Reaction Dynamics Lecture Notes 2012

Embed Size (px)

Citation preview

  • 8/12/2019 Reaction Dynamics Lecture Notes 2012

    1/38

    1

    1

    MolecularReactionDynamics

    Lectures14

    ClaireVallance

    INTRODUCTION

    Bynowyoushouldbewellandtrulyusedtotheconcepts involved inreactionkineticsonamacroscopic

    scale. Youwillhaveencountereda rangeofexperimental techniques formeasuring rate constantsand

    determining reactionorders,andavarietyof theoretical tools simplecollision theory, the steady state

    approximation,transitionstatetheory,tonameafew thatcanbeusedto interpretorevenpredictthe

    experimentalresults.

    Arateconstantdeterminedinatypicalkineticsstudyisahighlyaveragedquantity,theaggregateoutcome

    of an unimaginably large number of individual collisions between reactant molecules. In contrast, a

    chemicalreactiondynamicsstudyaimstounderstandchemistryatanexquisite levelofdetailbyprobing

    chemical reactions on the scale of single reactive collisions betweenmolecules. Aswe shall see, it is

    possible to control thevelocities,quantum states,andeven the geometricalorientationof the colliding

    moleculesandtomeasurethesamepropertiesintheproductsinordertounderstandtheeffectofeachof

    thesevariablesonthereactionunderstudy. Whenwestudychemistryatthesinglecollisionlevel,wefind

    that every chemical reaction bears itsown unique fingerprint, embodied in the kinetic energy, angular

    distribution, and rotational and vibrational motion of the newly formed reaction products. These

    quantitiesreflecttheforcesactingduringthereaction,particularlyinthetransitionstateregion,andtheir

    measurement often provides unparalleled insight into the basic physics underlying chemical reactivity.

    Gaininganunderstandingofchemistryatthesinglecollisionlevelistheaimofthislecturecourse.

    Thefirstfourlecturesofthiscoursewillintroducemostofthekeyconceptsinreactiondynamics,including

    adetaileddescriptionofcollisions,theconceptofreactionsoccurringoverpotentialenergysurfaces,and

    anoverviewofexperimentaltechniquesusedtoprobesinglecollisionevents. Thefinalfourlectures,which

    will be given byMark Brouard, will develop these ideas inmore detail and use them to explain the

    observeddynamicsinawiderangeofchemicalsystems.

    1. COLLISIONS

    Collisionslieattheveryheartofchemistry. Inthegasorliquidphase,atypicalmoleculeundergoesbillions

    of collisions every second. In this course, we will learn about the basic physics describing collisions,

    experimentsandcalculationsthatcanbecarriedouttostudythem,andways inwhichtheresultscanbe

    interpretedinordertolearnaboutreactionmechanisms.

    Collisionsmaybecategorisedintothreetypes:

    (i) Elasticcollisionsarecollisionsinwhichkineticenergyisconserved Thecollisionpartnershavethesame

    total translational kinetic energy after the collision as they did before the collision, and no energy is

  • 8/12/2019 Reaction Dynamics Lecture Notes 2012

    2/38

    2

    2

    transferredintointernaldegreesoffreedom(rotation,vibrationetc). Notethatthekineticenergyofeach

    individualcollisionpartnermaychange,butthetotalkineticenergyremainsconstant.

    (ii) Inelastic collisions are collisions inwhich kinetic energy is not conserved, and energy is converted

    betweendifferent formse.g.translationaltorotationalorvibrational. Reactivecollisionsareasubsetof

    inelasticcollisions,butthetermisusuallyusedtodescribecollisionsinwhichtranslationalkineticenergyis

    transformedintointernalexcitationofoneorbothofthecollisionpartners(orviceversa).

    (iii) Areactivecollisionisacollisionleadingtoachemicalreactioni.e.acollisioninwhichchemicalbonds

    aremadeorbroken,sothatthespeciesleavingthecollisionregionarechemicallydistinctfromthosethat

    entered. The collisionenergymustbehighenough toovercome any activationbarrier associatedwith

    reaction. Asnotedabove,reactivecollisionsareaspecialcaseofinelasticcollisions.

    Reactivecollisionsare theprocesses inwhichchemicalchangeoccurs,while inelasticcollisionsareoften

    themeans bywhichmolecules gain enoughenergy toovercome activationbarriers so that subsequent

    collisionsmayleadtoreaction.

    Allcollisionsmustobeycertainphysical laws,suchasconservationofenergyandboth linearandangular

    momentum. There are also a number of concepts associatedwith collisions thatwill probably be less

    familiar,andwhichwewillnowexplore.

    1.1Relativevelocity

    Ratherthanconsideringthe individualvelocities,v1andv2,ofthetwocollisionpartners, it isoftenmore

    usefulto

    consider

    their

    relative

    velocity.

    The

    relative

    velocity

    issimply

    the

    difference

    between

    the

    individual velocities, and corresponds to the apparent velocity of the second particle to an observer

    travellingalongwiththefirstparticle(orviceversa).

    vrel=v1v2 (1.1)

    Analogy:imagineyouaresittingonamovingtrainandmeasuringtheapparentvelocityofasecondtrain.

    Ifthesecondtrainistravellinginthesamedirectionasyourtrain(i.e.awayfromyourtrain),itwillappear

    tohavea lowervelocitythan itstruevelocity,while if itistravellingintheoppositedirection(i.e.towards

    yourtrain)itwillappeartohaveahighervelocity.

    The relative velocity is very important in reaction dynamics, as it determines the collision energy, and

    therefore the probability of overcoming any energy barrier to reaction. To extend the train analogy

    above, the collisionenergy ismuch lowerwhen the two trainsare travelling in the samedirection (low

    relativevelocity)thanwhentheysufferaheadoncollision(highrelativevelocity).

    1.2Collisionenergy,totalkineticenergy,andconservationoflinearmomentum

    The total kinetic energy of the colliding particles is simply equal to the sum of their individual kinetic

    energies:

    K = m1v12 + m2v2

    2 (1.2)

  • 8/12/2019 Reaction Dynamics Lecture Notes 2012

    3/38

    3

    3

    Wherem1andm2arethemassesofthetwoparticles.Alternatively,thetotalkineticenergycanbebroken

    downintoacontributionassociatedwiththevelocityofthecentreofmassofthecollisionpartners,anda

    contributionassociatedwiththeirrelativevelocity.

    K=MvCM2+vrel

    2 (1.3)

    whereM=m1+m2isthetotalmassandthereducedmassofthetwoparticles,vCMisthevelocityofthecentreofmassof the particles, and vrel is their relative velocity. The velocityof the centreofmass is

    calculatedfrom

    vCM =m1v1+m2v2

    M (1.4)

    Thetotallinearmomentumofthetwoparticlesmustbeconservedthroughoutthecollision,andisequalto

    p = m1v1+m2v2 = MvCM (1.5)

    (NotethatEquations1.4and1.5areequivalent). Sincethemomentumofthecentreofmassisconserved,

    thekineticenergyassociatedwiththemotionofthecentreofmass,K=MvCM2=p

    2/2M,mustalsobe

    conserved throughout thecollision,and is thereforenotavailable toovercomeanyenergeticbarriers to

    reaction. Only the kinetic energy contribution arising from the relative velocity of the two particles is

    availableforreaction. Thisenergyisknownasthecollisionenergy.

    Ecoll=vrel2 (1.6)

    Exercise: ProvethatEquations(1.2)and(1.3)areequivalent.

    1.3 Conservationofenergyandenergyavailabletotheproducts.

    Thetotalenergymustbeconserved inanycollision. Beforethecollision,thetotalenergy is thesumof

    contributions from the kinetic energies of the collision partners (or, equivalently, the kinetic energies

    associatedwith their relativemotion and themotion of their centre ofmass) and any internal energy

    associated with rotation, vibration, or electronic excitation of the reactants. The reaction itselfmay

    consumeenergy(anendoergicreaction,withapositiverH)orreleaseenergy(anexoergicreaction,witha

    negativerH),andthismustbetakenintoaccountwhenconsideringtheamountofenergyavailabletotheproducts.

    Eavail=Ecoll+Eint(reactants) rH0 (1.7)

    NotethatDrH0denotestheenthalpyofreactionat0Kelvin(i.e.forgroundstatereactantsreactingtoform

    ground stateproducts). Theenergyavailable to theproductsmaybedistributedbetween translational

    andinternalenergyoftheproducts.

  • 8/12/2019 Reaction Dynamics Lecture Notes 2012

    4/38

    4

    4

    1.4 Impactparameter,b,andopacityfunction,P(b)

    Theimpactparameterquantifiestheinitialperpendicularseparationofthepathsofthecollisionpartners.

    Essentially,thisisthedistancebywhichthecollidingpairwouldmisseachotheriftheydidnotinteractin

    anyway, and canbe found by extrapolating the initial straightline trajectoriesof theparticles at large

    separationstothedistanceofclosestapproach.

    Theprobabilityofreactionasafunctionofimpactparameter,P(b),iscalledtheopacityfunction. Opacity

    functionswillbecoveredinmoredetaillaterinthecourse.

    1.5 Collisioncrosssection,cYouhavecomeacrossthecollisioncrosssectionbefore,inthecontextofsimplecollisiontheory(firstand

    secondyearkinetics courses). The collisioncross section isdefinedas the cross sectionalarea that the

    centresof twoparticlesmust liewithin iftheyaretocollide. Wecanuseaverysimplemodeltogaina

    conceptualunderstandingofthecollisioncrosssection. Considerthekineticgasmodel,inwhichthereare

    no interactionsbetweenparticles,and theparticlesact likehardspheresor billiardballs. In the figure

    below, imagine thatwe have frozen themotion of all of the particles apart from the darker coloured

    particle

    positioned

    on

    the

    left

    in

    the

    side

    on

    view,

    and

    in

    the

    foreground

    in

    the

    head

    on

    view.

    We

    see

    that

    themovingparticlewillonlycollidewithotherparticleswhosecentresliewithinthecrosssectionalareac

    =d2,wheredistheparticlediameter.Wedefinethequantitycasthecollisioncrosssection.

    In themoregeneralcaseof interactingparticles,attractive interactionsmaymean that trajectorieswithimpact parameters larger than the particle diameter, i.e. b>d, can lead to collisions. In this case the

    collision cross sectionwill be somewhat larger than the hardsphere collision cross section illustrated

    above.

    1.6 Reactioncrosssection,rYouhavealsocomeacrossthereactioncrosssectionbefore inthecontextofsimplecollisiontheory. In

    thatcontext,thereactioncrosssectionisfoundbymultiplyingthecollisioncrosssectionbyastericfactor,

  • 8/12/2019 Reaction Dynamics Lecture Notes 2012

    5/38

    5

    5

    i.e. r = Pc,which accounts for the fact that geometrical requirementsmean that in general not allcollisionsleadtoreaction. Inthiscoursewewilltreatthereactioncrosssectionmorerigorously.

