4

0.6

0.8

1

50

10050

100

5

10

15

0

1

2

3

50

100

-3 -2 -1 1 2 3

-2

2

4

6

8

a-a

!

1

2a

!

1

a

Page 28: Reciprocal Space Fourier Transforms - California …web.ipac.caltech.edu/staff/fmasci/home/astro_refs/...22.56 - lecture 3, Fourier imaging Reciprocal Space Fourier Transforms Outline

22.56 - lecture 3, Fourier imaging

Rayleigh’s theorem

Also called the energy theorem,

The amount of energy (the weight) of the spectrum is not changedby looking at it in reciprocal space.

In other words, you can make the same measurement in either real orreciprocal space.

!

g(x)2dx

"#

#

$ = G(k)2d(k)

"#

#

$

Page 29: Reciprocal Space Fourier Transforms - California …web.ipac.caltech.edu/staff/fmasci/home/astro_refs/...22.56 - lecture 3, Fourier imaging Reciprocal Space Fourier Transforms Outline

22.56 - lecture 3, Fourier imaging

The zero frequency point

Also weight of the zero frequency point corresponds to the totalintegrated area of the function g(x)

!

" g(x){ }k=0 = g(x)e

#ikxdx

#$

$

%k=0

= g(x)dx

#$

$

%

Page 30: Reciprocal Space Fourier Transforms - California …web.ipac.caltech.edu/staff/fmasci/home/astro_refs/...22.56 - lecture 3, Fourier imaging Reciprocal Space Fourier Transforms Outline

22.56 - lecture 3, Fourier imaging

The Inverse Fourier Transform

Given a function in reciprocal space G(k) we can return to directspace by the inverse FT,

To show this, recall that

!

g(x) ="#1 G(k){ } =1

2$G(k)e

ikxdk

#%

%

&

!

G(k) = g(x)e"ikx

dx

"#

#

$

!

1

2"G(k)e

ikx'dk =

#$

$

%1

2"dx g(x) e

ik(x '#x )dk

#$

$

%

2"&(x '#x)

1 2 4 4 3 4 4 #$

$

%

g( x ')

1 2 4 4 4 4 3 4 4 4 4

Page 31: Reciprocal Space Fourier Transforms - California …web.ipac.caltech.edu/staff/fmasci/home/astro_refs/...22.56 - lecture 3, Fourier imaging Reciprocal Space Fourier Transforms Outline

22.56 - lecture 3, Fourier imaging

The Fourier transform in 2 dimensions

The Fourier transform can act in any number of dimensions,

It is separable

and the order does not matter.

!

" g(x, y){ }x,y

=#$

$

% g(x, y)e#ikyye

#ikxxdxdy

#$

$

%

!

" g(x, y){ }x,y

=" g(x, y){ }x" g(x, y){ }

y

Page 32: Reciprocal Space Fourier Transforms - California …web.ipac.caltech.edu/staff/fmasci/home/astro_refs/...22.56 - lecture 3, Fourier imaging Reciprocal Space Fourier Transforms Outline

22.56 - lecture 3, Fourier imaging

Central Slice Theorem

The equivalence of the zero-frequency rule in 2D is the central slicetheorem.

or

So a slice of the 2-D FT that passes through the origin correspondsto the 1 D FT of the projection in real space.

!

" g(x, y){ }x,y kx=0

=#$

$

% g(x, y)e#ikyye

#ikx xdxdy

#$

$

%kx=0

!

" g(x, y){ }x,y kx=0

= e#ikyy

#$

$

% dy g(x, y)dx

#$

$

%kx=0

Page 33: Reciprocal Space Fourier Transforms - California …web.ipac.caltech.edu/staff/fmasci/home/astro_refs/...22.56 - lecture 3, Fourier imaging Reciprocal Space Fourier Transforms Outline

22.56 - lecture 3, Fourier imaging

Filtering

We can change the information content in the image bymanipulating the information in reciprocal space.

Weighting function in k-space.

Page 34: Reciprocal Space Fourier Transforms - California …web.ipac.caltech.edu/staff/fmasci/home/astro_refs/...22.56 - lecture 3, Fourier imaging Reciprocal Space Fourier Transforms Outline

22.56 - lecture 3, Fourier imaging

Filtering

We can also emphasis the high frequency components.

Weighting function in k-space.

Page 35: Reciprocal Space Fourier Transforms - California …web.ipac.caltech.edu/staff/fmasci/home/astro_refs/...22.56 - lecture 3, Fourier imaging Reciprocal Space Fourier Transforms Outline

22.56 - lecture 3, Fourier imaging

Modulation transfer function

!

i(x, y) = o(x, y)" PSF(x, y) + noise

c c c c

I(kx ,ky ) =O(kx ,ky ) #MTF(kx ,ky )+$ noise{ }