    Thereactioncrosssection isthemicroscopicorsinglecollisionversionofarateconstant,andrepresents

    thereactionprobabilityasaneffectivecrosssectionalareawithinwhichthetworeactantsmustcollidein

    orderforreactiontooccur. Forareactionbetweentwospeciesthatcanbemodelledashardspheres,so

    that the reactionprobability isuniform for impactparametersbetween zero and somemaximum value

    bmax,thenthereactioncrosssectionis

    r =bmax2 (1.8)

    Moregenerally,thereactioncrosssection isgivenby integratingthereactionprobabilityasafunctionof

    impactparameterandangle.

    r = 0

    2

    0

    bmax

    P(b)bdbd = 2 0

    bmax

    P(b)bdb (1.9)

    Thevolumeelement2bdbisillustratedbelow.

    1.7 Excitationfunction,r(Ecoll)Theexcitationfunctionquantifiesthedependenceofthereactioncrosssectiononcollisionenergy. Itisthe

    microscopicequivalentofthetemperaturedependenceoftherateconstant. Broadlyspeaking,thereare

    twodifferent typesofexcitation function,shownbelow,with the typeexhibitedbyaparticular reaction

    dependingonwhetherornotthereactionhasanactivationbarrier.

    1. Exoergicwithnobarrier

    Thistypeofexcitationfunctionistypicalofmanyexoergic1processes,e.g.ionmoleculereactions. Atlow

    energies there is enough time for longrange attractive interactions (van derWaals interactions, dipole

    interactionsetc). toactontheparticlesandthecrosssection is large. Ifthe longrange interactionsare

    1Whentalkingaboutsinglereactivecollisions,thetermsendoergicandexoergicareusedinplaceofendothermicand

    exothermic.

  • 8/12/2019 Reaction Dynamics Lecture Notes 2012

    6/38

    6

    6

    strong,evenparticleswith large impactparameterscanbepulledtogetherbytheattractive interactions

    andundergoacollision.Asthecollisionenergyincreases,theparticlesflypasteachotherfasterandtheir

    trajectoriesaredeviatedbyasmalleramountby theattractive interactions. Thecrosssection therefore

    reduces,untileventually there isno time foranyattractive forces toactand the socalled hardsphere

    limitisreached. Atthispointthecrosssectionisgivenby=d2,whered=rA+rBisthesumoftheparticleradii. Formanyreactionsthehardspherelimitisverysmall,andtheexcitationfunctionessentiallytends

    tozeroatveryhighenergies.

    2. Endoergicorexoergicwithabarrier.

    Whenthereactionhasabarrier,noreactionoccursuntilthereisenoughenergyavailabletosurmountthe

    barrierandthecrosssection iszero. Thecrosssectionthen increasestoamaximum intheregionwhere

    attractiveforcescanact(c.f.Arrheniusequationformacroscopicrateconstants),beforedecreasingagain

    tothehardspherelimitathighenergiesforthesamereasonsasdescribedabove. Theexcitationfunction

    istheproductofthedecreasing barrierlessexcitationfunctiondescribedaboveandanArrheniustype

    functionwhichrisesoncetheactivationbarrierissurmounted.

    Inthesecondpartofthiscourse (taughtbyProf.Brouard),youwillbe introducedtosimplemodelsthat

    reproducethekeyfeaturesofbothtypesofexcitationfunction. Themodelsfocusonexplainingtheshape

    of the lowenergypartof theexcitation functions,which is relevant to the typesofcollisionexperiment

    mostcommonlycarriedoutinthelaboratory.

    Onceweknowtheexcitationfunction,expressedasafunctionofcollisionenergyorrelativevelocity,the

    thermal rate constantmay be recovered. From simple collision theory, the rate constant for a given

    relativevelocity issimplyk(v) = vr(v). IntegratingoverthevelocitydistributionP(v)of themoleculespresentinthesampleyieldsthethermalrateconstant.

    k(T) = 0

    vr(v)P(v)dv (1.10)

    1.8Scatteringintoasolidangle,

    Anangleisoftendefinedintermsofanarcofacircle;wetalkabouttheanglesubtendedbyanarc,one

    radianistheanglesubtendedbyanarcthesamelengthastheradius,andthereare2radiansinacircle.

    Byanalogy,wecandefinethesolidanglesubtendedbyanareaonthesurfaceofasphere,asshowninthe

    diagrambelow.

    Solidangle

    ismeasured

    in

    units

    of

    steradians.

    One

    steradian

    isthe

    solid

    angle

    subtended

    by

    an

    area

    r

    2on

    thesurfaceofthesphere,andthereare4steradiansinasphere.

  • 8/12/2019 Reaction Dynamics Lecture Notes 2012

    7/38

    7

    7

    In reaction dynamics,we need the concept of solid anglewhen considering the angular distributionof

    scatteredproducts. The relativevelocityvectorof thereactants isanaxisofcylindricalsymmetry inthe

    collision,withtheconsequencethatscatteringoccurssymmetricallyaboutthisdirection. Whenwereferto

    productsbeingscatteredatagivenanglefromtherelativevelocityvector,theyareactuallyscatteredintoa

    coneratherthanasingledirectioni.e.theyarescatteredintoasolidangleratherthanatasingleangle.

    1.9 Differentialcrosssection,dd

    Formally,thedifferentialcrosssection(DCS)describestheprobabilityofscatteringintoagivensolidangled=sinddbetweenand+dinthecentreofmassframe(seelater). However,asnotedabove,scatteringissymmetricalabouttherelativevelocityvectorofthecollisionpartners,andsosincethereisno

    dependenceon,itisoftenreferredtoastheprobabilityofscatteringatagivenanglefromthereactantrelativevelocity vector. TheDCS therefore tellsus theextent towhich collisionproducts are scattered

    forwards( =0),backwards( =180),orsideways( =90)relativetotheincomingcollisionpartners. Asweshallsee,theDCScontainsagreatdealof informationonreactionmechanisms,anddifferentialcross

    sectionswillbeconsideredinsomedetaillateroninthecourse.

    1.10 Orbitalangularmomentum,L,andconservationofangularmomentum

    Inthecontextofacollision,theorbitalangularmomentum isanangularmomentumassociatedwiththe

    relativemotionof thecollisionpartnersastheyapproachandcollide. It isnot tobeconfusedwiththe

    quantummechanical orbital angularmomentum of an electron in an atomic orbital. Even for two

    particlestravellingincompletelystraightlines,thereisanassociatedorbitalangularmomentumwhentheir

    relativemotionisconsidered. Wecanillustratethisbylookingatthelineofcentresofthetwoparticlesat

    variouspointsintheirtrajectory.

    Wesee thateven though theparticlesare travelling instraight lines, the lineofcentresof theparticles

    rotates about their centre ofmass. Only head on collisions with an impact parameter b=0 have no

    associatedorbitalangularmomentum.

    Mathematically,theorbitalangularmomentumforacollidingpairofparticlesisgivenby

    L=rxp (1.11)

  • 8/12/2019 Reaction Dynamics Lecture Notes 2012

    8/38

    8

    8

    where r is the (vector) separation of the particles andp is their relative linearmomentum. We can

    thereforefindthemagnitudeofLfrom

    |L| =|rxp| = |rxvrel|= vrelrsin (1.12)

    whereistheanglebetweenrandvrel. Atlargeseparations,rsinissimplyequaltotheimpactparameter,b,giving

    |L|=vrelb (1.13)

    Because the total angularmomentum (the sumof theorbital angularmomentum L and any rotational

    angularmomentumJofthecollisionpartners)mustbeconservedthroughoutthecollision,thisistrueright

    upuntilthepointthattheparticlescollide,assumingtherotationalstatesoftheparticlesdonotchange.

    Intheproducts,thetotalangularmomentum,L+J,mustbethesameasbeforethecollision,butangular

    momentumcanbeexchangedbetweenLandJduringthecollision.

    2. POTENTIALENERGYSURFACES

    The previous section provided an introduction to some of the basic physics of atomic andmolecular

    collisions. However, itgaveusno insight intowhysomecollisionssimply leadtoelasticscattering,while

    othersleadtoenergytransferorevenchemicalreaction. Wheninelasticandreactivecollisionsarestudied

    inevenmoredetail,we findthattheyoften leadtopreferredscattering inaparticulardirection,orthat

    theypopulate specific rotational,vibrational,andelectronicquantum statesof theproducts,or that the

    outcome of the collision depends strongly on the initial kinetic energies, quantum states, or relative

    orientationsof the reactants. Toexplain allof theseobservations,weneed the conceptof apotential

    energysurface. Wewillstartbyconsideringasimpleonedimensionalpotentialenergysurface,namely

    theinteractionpotentialbetweentwoatoms.

    2.1Theinteractionpotentialanditseffectonthecollisioncrosssection

    We have discussed the effect of atomic and molecular interactions on reaction cross sections in a

    qualitativeway inSection1.7, in thecontextofexcitation functions. Therewe introduced the idea that

    attractive interactions between the colliding particles could increase the cross section abovewhatwewouldexpect fora hardspherecollision. Hereweprovideasomewhatmorequantitativetreatment in

    thecontextofcollisioncrosssections.

    Thepotentialenergyofacollidingpairofatomsdependsonasinglecoordinate,namelytheirseparation.

    The simplestmodel is thehard spherepotential, inwhich there isno interactionuntil the two spheres

    touch. Themaximum impactparameter isbmax=d=r1+r2, thesumoftheradii,and thecollisioncross

    section isc=bmax2. Thecrosssection isnotenergydependent. The interactionpotential,anexample

    collisiontrajectory,andthecrosssectionforsuchasystemareshownbelow.

  • 8/12/2019 Reaction Dynamics Lecture Notes 2012

    9/38

    9

    9

    In contrast, a realistic interatomic potential has a longrange attractive component and a shortrange

    repulsive component. Often, the LennardJones potential is used, which has a repulsive component

    proportionalto1/r12andanattractivecomponentproportionalto1/r

    6.

    V(r) =

    r0r

    12

    2r0r

    6

    (2.1)

    Hereisthedepthofthepotentialwellattheminimum,andr0istheparticleseparationattheminimum.

    Thepotentialisshownbelow,togetherwithanexamplecollisiontrajectoryandcollisioncrosssection. In

    contrast to the hard sphere potential, the impact parameter can now exceed d due to the attractive

    interactionbetweentheparticles. Thetwoparticlesareattractedtoeachotherastheyapproach,butare

    thenscatteredbeforeactuallytouchingbytherepulsivepartofthepotential.

    Landau,LifshitzandSchiffproposedanexpressiontorelatethecollisioncrosssectiontotheLennardJones

    parametersandr0andtotherelativevelocityvofthecollidingparticles.

    c(v) = 8.083

    2r06

    v

    2/5

    (2.2)

    Notethatthe1/v2/5

    dependenceyieldsafunctionsimilartothat introduced intheexcitationfunctionfor

    reactionswithoutabarrier,whichwemetinSection1.7.

    Weseealreadythatthecollisioncrosssectiondependsontheinteractionsbetweenthecollidingparticles,

    and therefore that measurement of the collision cross section can provide information about these

    interactions. Asweshalldiscoverinthefollowingsections,theseinteractionsinfactcompletelydetermine

    everyaspectofthecollisiondynamics.

    2.2Atomicandmolecularinteractions

    Morerealisticpotentialstakeintoaccountallofthevarioustypesofatomicandmolecularinteractionsthat

    can contribute to the attractive part of the interaction potential. The various contributions can all be

    writtenintheform

  • 8/12/2019 Reaction Dynamics Lecture Notes 2012

    10/38

    10

    10

    V(r) = a

    rn (2.3)

    whereaisaconstantthatdependsonquantitiessuchastheatomicormolecularcharge,dipolemoments,

    polarisabilitiesetc,andndependsonthetypeofinteraction:

    n=1 Ionioninteraction

    n=2 Iondipoleinteraction

    n=3 Dipoledipoleinteraction

    n=4 Ioninduceddipoleinteraction

    n=5 Dipoleinduceddipoleinteraction

    n=6 Induced dipoleinduced dipole interaction (also known as van der Waals, London, or

    dispersioninteraction)

    2.3Thepotentialenergysurface(PES)forapolyatomicsystem

    Foracollisionbetweentwoatoms,wehaveseenthatthepotentialenergydependsonasingleparameter,

    the internuclear separation. When twomolecules collide, there aremanymore degrees of freedom,

    associatedwiththepositionsofeachoftheindividualatoms,allofwhichmaybeimportantindetermining

    theoutcomeofacollision. Thefigurebelowshowstheway inwhichthenumberofdegreesoffreedom

    increaseswiththenumberofatomsinthesystem. Specifyingtherelativepositionoftwoatomsrequiresa

    singlecoordinate;forthreeatomswerequiretwo interatomicdistancesandanangle;forfouratomswe

    requirethree

    interatomic

    distances,

    two

    bond

    angles,

    and

    adihedral

    angle,

    and

    so

    on

    2

    .

    The result is that todescribe thepotentialenergy,wehave tomove fromapotentialenergycurve toa

    potentialenergysurface. Thepotentialenergysurfacequantifiesthepotentialenergyofthesystemasa

    functionofall (or some)of thenuclearcoordinatesof theatoms involved,or in termsofbond lengths,

    bondanglesetc. Eachpointonthesurfacecorrespondstoaparticulargeometricalconfigurationofatoms,

    andtheremaybeseveralpotentialenergysurfacescorrespondingtodifferentpossibleelectronicstatesof

    thesystem. Thisisshownschematicallybelow.

    2ThetotalnumberofcoordinatesrequiredtodescribethepositionsofNatomsis3N. However,theenergyofthe

    systemdependsonlyontherelativecoordinatesoftheatoms. Thesearenotchangedbyatranslationofthewhole

    systemor

    by

    rotation

    of

    the

    whole

    system,

    each

    of

    which

    require

    3of

    the

    3N

    degrees

    of

    freedom,

    so

    the

    total

    number

    ofcoordinatesrequiredis3N6(or3N5foralinearsystem,inwhichonlytwodegreesoffreedomareneededto

    describearotationofthewholesystem).

  • 8/12/2019 Reaction Dynamics Lecture Notes 2012

    11/38

    11

    11

    2.4. ThePESandthecollisiondynamics

    IfyoucastyourmindbacktothefirstyearPhysicalBasisofChemistrylecturecourse,youmayrecallthat

    ifthepotentialenergyofasystemisknown,theforceactingonthesystemmaybedeterminedfromthe

    first derivative or gradient of the potential. For a potential energy function that depends on a single

    coordinate,wehave

    F(r)= dV(r)

    dr (2.4)

    whileforapotentialenergyfunctionthatdependsoncoordinatesr1,r2,r3etc,wehave3

    F = V =

    V

    r1Vr2

    Vr3... (2.5)

    Thegradientofthepotentialenergysurfacethereforedeterminestheforcesactingonalloftheatoms,and

    thereby determines their subsequentmotion. The potential energy surface (together with the initial

    conditionswhereaboutsonthesurfacethesystemstarts,andhowmuchkineticenergyithas)thereforecompletelydefinesthereactiondynamics. Conceptually,wecanthinkofthedynamicsintermsofrollinga

    balloverthepotentialenergysurface,asshownschematically inthefigureabove. Astheballrollsover

    the surface, different atomic configurations are sampled, allowing us to reconstruct a movie of the

    collisiondynamics. Wecanofcoursebemuchmorerigorousthanthis,andcancalculatethetrajectoryof

    thesystemmathematically. Startingfromaparticularpointonthepotentialenergysurfacecorresponding

    to the initialpositionsof the atoms,we calculate the gradientof the surface, and therefore the forces

    actingontheatoms. WethensolveNewtonsthirdlawofmotiontodeterminethetrajectory,r(t),ofthe

    systemi.e.thewayinwhichtheatomicpositionsevolveasafunctionoftime

    F=ma

    =m

    d2r

    dt2

    (2.6)

    Weallowthesystemtofollowthistrajectoryforashortperiodoftimeuntilithasreachedanewpointon

    thesurface. Wemustthenfindthegradientagaintodetermineanuptodatesetofforces,solvetofind

    thenewtrajectory,letthesystemfollowthistrajectoryforashortperiodoftimetoreachanewposition

    on the surface,and soon. Thisprocedure isknownasaclassical trajectorycalculation,andwith some

    modificationstotakeaccountofthequantisedenergylevelsofthesystem,theapproachmaybeusedto

    3Applyingthegradientoperator,= r1 r2 r3... ,tothepotentialyieldstheforcevector,withcomponentsof

    forcealongthecoordinatesr1,r2,r3etc.

  • 8/12/2019 Reaction Dynamics Lecture Notes 2012

    12/38

    12

    12

    predictvirtuallyalloftheexperimentalobservablesassociatedwithacollision,includingtheidentityofthe

    products,theirspeedandangulardistributions,andtheirquantumstatepopulations.

    Alternatively,wecancarryoutfullyquantummechanicalcalculationstostudythedynamics. Thisapproach

    involvesconstructinganinitialwavefunctionforthesystemandpropagatingitacrossthepotentialenergy

    surfacebysolvingthetimedependentSchrodingerequation.

    2.5 ConstructionofthePES

    Inordertocalculateapointonthepotentialenergysurface,weneedtosolvetheSchrodingerequationto

    determine the energy at the atomic configuration of interest. While it is not possible to solve the

    Schrodingerequationexactly, therearenumerouselectronicstructure softwarepackages (e.g.Gaussian,

    Gamess,MolPro)whichcansolvetheequationnumericallytoahighdegreeofaccuracy. Inprinciple,to

    construct thecompletePESwewouldneed tosolve theSchrodingerequation foreverypossibleatomic

    configuration. Inpractice,wesolvetheSchrodingerequation forareasonablenumberofconfigurations

    and then fit thedatapoints toa suitable function inorder togeneratea smooth surface. Though this

    procedure is straightforward inprinciple, the constructionofan accuratepotentialenergy surface for a

    chemicalsystemisachallengingproblem,whichquicklybecomesintractableasthenumberofatomsinthe

    system, and therefore the number of degrees of freedom required, increases. Nonetheless, accurate

    surfaces are available for a considerable number of reactive chemical systems, and comparing the

    predictionsofthesesurfaceswiththeresultsofexperimentalmeasurementsprovidesastringenttestboth

    for theory andexperiment. Note that the constructionofpotentialenergy surfaces assumes theBorn

    Oppenheimerapproximation, i.e. that theelectronicandnuclearmotion canbedecoupled, so that it is

    validtocalculatetheelectronicenergyataseriesoffixednucleargeometries.

    Weshallnowlookatsomeexamplesofdifferenttypesofpotentialenergysurfacesandtheconsequences

    forthecorrespondingscatteringprocesses.

    2.6 Thepotentialenergysurfaceforalineartriatomicsystem

    Considerareactingsystemofthreeatoms,i.e.A+BCAB+C. Forsimplicity,wewillconstraintheatomstolieinastraightlinethroughoutthereaction. Thisallowstherelativepositionsofallthreeatomstobe

    defined by two distances, rAB and rBC, and the potential energy surface for the reaction is therefore afunctionof these two coordinates. Tobegin constructing thepotentialenergy surface,we consider the

    interactionbetweentheatomsintheentrancechannelofthereactioni.e.beforethereactivecollision,as

    theAatomapproaches theBCmolecule. Ifwe fix the rBCdistance, therewillbea longrangeattractive

    interactionbetweenAandBC,andashortrangerepulsiveinteraction,andthepotentialenergycurvewill

    looksomethinglikethatshowninthefigurebelow. Thefigurerepresentsacutthroughthefullpotential

    energy surface,V(rAB,rBC) for a fixed valueof rBC. The picturewouldbe similar ifwe looked at theexit

    channelof the reaction i.e. ifwe fixed theABdistanceandplotted the interactionpotentialenergyasa

    functionofrBC.

  • 8/12/2019 Reaction Dynamics Lecture Notes 2012

    13/38

    13

    13

    By considering the energy of the system at various ABC separations, we now know enough about

    molecularinteractionstobeabletopredicttheformofthecompletepotentialenergysurface. Theshort

    range repulsive interactionsmean that the energywill be highwhen either or both of the rAB and rBC

    distancesareverysmall,andtheenergywillbelowestwhenrABand/orrBCareattheirequilibriumdistance

    (correspondingtotheminimuminthecurveabove). Theenergy increasesagainaswemoveoutto large

    separationswheretherearenoattractiveinteractionsbetweentheatoms. Theresultingpotentialenergy

    surfaceisshownbelowasacontourplot(ontheleft)andasa3Dplot(ontheright). Thesurfaceresembles

    acurved halfpipe;keenskateboardersor snowboardersmightbe familiarwithanalogousgravitational

    potentialenergysurfacesofthisform.

    Theminimum energy path across the surface follows the base of the half pipe, and is known as the

    reaction coordinate. Note that the transition state appears as a hump along the reaction coordinate,

    which the reactantsmust surmount to formproducts. As shownbelow, ifweplot thepotentialenergy

    alongthereactioncoordinate,werecoverthefamiliarreactionpotentialenergyprofile.

  • 8/12/2019 Reaction Dynamics Lecture Notes 2012

    14/38

    14

    14

    2.7 Reactiveandnonreactivetrajectoriesacrossthepotentialenergysurface

    Asnotedearlier,theoutcomeofacollisiondependsbothontheshapeofthepotentialenergysurfaceand

    ontheinitialvelocitiesandinternalstatesofthereactants. Inthissectionwewillconsiderafewexample

    trajectoriesacrossasurfacesimilartothatconstructedinSection2.6above,againforanA+BC AB+C

    reaction. Thefourtrajectorieswewillconsiderareshownbelow.

    A. The reactantsare launchedonto the surfacewitha low relativevelocity. Theyhave insufficient

    kinetic energy to surmount the activation barrier, and the trajectory turns round and returns

    alongtheentrancechanneltothereactants. Suchatrajectorycorrespondstoelasticor inelastic

    scattering,dependingonwhetherornotthere isachange inrotationalorvibrationalstateofthe

    diatomicreactant.

    B. The reactants are launchedonto the surfacewith a high relative velocity. Theyhave sufficient

    energy to surmount theactivationbarrier,andat smallABdistances theyeventually rollup the

    repulsivewallofthesurface,beforerollingbackdownagainandfollowinganoscillatingtrajectory

    out intotheproductchannel. Note thatasatomCdeparts,theABdistanceperiodicallyextends

    andcontracts,correspondingtovibrationoftheABproduct.

    Fromthissimpleconsiderationoftwotrajectories,wehavethereforebeenabletopredictthatinorderfor

    reaction to occur on this potential energy surface,we need a significant amount of energy in relative

    translationalmotionofthereactants,andthatsomeofthisenergyisconvertedintovibrationalmotionof

    theproducts. Thisisafairlycommonobservation,whichyouwillreturntointhesecondhalfofthislecture

    courseundertheheadingofPolanyisrules.

    TrajectoriesCandDcorrespondtothereversereaction,AB+C A+BC

  • 8/12/2019 Reaction Dynamics Lecture Notes 2012

    15/38

    15

    15

    C. Trajectory C is another unsuccessful trajectory. The reactants have a reasonably high relative

    velocity in this case, but thepositionof the barrier in the exit channel for the reverse reaction

    meansthatthetrajectorymerelyglancesoffthebarrierandreturnsalongtheentrancechannelto

    reactants. Inthiscase,wecanseethatsomeofthetranslationalenergyoftheincomingreactants

    isconverted intovibrationoftheABmoleculefollowingthecollision;thisisthereforean inelastic

    scatteringtrajectory.

    D. Inthistrajectorythereactantsbeginwithamixtureoftranslationalandvibrationalkineticenergy,

    and the trajectory successfully surmounts the barrier to form products with no vibrational

    excitation.

    2.8 Generalfeaturesofpotentialenergysurfaces

    Thesimplepotentialenergysurfaceswehaveconsideredso farconsistof reactantandproduct valleys

    separatedbyatransitionstate. Ingeneral,potentialenergysurfacescanbemuchmorecomplicatedthan

    this, particularly for larger chemical systems. In the diagram below,we define a number of different

    topologicalfeaturesthatmaybefoundonareactionpotentialenergysurface. Thediagramistakenfroma

    chapteronGeometryOptimisationintheEncyclopediaofComputationalChemistry(JohnWileyandSons,

    Chichester,1998,p11361142). Thereareseveralfeaturestonote:

    (i) Stablespeciesappearasminimaonthe potential

    energysurface,withthedeepestwellscorresponding

    to themost stable species. Reactants and products

    tend toappearas fairlydeepminimaon thesurface,

    whileintermediateswillhaveshallowerwelldepths.

    (ii) Transition states appear as saddlepointson the

    surface. Asaddlepoint(sometimescalledafirstorder

    saddle point) is amaximum inone dimension and a

    minimum in all other dimensions, and as the name

    suggests,issimilarinshapetoahorsessaddle.

    (iii)Otherstructures,suchassecondordersaddlepoints(amaximumintwodimensionsandminimum in

    allothers)andridges,canalsoappear,butwewillnotlookattheseinanydetailinthiscourse.

    2.9 Examplesofpotentialenergysurfacesforrealchemicalsystems

    Wewill now look at some examples of potential energy surfaces for a few bimolecular reactions and

    photoinitiated events. Someof these processes involvemore than one electronic state, and therefore

    morethanonepotentialenergysurface. Aswewillsee,populationcanbetransferredbetweendifferent

    potential energy surfaces, opening up numerous possibilities for the reaction dynamics relative to

    processesoccurringonasinglesurace.

  • 8/12/2019 Reaction Dynamics Lecture Notes 2012

    16/38

    16

    16

    (i)Thesimplestchemicalreaction:H+H2 H2+H

    [FigureadaptedfromScience,331411412(2011)]

    Thesimplestchemicalreaction,constrainedtoreactinalineargeometry, has a perfectly symmetrical potential energy

    surface,withthetransitionstate in thecentreofthecurveof

    thehalfpipe. Thefigureshowsthesurfacein3Dviewandin

    contourview,withthereactioncoordinatesuperimposedonto

    bothviews.

    (ii)Photodissociation

    of

    NO2

    [FigureadaptedfromScience,334208212(2011)]

    The figure shows the ground and first electronically excited

    states for theNO2molecule,plottedasa functionof thebond

    angleandoneoftheNObond lengths (thesecondNObond is

    held fixed). We can use the surfaces to understand the

    dissociation dynamics following absorptionofaphoton. Note

    that this process does not involve any collisions, though

    photodissociation is sometimes referred toasa halfcollision.InNO2, theequilibriumgeometry for theexcitedstate ismuch

    morebentthanforthegroundstate,sofollowingexcitationthe

    moleculebends to reduce itsenergy. Theexcitedandground

    statescrossataconicalintersection,allowingthewavefunction

    tofunnelthroughtheconicalintersectionbacktohighlyexcitedvibrationallevelsofthegroundstate,from

    whichitdissociates. Thebentgeometryfromwhichdissociationoccursleadstoahighdegreeofrotational

    excitation in the diatomic fragment, since the N atom receives a strong kick when the NO bond

    dissociates.

    (iii)Photoinduced

    cis

    trans

    isomerisation

    in

    retinal

    [Figure adapted fromConical Intersections,editedbyW.Domcke,D.R.Yarkony, andH.Koppel, (World

    Scientific,Singapore,2003)]

    Rhodopsin is a protein that is intimately involved in human

    visionandconsistsofaproteinmoeity,opsin,withacovalently

    bound cofactor, 11cisretinal. Absorption of light by retinal

    leadstorapidcistransisomerisation,inducingaconformational

    changeintheopsin,whichtriggersasequenceofeventsleading

    tovisualisationof the lightby thebrain. Thepotentialenergy

    surfaces give us insight into the dynamics of the cistrans

  • 8/12/2019 Reaction Dynamics Lecture Notes 2012

    17/38

    17

    17

    isomerisation. Onabsorptionofaphoton, the11cis retinal isexcited toahigherlyingelectronicstate.

    Theexcitedstatecanloweritsenergybyundergoing torsionaboutthedoublebond,withtheequilibrium

    geometry lyingatanangleof90degrees. At thispointpopulationcan funnelbackdown to theground

    statethroughaconicalintersectionandequilibratefurthertoyieldgroundstatealltransretinal.

    (iv)H

    +CO2

    OH

    +CO

    [FigureadaptedfromAcc.Chem.Res.,431519(2010)]

    In contrast to the systems we have considered so far, the

    H+CO2reactionhasadeepwellonitspotentialenergysurface

    corresponding to the relatively stablemoleculeHOCO. This

    leads to very different collision dynamics. Unlike the direct

    dynamics we have considered so far, in which molecules

    collide, exchange atoms, and separate in essentially a single

    concertedstep,whenadeepwellispresentonthesurfacethesystemcanbecometrappedinthewellforsignificantamounts

    oftime. Asweshallseeinlaterlectures,directreactionsoften

    leadtostronglyanisotropicangulardistributions. Incontrast,

    when a longlived complex forms and survives for multiple

    rotational periods, all memory of the initial approach

    directionsofthereactantsare lost,andan isotropicangulardistributionresults. Theenergyavailableto

    thesystemalsohastimetobecomedistributedstatisticallyamongstthevariousmodesofmotionofthe

    complex,leadingtocharacteristicstatisticalpopulationdistributionsinthereactionproducts. Incontrast,

    thenewlyformed(ornascent)productsofdirectreactionsoftenhavehighlynonstatisticalquantumstate

    distributions.

    (iv) OH+SO H+SO2

    [FigureadaptedfromChem.Phys.Lett.,433(46)279286(2007)]

    As we might expect, the situation is similar for the

    H+SO2reaction, inwhichthecarbonatomhasbeenreplaced

    bysulphur. Inthis3Dviewofthepotentialenergysurface,the

    deepwell corresponding to theHOSO complex isvery clearly

    seen.

    2.10Massweightedcoordinatesandtheskewangle

    Thepicturewehaveofrollingaballorpointmassacrossapotentialenergysurfacehassofarworkedvery

    well ingivingusaconceptualunderstandingofthereactiondynamics. However,whenweexamine this

    approachinalittlemoredetailwefindthatthisissomethingofanoversimplification. Wewilldemonstrate

    theproblem(andhowtosolve it)usingthetriatomicA+BCsystemwehavealreadyconsidered insome

  • 8/12/2019 Reaction Dynamics Lecture Notes 2012

    18/38

    18

    18

    detail. For this typeof system it turnsout that theappropriatemass for the rollingball is simply the

    reducedmassofthetworeactants.

    =mAmBCmA+mBC

    (2.7)

    Ifwechooseacoordinatesystem(rAB,rBC,)todefinetherelativepositionsofA,BandC,andrestrictthe

    atoms tobecolinear (=) forsimplicity, thenwecanwrite the total (kineticpluspotential)energyasfollows.

    E =1

    2

    rAB2+2

    mAmCM r

    ABr

    BC+'rBC

    2+V(rAB,rBC, =) (2.8)

    whereandarethereducedmassesofthereactantsandproducts,Misthetotalmass,andr=dr

    dt.

    Weimmediatelyseeaproblem. Usingthe(rAB,rBC)coordinatesystem,thekineticenergyhasacrosstermin

    rABrBC,andtherearetwodifferentmassfactorsappearinginthetermsinr

    AB2andrBC

    2. Thekineticenergy

    isnotofthesimpleformK=v2,andwecannotthinkofthemotionasthatofasingleparticleofmassmovingacrossthesurface. However,wecanrescuethesituation ifwedefineanewsetofcoordinates

    calledJacobicoordinates,definedinthediagrambelow.

    r=BCdistance

    R=distancefromAtocentreofmassofBC

    =anglebetweenrandR

    Usingthesenewcoordinates,theexpressionforthetotalenergybecomes

    E =1

    2(R 2+1/2r2) +V(R,r,=0) (2.9)

    where=BC/,withBC=mBmC/mBC.Thekineticenergynowdoeshavetherequiredsimpleform

    K=(vx2+vy

    2 )=v2,andwe findthat thepictureofaparticleofmassrollingoverthepotential

    energy surface is in fact correct, so long as we plot the surface with the following mass weighted

    coordinates.

    x = R = rAB+mCmBC

    rBC

    y = 1/2r = 1/2rBC (2.10)

    SincexandyaresimplylinearcombinationsofouroriginalaxesrABandrBC,thisturnsouttobeequivalent

    toplottingthePESusingthe(rAB,rBC)axissystem,butwiththeaxesatanangleinsteadofat90degreesto

    eachother.

    The

    angle

    isknown

    as

    the

    skew

    angle,

    and

    isgiven

    by

  • 8/12/2019 Reaction Dynamics Lecture Notes 2012

    19/38

    19

    19

    cos2 =

    mAmCmABmBC

    (2.11)

    WheneitherAorCare lightatoms(i.e. lightattackingordepartingatom),cos2 issmall, iscloseto90

    degrees,andthedynamicsareessentiallyasouroriginalsimplepicturewouldpredict. However,inother

    casestheskewanglecanbequitesmall,leadingtosignificantlydifferentdynamics. Thefigurebelowshows

    a skewedaxis system togetherwitha typical trajectory. The simplepicturedevelopedaboveofkinetic

    energybeingreleasedintotranslationalorvibrationalmotionintheproductsbecomemorecomplicatedin

    suchcases.

    2.11 Orbitalangularmomentum,centrifugalbarriersandtheeffectivepotential

    In Section 1.8we defined the orbital angularmomentum of a colliding system, and noted that orbital

    angularmomentum

    isconserved

    during

    acollision.

    Consider

    again

    the

    particle

    trajectory

    shown

    in

    Section

    1.10andreproducedbelow.

    Therelativekineticenergyofthetwoparticles,vrel2,canbeexpressedasasumoftranslationalkinetic

    energydirectedalongthelineofcentresofthetwoparticlesandrotationalkineticenergyassociatedwith

    theorbitalmotiondescribedabove,i.e.

    Krel = vrel2 =

    2+

    L2

    2r2 (2.12)

    Onlythecomponentofthekineticenergyassociatedwithmotionalongthe lineofcentres isavailableto

    helpovercomeanactivationbarriertoreaction. Thekineticenergyassociatedwiththeorbitalmotion is

    notavailabletohelpsurmountanactivationbarrier,andbecauseithastheeffectofreducingtheavailable

    energy, this term is often referred to as a centrifugal barrier. The centrifugal barrier term is often

    combinedwiththepotentialenergysurfacetogiveaneffectivepotential.i.e.

  • 8/12/2019 Reaction Dynamics Lecture Notes 2012

    20/38

    20

    20

    Veff(r)=V(r)+L2

    2r2 (2.13)

    Asshowninthefigurebelow,thecentrifugalbarriercangiverisetoaneffectivebarriertoreaction,even

    whenthepotentialenergysurfaceitselfhasnobarrier.

    UsingL2=2vrel

    2b2(seesection1.8),wecanrewritetheeffectivepotentialas

    Veff(r) = V(r) +1

    2vrel

    2b2

    r2 (2.14)

    We see that the barrierwill be largest for heavy systems at large impact parameters. The centrifugal

    barrier often has the effect of reducing the maximum impact parameter that can lead to successful

    reaction,therebyreducingthereactioncrosssection.

    3. EXPERIMENTALMETHODS

    3.1 Experimentalaims

    The ultimateexperiment in reactiondynamicswoulddetermine thecross section,velocitydistribution,

    quantumstatedistribution,andanyangularmomentumpolarisationfortheproductsofacollisioninwhich

    everypropertyof the reactants (velocity,quantum state,etc)wasspecified. Inpractice,weaim for the

    mostdetailedobservationswecanmakeforcomparisonwiththeory.Measurablepropertiesinclude:

    (i) Totalreactioncrosssectionsatspecifiedcollisionenergies;

    (ii) Productvelocity(speedandangular)distributions;

    (iii) Productinternalstatedistributions;

    (iv) Productalignmentand/ororientationi.e.polarisationofangularmomentum

    (v) Dependenceofthereactionontheorientationoralignmentofthereactants.

    Inthefollowing,wewillexploresomeoftheexperimentaltechniquesthathavebeendevelopedtoachieve

    thesegoals.

  • 8/12/2019 Reaction Dynamics Lecture Notes 2012

    21/38

    21

    21

    3.2 Isolatingsinglecollisionevents:temporalandspatialisolation

    In order to obtain information about single collision events, the products must be detected before

    undergoingfurthercollisions. Secondarycollisionscanchangethevelocities,internalstates,andeventhe

    chemical identities of the collision partners, thereby destroying information on the properties of the

    nascentproductmoleculeof interest. Eventually,secondarycollisions leadtocompletethermalisationof

    thereactionproducts,asisthecaseinabulkkineticsexperiment.

    Isolatingsinglecollisioneventscanbeachievedusingeitheroftwoapproaches,knownasspatialisolation

    andtemporalisolation,respectively:

    (i) Intemporalisolation,weensurethatthemeantimebetweencollisionsislongerthanthetimerequired

    todetectthereactionproducts. Themeantimetbetweencollisions issimplythe inverseofthecollision

    frequency,z(seefirstyearPropertiesofGasesandKineticscourses)

    t =

    1

    z =

    1

    cvn (3.1)

    wherec isthecollisioncrosssection,v isthemeanrelativevelocity,andn isthenumberdensityofthegas. Anexampleofanapproachtostudyingsinglecollisionsthatreliesontemporal isolation isthe laser

    pumpprobeexperiment. Afirst,pump,laserpulseisusedtoinitiatereaction,andafterashortdelay(of

    anything from tens of femtoseconds up to a few tens of nanoseconds, depending on the type of

    experiment), a second probe laserpulse isused to characterise theproducts formed via anyoneof a

    rangeofspectroscopictechniques. Themeasurementtimeisdeterminedbythepumpprobedelay. For

    comparison, the time between collisions forN2 gas at atmospheric pressure and 298 K is around 1 ns.

    Reducingthepressurereadilyallowstemporalisolationtobeachieved.

    (ii) In spatial isolation,weensure that themean freepathof themolecules ismuch larger than thedistancetheproductsmusttravelbeforetheyaredetected. Spatialisolationisappropriateforexperiments

    in which the products are detected through interaction with a physical detector, rather than

    spectroscopicallythroughinteractionwithlight. Themeanfreepathisgivenby

    = vt =1

    cn (3.2)

    Anexampleofanexperimentemployingspatialisolationisthecrossedmolecularbeamexperiment,which

    wewillconsiderindetaillater. Crossedbeamexperimentsarecarriedoutunderhighvacuumconditions.In the classical crossed beam experiment, collisions occur at the intersection between twomolecular

    beams, and the productsmust fly from the crossing region to the inlet of amass spectrometer to be

    detected.

    3.3 Controlofinitialvelocities

    3.3.1. Molecularbeams

    Using beams of molecules provides a sample with a welldefined velocity distribution, and allowsdirectionalpropertiesofchemicalprocessestobestudied. Therearetwotypesofmolecularbeamsources,

  • 8/12/2019 Reaction Dynamics Lecture Notes 2012

    22/38

    22

    22

    known as effusive and supersonic sources, respectively. Both types of sourcework by allowing gas to

    escapefromahighpressureregionthroughasmallorificeintoavacuum. Theflowcharacteristicsofthe

    sourcearedeterminedbytheratioofthemean freepath inthesource tothediameterof theorifice,a

    quantityknownastheKnudsennumber.

    Kn = (3.3)

    Inaneffusivesourcethediameteroftheholeissmallerthanthemeanfreepathinthegas(Kn>1),andina

    supersonicsourceitislarger(Kn

  • 8/12/2019 Reaction Dynamics Lecture Notes 2012

    23/38

    23

    23

    definitionthemolecules inasupersonicmolecularbeamareextremelycold. It isfairlystandardtoreach

    temperaturesaslowas5Kbythisverysimpletechniqueofexpandingagasthroughasmallhole. Atthese

    lowtemperatures,onlyafewlowenergyrotationalstatesareoccupied.

    Themaximumorterminalvelocityofmoleculesinasupersonicbeamcanbedeterminedbyassumingthat

    alloftheinternalenergyofthemoleculesinsidethesourceisconvertedintokineticenergydirectedalong

    thebeamaxis,inanisenthalpicexpansion(i.e.H=0duringtheexpansion). Assumingidealgasbehaviour,wehave

    1

    2mu

    2 =

    Ts

    Tf

    CpdT (3.4)

    wheremu2 isthekineticenergyofthebeammoleculesandCpdT=dH isthechange inenthalpyofthe

    moleculeswithinthesourceastheyundergosupersonicexpansion. TsandTfarethetemperaturesofthe

    source andmolecular beam, respectively. Since Tf is small relative to Ts,we have Ts Tf Ts. Also,

    assumingCpisnottemperaturedependent,wecansetCp=R/(1),where=Cp/CV. Evaluating(3.4)thengives

    1

    2mu

    2 =

    R

    1 Ts (3.5)

    Rearrangingyieldsthebeamterminalvelocity.

    u =

    2RTs

    m

    (1)

    1/2

    (3.6)

    WeseefromEquation(3.6)thattheterminalvelocityofasupersonicmolecularbeamdependsonthemass

    ofthebeamgas,withlightgasesachievinghigherspeedsthanheaviergases. AbeamofHehasaterminal

    velocityofaround2400ms1,whileforHClitismuchlower,ataround500ms

    1. Higherbeamvelocitiesfor

    heaviermoleculesmaybeachievedbyseedingtheheaviermoleculeinalightcarriergassoastoachieve

    a lighter averagemass for the beammolecules; abeamof1%HCl inHe, for example,has a terminal

    velocityofaround2100ms1.

    Supersonicbeamsbydefinitiontravelfasterthanthelocalspeedofsound,whichresultsinacomplicated

    shockwavestructureconsistingprimarilyofa barrelshockwavethatsurroundsthebeamanda Mach

    disk

    that

    intersects

    the

    beam

    axis.

    Immediately

    in

    front

    of

    the

    nozzle

    orifice

    is

    a

    zone

    of

    silence,

    which

    is

    notdisturbedbyshockwaves. Byplacingaskimmer inthezoneofsilence,12cm fromthenozzle, it is

    possible to create a collimatedbeamwhich isnotdisturbedby turbulence from the shockwaves. The

    skimmer isshapedsoas topassmolecules from thecoreofthebeam,whiledeflecting thebarrelshock

    waveandpreventingtheMachdiskfromforming.

  • 8/12/2019 Reaction Dynamics Lecture Notes 2012

    24/38

    24

    24

    3.3.2 Controllingthebeamvelocity

    Intheprevioussectionwelearntthatthevelocityofamolecularbeamcouldbecontrolledbyseedingthe

    moleculeofinterestinasuitablebuffergas. Dependingontheseedratio,beamvelocitiescanbeachieved

    thatrangebetweentheterminalvelocityofthebuffergasandtheterminalvelocityoftheseedgas (see

    Equation3.6). Arangeofothertechniqueshavebeendevelopedthatallowcontrolofthebeamvelocity,

    many of which allow access to a range of beam velocities outside that determined simply by the

    thermodynamicsofthesupersonicexpansion.

    Afterseeding,thesimplestmethodforspeedinguporslowingdowna

    molecular beam is tomount the source on the end of a rotating

    assembly, as shown on the left. The labframe velocity of the

    resultingbeam is then the sumof thebeamvelocity resulting from

    the expansion and the velocity of the source. While this is a

    completely general technique, it is technically quite difficult to

    implement.

    Recently, therehasbeenagreatdealof interest inusingmolecular

    beams to create ultracold molecules in order to study quantum

    mechanicaleffectsthatoccurwhenchemicalreactionsarecarriedoutatextremelylowtemperatures. The

    molecules in a molecular beam are already very cold. The velocity distribution within a supersonic

    molecularbeamtypicallycorrespondstoatemperatureoftheorderofafewKelvin;however,theentire

    distribution ismoving at the velocity of themolecular beam. The problem therefore becomes one of

    slowingthebeamvelocitydistributiondown. Variousmethodshavebeendeveloped inwhichelectricor

    magneticfieldsareusedtoselectaslowsubsetofbeammolecules,and/ortoslowtheselectedmolecules

    downtomuchlowervelocities. Wewilllookatoneexample,theStarkdecelerator,whichusestheStark

    effecttoslowdownthebeammolecules.

    Whenamoleculewithapermanentdipole issubjectedtoanexternal field, itsenergy is loweredby the

    Starkeffectifitsdipoleisalignedparalleltothefield(alowerStarkstate),andraisedifitsdipoleisaligned

    antiparalleltothefield(anupperStarkstate). Inan inhomogeneouselectricfield, lowerStarkstatescan

    lowertheirenergybymovingtoregionsofhigherfield andforthisreasonaresometimesknownas`high

    fieldseekingstates'whileupperStarkstatescan lowertheirenergybymovingtoregionsoflowerfield,

    andarealsoknownas`lowfieldseekingstates'.

  • 8/12/2019 Reaction Dynamics Lecture Notes 2012

    25/38

    25

    25

    TheStarkdeceleratorusestimevaryingelectricfieldstodecelerateavelocityslicefromamolecularbeam

    tozerovelocity. Thedeceleratorisshownschematicallyabove. Itconsistsofalternatepairsofelectrodes,

    witheverysecondpairbiasedathighvoltageandtheremainingpairsgrounded. Whentravellingbetween

    a grounded electrode and one at high potential, amolecule in a lowfieldseeking Stark statewill be

    climbingapotentialgradientandwillbesloweddown. Ifthepotentialappliedtotherodswerestatic,once

    themoleculehadpassedthehighfieldelectrodeitwouldthenacceleratedownthepotentialgradienton

    theother sideof theelectrodeandconvert thepotentialenergy ithadgainedback intokineticenergy.

    However, ifasthemoleculenearsthehighpotentialelectrode,theelectrodepotentialsareswitched (so

    thatthoseathighpotentialarenowgrounded,andviceversa),themoleculeagainfinds itselfclimbinga

    potentialgradient,andisslowedfurther,andsoon. Tensorevenhundredsofdecelerationstagescanbe

    used,dependingon thedesired final velocity. Note thatonly a certain fractionofbeammolecules are

    decelerated,whose initialvelocity,position,andquantum stateplace them inphasewith the switching

    frequencyofthedecelerator.

    3.3.3Polarisedlaserphotolysis

    Radical species for reaction dynamics experiments are often generated through laser photolysis of a

    suitableprecursormolecule. Ifapolarised laser isused tocarryout thephotodissociation, the radical is

    often formed with a highly anisotropic velocity distribution, providing a reference direction for

    measurementsofproductvelocitydistributions.

    Thetransitiondipolevectoriffortheexcitationfromstateitostatefthatleadstodissociationisgivenbyif = f|d|i (3.7)

    whered istheelectricdipoleoperator. Radicalprecursorstendtobeeitherdiatomicor lineartriatomic

    molecules, and in these molecules the transition dipole vector will generally lie either parallel orperpendicular to thebond. Foranelectricdipole transition tooccur, the transitiondipolemust interact

    withtheelectricvector ofthelaserpulse. ThetransitionprobabilityPifisthen

    Pif = |if.|2 = if22cos2 (3.8)whereistheanglebetweenifand .Theprobabilityofamoleculeabsorbingaphotonanddissociatingisthereforestronglydependentontheanglebetweenthetransitiondipoleandtheelectricfieldvectorofthe

    light. Whenlinearlypolarisedlightisincidentonarandomlyorientedsampleofgas,immediatelyfollowing

    excitationthetransitiondipolesoftheexcitedstatemoleculeswillhaveacos2angulardistributionabout

    thelaser

    polarisation

    vector.

    Ifthe

    transition

    dipole

    lies

    parallel

    to

    the

    breaking

    bond,

    this

    will

    translate

    intoacos2distributionofthefragmentvelocitiesaboutthelaserpolarisationvector,whileifthetransition

  • 8/12/2019 Reaction Dynamics Lecture Notes 2012

    26/38

    26

    26

    dipoleliesperpendiculartothebreakingbondthenasin2distributionwillresult. Thisisillustratedbelow

    for Cl atoms formed in the polarised laser dissociation of Cl2 via a perpendicular transition. The sin2

    distribution isclearlyvisible,with signal intensitypeakingat rightangles to the laserpolarisationvector

    (markedinwhiteontheimages).

    3.5 Crosssectionmeasurements

    Total cross sections can bemeasured bymeasuring the attenuation of amolecular beam as it passes

    throughacollisionchambercontainingthescatteringgasofinterest,asshowninthefigurebelow.

    Ifthepathlengththroughthescatteringchamberislandthenumberdensityofthescatteringgasisn,we

    candeterminethemeanfreepathandthecollisioncrosssectionfromtheBeerLambertlaw.

    I = I0exp(nl) = I0exp

    l

    with =1

    n (3.9)

    The beam intensity transmitted through the collision cell in the presence (I) and absence (I0) of the

    scatteringgasaremeasured,thepath lengthl isknown,andthenumberdensityn iscalculatedfromthe

    measuredpressureandtemperatureofthecollisioncell,assumingtheidealgaslaw.

    Note that themeasuredattenuationcrosssection is the sumof thecross sections forallprocesses that

    scattertheincidentbeam. Foranatomicbeamandscatteringgas,thisissimplytheelasticscatteringcross

    sectionE,whileforanatomicormolecularbeamwithamolecularscatteringgas,thecrosssectionisthe

    sumoftheelasticandinelastic(includingreactive)crosssectionsi.e.=E+IN.

    3.6 Controlofinitialquantumstates

    Therearenumerousways inwhichthe initialquantumstatesofthereactantmoleculescanbeselected.

    Simplyexpanding themolecules inamolecularbeamusuallyyieldsmolecules intheirgroundvibrational

    stateandlowrotationalstates,whileelectronicallyorvibrationallyexcitedstatesmaybepreparedbylaser

    excitationfromthegroundstateimmediatelypriortothecollisionprocessofinterest.

  • 8/12/2019 Reaction Dynamics Lecture Notes 2012

    27/38

    27

    27

    Dipolarmolecules,suchasheteronucleardiatomicsorsymmetrictops,maybepreparedinsinglerotational

    statesbyexploitingtheirtrajectoriesthroughaninhomogeneouselectricfield. InSection3.3.2wemetthe

    Stark effect, and noted that in an inhomogenous electric field,molecules in lower Stark states (dipole

    aligned parallel to the field) are highfield seeking, while those in upper Stark states (dipole aligned

    antiparalleltothefield)arelowfieldseeking.

    Stateselectionofdiatomicsislimitedtoafewmoleculeswithverylargedipolemoments,andwewillfocus

    here on state selection of symmetric topmolecules using a hexapole field. A hexapole stateselector

    consists of sixmetal rodsmounted on an inscribed radius r0,with positive and negative high voltages

    appliedtoalternaterods,asshownbelow.

    Therotationalstateofasymmetrictopmolecule isdefinedbythreequantumnumbers:thetotalangular

    momentum,J,theprojectionK ofJontothemolecularaxis;andtheprojectionMJofJontoa labframe

    axis, in this case the external field direction. The rotationalmotion is precessional: themolecular axis

    precessesaboutthetotalangularmomentumvectorJ,which inturnprecessesaboutthe labframeaxis.

    Solving the equations ofmotion for a symmetric topmolecule through a hexapole field yields simple

    harmonicoscillatorsolutionsfortheradialcoordinate.Molecules in lowerStarkstatesfollowexponential

    trajectoriesthatdivergefromthehexapoleaxis,andarelostfromthemolecularbeam. Conversely,upper

    Stark states follow sinusoidal trajectories, r(t) sint,which focus back to the axis at a distance thatdependsontherotationalstate|JKMJandthepotentialV0appliedtothehexapolerods,asdeterminedby

    theoscillationfrequency,

    =

    6V0d

    mr03 |KMJ|

    J(J+1)

    1/2

    (3.10)

    wherem andd are themass anddipolemomentof themolecule, and r0 is the inscribed radiusof the

    hexapolerods. Thedependenceof onbothV0andtherotationalstateofthemoleculemeansthatthe

    hexapolepotentialcanbechosentofocusanydesiredrotationalstatewithKMJ0ontothebeamaxisat

    thehexapoleexit. Othernonfocusingrotationalstatesmaybeeliminatedfromthebeambyusinganirisorpinholetoallowonlythefocusedstateofinteresttoexitthehexapole.

    Aswellasbeingused forrotationalstateselection,thehexapoletechniquecanalsobeused tocreatea

    beam of spatially oriented symmetric topmolecules. The upper Stark states transmitted through the

    hexapoleareallalignedwiththeirdipolesopposingthelocalappliedelectricfield,butarenotyetuniformly

    oriented in space, since thehexapole field is inhomogeneous. Inorder to spatiallyorient thebeam it is

    allowed topassadiabatically (i.e.withoutchangingquantum state) intoa regionofweakhomogeneous

    electric fieldmaintainedbetween apairofparallelplatespositioneddirectly after thehexapole.As the

    beamleavesthehexapolethemoleculardipolesrotate inspacetolineupagainstthenewhomogeneous

    fieldandorientationisachieved. Ahomogeneousfieldofonlyaround2Vcm1

    ormoreisrequiredinordertoensurethattheupperStarkstatesremainwelldefinedandtherebytoachievesomedegreeofmolecular

  • 8/12/2019 Reaction Dynamics Lecture Notes 2012

    28/38

    28

    28

    orientation. However,considerablystrongerfieldsareoftenrequiredinordertoovercomecouplingofJto

    anynonzeronuclearspinswithinthemoleculeinordertoachieveoptimumorientation.

    Thedegreeoforientationisdeterminedbytherotationalstatesofthemoleculesinthebeam. Inthe

    strongfieldcase,wherecouplingofJtotheelectricfieldismuchstrongerthancouplingtoanynonzero

    nuclearspins,theaverageanglebetweentheelectricfieldvectorandthemoleculardipole(i.e.the

    precessionangle)foragiven|JKMJstateisgivenby

    cos =KMJ

    J(J+1) (3.11)

    Inthesecondhalfofthecourse,youwill lookanexample inwhichthehexapoleorientationmethodwas

    usedtostudystericeffectsintheRb+CH3Ireaction.

    Numerousothertechniquesareavailableforgeneratingspatiallyorientedmoleculesfordynamicsstudies.

    Ifyouwouldliketoreadmoreaboutthesemethods,adetaileddiscussioncanbefoundinarecentreview

    article4.

    3.7Measurementoffinalvelocities

    3.7.1 Crossedbeamexperimentwithrotatingmassspectrometer

    One of the most commonly used methods for measuring the product velocity (speed and angular)

    distribution isthecrossedmolecularbeamtechnique. Twomolecularbeamscontaining thereactantsof

    interestarecrossed,usuallyatrightangles,andreactionproductsscatteroutfromthecrossingregion. A

    rotatabledetector,normallyaquadrupolemassspectrometer,isthenusedtomeasuretheproductfluxas

    afunctionofangle. Ateachangle,anarrivaltimedistributionisrecordedfortheproductofinterest,which

    canbe transformed intoa speeddistribution forproducts scattered in thatdirection, since thedistance

    from thecrossing region to thedetector isknown. By recordinga speeddistributionateachangle, the

    complete velocity distribution can bemeasured. Note that this typeof detection is not product state

    selective.

    4 C. Vallance, Generation, characterisation, and applications of atomic and molecular alignment and

    orientation, Phys. Chem. Chem. Phys., 13 14427-14441 (2011).

  • 8/12/2019 Reaction Dynamics Lecture Notes 2012

    29/38

    29

    29

    Somecrossedmolecularbeam instrumentsallowthecrossingangleofthebeamstobevariedtoprovide

    controloverthecollisionenergy. Crossingthebeamsatasmalleranglereducesthecollisionenergy,while

    movingtolargercrossingangles(i.e.closertoaheadon)geometryincreasesthecollisionenergy.

    Wenoted inSection1.2thatthevelocityofthecentreofmass isconservedthroughoutacollision. We

    shouldalsonotethatdifferentexperimentalsetupswillyielddifferentvelocitiesforthecentreofmass;for

    example,asweincreasethebeamcrossingangleinacrossedmolecularbeamexperiment,thevelocityof

    thecentreofmassbecomessmaller. Inordertocomparetheresultsofdifferentexperiments(measuredin

    thesocalledlaboratoryframeorlabframeofreference),wenormallysubtractthevelocityofthecentre

    ofmass from ourmeasured velocity distribution. The result is the velocity distribution thatwewould

    observe ifweweretravellingalongwiththecentreofmass,andforthisreason it iscalledthecentreof

    mass(CM)framevelocitydistribution. ThelabtoCMframetransformation,asthesubtraction iscalled,

    will be covered in detail in Section 3.9. However, the transformation is shown in terms of aNewton

    diagrambelow.

    TheNewtondiagramontheleftaboveshowsboththelabframeandCMframevelocitiesofthereactants,

    togetherwiththevelocityofthecentreofmass,vCM. The labframevelocitiesare labelledv1andv2,and

    theCMframevelocitiesarelabelledu1andu2. NotethatintheCMframe,thereactantscollideheadon

    along the relative velocity vector. As noted in Section 1.9, the relative velocity vector is an axis of

    symmetry for the collision, and scattering is therefore symmetric about this direction. The reaction

    productswillhavesomemaximumvelocityumax,determinedfromenergyconservationrequirements(see

    Section1.3),andwillthereforescattersomewherewithinthecircleofradiusumaxcentredontheCMframe

    origin. Wesee that in the labframe,scattering isonlypossibleoverarather restricted rangeofangles.

    The rotatable detector in a crossed beam experiment therefore does not need to sample the full 360

    degreesaboutthecrossingregion.

    Thedata fromacrossedmolecularbeamexperiment isnormallyshown inthe formofaCMframeflux

    velocityangle contour map, inwhich the radial coordinate corresponds to product speed, the angular

    coordinatecorrespondstoscatteringangle,andthe intensityatagivenpointonthemapcorrespondsto

    thefluxofproductsscatteredinthecorrespondingdirection. Someexamplesoffluxvelocityanglecontour

    mapsareshownbelow,illustratingreactionswithvariousdifferentscatteringbehaviours. Theplotscanbe

    analysedtoextractdifferentialcrosssections,productspeedand internalstatedistributions,allofwhich

    provide detailed information on the reaction mechanism. The dynamics leading to these different

    scatteringbehaviourswillbeexaminedinthesecondhalfofthecourse.

  • 8/12/2019 Reaction Dynamics Lecture Notes 2012

    30/38

    30

    30

    3.7.3 Velocitymapimaging

    Thecrossedmolecularbeamexperimentsdescribedabovebuilduptheproductvelocitydistributionangle

    byangle. This isatimeconsumingand labourintensiveprocess. Morerecently, laserbasedtechniques

    havebeendevelopedwhichallowthecompleteproductscatteringdistributiontoberecordedinessentially

    a single measurement, with the added capability of product quantum state selection. Velocitymap

    imagingcanbecombinedeitherwithasinglemolecularbeam(forexample,inphotodissociationstudies),

    orwithcrossedbeamexperiments. Typicalvelocitymapimagingsetupsforbothtypesofstudyareshown

    below.

    Theessentialelementsofthesetupareasetofelectrostatic lenses,aflighttube,andapositionsensitivedetector. Thechemicalprocessunderstudywillgenerallyyieldproducts flyingoutfromthe interaction

    region (e.g. thepointwhere twomolecularbeams cross in the caseof a crossed beam experiment,or

    where a laser andmolecular beam cross in the case of a photodissociation experiment) in a Newton

    sphere inalldirections. Toperformavelocitymappingmeasurement,thereactionproductof interest is

    ionized (stateselectively ifdesired)within theelectrostatic lens systembya laserpulse. The ionization

    step usually employs a REMPI processof the type described in Section 3.8.3. As soon as the neutral

    productsareionized,theyfeeltheelectricfieldmaintainedwithintheelectrostaticlenssystem. Thefield

    playsthreesimultaneousroles. Itacceleratestheionsalongtheflighttubetothedetector,itmapsallions

    with the same velocity component in the detector plane onto the same point on the detector, and it

    compressestheNewtonsphereforagiven ionmass intoapancakeas itstrikesthedetector. Thefield

    acceleratesallionstothesamekineticenergy,andsinceK=mv2,thismeansthationsofdifferentmasses

  • 8/12/2019 Reaction Dynamics Lecture Notes 2012

    31/38

    31

    31

    flytothedetectoratdifferentvelocities,asshownbelow,andarethereforeseparatedintimewhenthey

    reach the detector. This is the principle underlying timeofflight mass spectrometry. In velocitymap

    imagingexperiments,the ionof interestcaneasilybemassselectedbytimegatingthedetector(turning

    thedetectoronbrieflyattheappropriatetime)sothatonlyionsofthedesiredmassareimaged.

    Thedetectorconsistsofapairofmicrochannelplates (MCPs)coupled toaphosphorscreen. TheMCPs

    converteachincidentionintoapulseofelectrons,andthephosphorconvertstheelectronsintoaflashof

    lightwhich can be imaged on a CCD camera placed behind the screen. The resulting image is a two

    dimensionalprojectionofthecompletethreedimensional(CMframe)velocitydistributionofthenascent

    reactionproducts. Someexampleimagesrecordedforarangeofchemicalsystemsareshownbelow.

    Inmany cases, the scatteringdistributionhasanaxisofcylindrical symmetry,and the full3D scattering

    distributioncanbe recovered from the2Dprojectionusingamathematical transformcalled the inverse

    Abel transform. In theexamplebelow, the imageon the left isa typical2D crushed image. TheAbel

  • 8/12/2019 Reaction Dynamics Lecture Notes 2012

    32/38

    32

    32

    inversion reinflatesthe imageandextractsthecentreslice (centre image). Rotatingthesliceaboutthe

    axisofcylindricalsymmetryreturnsthe3Ddistribution(rightimage).

    Atechniquecalledslice imagingreliesoncarefullytimegatingthedetector inordertoallowthecentral

    sliceofthe3Ddistributiontoberecordeddirectly,eliminatingtheneedfortheAbelinversion.

    3.7.3Dopplerprofilesandpumpprobeexperiments

    Aswe shall see inSection3.8,various typesofabsorption spectroscopymaybeused todetectproductmolecules state selectively. The spectral linewidths of the rovibronic transitions excited in such

    measurements are determined by the product velocity distribution throughDoppler broadening of the

    peaks. AmovingmoleculehasaDopplershiftgivenby

    =

    1 vzc 0 (3.12)

    where0istheabsorptionfrequencyofthemoleculeatrest,istheabsorptionfrequencyofthemoleculemovingwithavelocitycomponentvzalongthelaserpropagationdirection,andcisthespeedoflight.

    Ifthefrequencybandwidthoftheprobe laser ismuchnarrowerthanthewidthofthespectral line,then

    thespectral lineshapeconstitutesaonedimensionalprojectionof theproductvelocitydistributiononto

    the laser propagation axis. If several onedimensional projections are recorded, enough information is

    obtainedtoreconstructtheentirethreedimensionalvelocitydistribution.

    Dopplerprofilemeasurementsareusuallycarriedoutas thedetection,or probe,step ina laserpump

    probeexperiment. WefirstmetlaserpumpprobeexperimentsinSection3.2asanexampleofatechnique

    for achieving temporal isolationof collisions. A simple example, shown above, is the dissociationof a

    diatomicmoleculeviaaparalleltransition(i.e.thetransitiondipoleliesalongthebond). Whenthepump

    laserispolarisedalongthetransitiondipole/bondaxis,themoleculedissociates,andtheatomicproductsfly in theup and downdirections, as shown. On the rightof the figurewe see the two very different

    Doppler lineshapes recorded by a probe pulse travelling either parallel or perpendicular to the recoil

  • 8/12/2019 Reaction Dynamics Lecture Notes 2012

    33/38

    33

    33

    direction of the fragments. When the probe laser beam propagates along the recoil direction of the

    photofragments,thelineprofileissplitintotwopeaks,correspondingtofragmentsflyingtowardsoraway

    fromthe laserbeam. Dopplerprofilescanberecorded for individualproductquantumstates,simplyby

    tuning the probe laserwavelength to a transition involving the stateof interest. This allows complete

    productvelocitydistributionstoberecordedasafunctionofproductquantumstate.

    Thepumpprobe/Dopplerprofiletechniquecanalsobeusedtostudyphotoinitiatedbimolecularreactions.

    Thetechniquerequiresthatoneofthereactantscanbepreparedbylaserphotolysisofasuitableprecursor

    molecule (for example, oxygen atoms can be prepared by dissociation of O2, N2O, and various other

    precursors;chlorineatomscanbepreparedbyphotolysisofCl2,andsoon). Agasmixture isprepared,

    eitherinabeamorabulb,thatcontainstheprecursormolecule(AX)andthesecondreactant(B),andthe

    pumpprobesequenceisasfollows:

    AX+h A+X Pump(photoinitiation)

    A+B P Bimolecularreaction

    P+h P* Probe(LIForREMPI)

    Inthepumpstep,theprecursormolecule isdissociatedto formthereactantA. The tworeactantsthen

    reacttoformproductsP,andintheprobestepeitherLIForREMPIisusedtorecordappropriateDoppler

    profilesfortheproductquantumstatesofinterest. Thedetailsofextractingproductvelocitydistributions

    from the measured Doppler profiles are somewhat complicated, but the basic principle is easy to

    understand,andisshownintheFigurebelow. PhotolysisoftheprecursorformsreactantAexpandingina

    Newton spherewith awelldefined velocitydistribution (shownon the leftbelow). Following reaction,

    forwardscatteredproductslieonalargerNewtonspherethanthatforthereactantA(belowcentre),while

    backwardscatteredproductslieonasmallersphere(belowright). ThiswillleadtoverydifferentDoppler

    profiles for the two cases. Assuming theNewton sphere ofA has beenwell characterised in separate

    experiments, thedatacanbeanalysed toextract thevelocitydistribution (and therefore the speedand

    angulardistribution/differentialcrosssection)ofthereactionproducts.

    3.8Measurementoffinalquantumstates

    3.8.1 Infraredchemiluminescence

    Chemical reactants often produce products with significant amounts of internal excitation.

    Chemiluminescenceemploysaspectroscopicanalysisof lightemittedbytheseexcitedstatestomeasure

    therelativepopulationsofthestates.

  • 8/12/2019 Reaction Dynamics Lecture Notes 2012

    34/38

    34

    34

    A chemiluminescence experiment is typically carried out in a fast flow system under steady state

    conditions,usinganexperimentalsetupsimilartothatshown inthediagrambelow. Toavoidcollisional

    relaxationofthenewlyformedreactionproducts,thecollisionchamberismaintainedatalowbackground

    pressureof105mbaror less. Awatercooledor liquidnitrogencooledjacket stopsanyparticles thatstrike thewall, furtherhelping topreventsecondarycollisions. Duringanexperiment,twouncollimated

    jets (or better, supersonic beams) of reactants intersect, and are pumped away as fast as possible.

    Radiationemitted fromthereactionzone iscollectedand focussed intoan infraredspectrometer. From

    intensitymeasurementsof theemission linescorresponding toassigned transitionsbetweenknown (v,J)

    states, relativepopulationsof the statescanbe inferred. The techniqueemploys temporal isolation to

    observethenascentreactionproducts,workingontheprinciplethatthetimebetweencollisionsisgreater

    thantheradiativelifetimeforinfraredemission. Asanexample,inastudyofthereactionCl+HIHCl+I,

    thetimebetweencollisionsinthecrossingregion(p101to102mbar)wasaround106s,comparedwith

    aninfraredemissionlifetimeforHClofof109s.

    Notethatsincethetechnique isatypeofemissionspectroscopy, itdoesnotgiveany informationabout

    populationofthegroundstate. Chemiluminescencedatacanbeusedtodeterminetherelativeratesof

    reactiontoproducedifferentproductquantumstates,butsinceabsoluteproductyieldsarenotrecorded,

    itcannotgiveabsoluterates.

    3.8.2Laserinducedfluorescence(LIF)

    In

    the

    previous

    section,

    we

    saw

    how

    emission

    spectroscopy

    could

    be

    used

    to

    determine

    the

    internal

    state

    distributions of newly formed reaction products. An alternative approach is to use absorption

    spectroscopy,whichhas the added advantageofbeing sensitive to thepopulationof the ground state.

    However,sinceatypicalpumpprobeexperimentmayproduceonlyafewhundredproductmoleculesper

    lasercycle,andthesewillbepresentamongstmuchhigherconcentrationsofotherspecies,suchasunused

    reactants and background gases, a typical BeerLambert type absorptionmeasurement is completely

    inadequate. We requirea technique that isbothextremelysensitiveandhighlyspecific to thechemical

    speciesof interest. Laserinduced fluorescence (LIF) isone technique thatmatches these requirements.

    Thetechniquerequiresthatthemoleculeunderstudyhasafluorescentexcitedstatethatisaccessiblefrom

    theelectronicgroundstate,andthatthespectroscopyoftheelectronictransitioniswellunderstood.The

    techniqueisillustratedschematicallybelowontheleft.

  • 8/12/2019 Reaction Dynamics Lecture Notes 2012

    35/38

    35

    35

    Nascentproductsareexcitedtotheupperstate,andthephotonsemittedastheexcitedstaterelaxesare

    detected,with themeasured signalbeingproportional to theoriginalpopulationof the lowerstate. By

    scanningtheexcitation laseroverthevariousaccessiblerovibronictransitions fromthegroundstate,the

    rovibrational state populations of the nascent productsmay be determined. In order to compare the

    signalsfromtwostates,theLIFsignalsmustbecorrectedtotakeaccountofthedifferingabsorptioncross

    sectionsofthelowerstateandemissioncrosssectionsoftheupperstate(s)involvedinthetransitions. LIF

    iswidelyused fordetectionof smallmolecules suchasOHandNOproduced inapumpprobe reaction

    scheme. OntherightinthefigureaboveisshownaLIFspectrumforOHmoleculesformedintheinsertion

    reactionO(1D)+H2OH+H.

    3.8.3Resonanceenhancedmultiphotonionization(REMPI)

    Asecondtechniquethatsatisfiesthesensitivityandselectivityrequirementsoutlinedaboveisresonance

    enhancedmultiphotonionization(REMPI). Selective ionizationoftheproductmoleculeof interestmakes

    detectionrelatively

    straightforward.

    Ions

    can

    be

    steered

    towards

    adetector

    by

    means

    of

    an

    appropriately

    electricfield,andparticlemultiplierdetectorscapableofdetectingsingle ionshavebeenwidelyavailable

    for several decades. Single photon ionization of most molecules is unfeasible, since their ionization

    energies correspond to photons in the soft Xray region, which are not easy to generate in most

    laboratories. Instead, ionization isusuallybroughtabout throughessentially simultaneousabsorptionof

    twoormorephotons,asshowninthefigurebelow.

    Thefirstphotonaccessesavirtualstate. SuchastateisnotasolutionofthemolecularHamiltonian,buta

    veryshort livedstateofthe molecule+photonsystem. As longasasecondphotonarrivessufficiently

    quickly,requiringhigh light intensitiessuchasthosefound ina laserpulse,thevirtualstatecanabsorba

    photon to reacha realorvirtual stateofhigherenergy. Nonresonantmultiphoton ionization, inwhich

    noneof

    the

    intermediate

    levels

    accessed

    by

    successive

    photon

    absorptions

    correspond

    to

    real

    levels

    of

    the

    molecule, is not a particularly efficient process. However,when one of the intermediate states does

  • 8/12/2019 Reaction Dynamics Lecture Notes 2012

    36/38

    36

    36

    correspondtoanactualstateofthemolecule,the ionizationefficiency is increasedenormously,oftenby

    orders of magnitude, and we have resonanceenhanced multiphoton ionization. REMPI schemes are

    usuallylabelledintermsofthenumberofphotonsrequiredtoreachtheresonantstateandthenumberof

    photonsrequiredtoionizefromtheresonantstate. So,forexample,ina(2+1)REMPIprocess,twophotons

    areabsorbed to take themolecule from theground state to the intermediate state,anda thirdphoton

    ionizesthemoleculefromthisstate.

    EfficientREMPIschemesareavailableforawiderangeofmolecules,andforthisreasonthetechnique is

    morewidelyusedthanLIFdetection. Thephotonenergyusedfortheinitialtransitiontotheresonantstate

    can be tuned to ionize a specific quantum state of themolecule of interest, and scanning the laser

    wavelength to record a REMPI absorption spectrum allows product quantum state distributions to be

    determined.

    TheresonantstateemployedinaREMPIschemeisoftenaRydbergstate(i.e.averyhighlyingstate)ofthe

    molecule. Such states have low ionization potentials, and can befield ionised simply by exposing the

    moleculetoasufficientlystrongelectric field. InanalternativedetectiontechniquetoREMPI,knownas

    Rydbergtagging,alaserisusedtoexcitemoleculestoaRydbergstatewithoutionisingthem. Theneutral

    Rydbergtaggedmoleculesarethenallowedtoflytothedetector,wheretheyare ionizedbyanelectric

    fieldimmediatelypriortodetection.Rydbergtaggingisaveryusefuldetectiontechniqueforexperiments

    inwhich creating ionsorusingelectric fields toextract ions in the interaction regionwoulddisturb the

    collisionalprocessunderstudy. However,itisalsousedinothersituations. Someexampleswillbegivenin

    thesecondhalfofthislecturecourse.

    Both LIF and REMPI can be combinedwithDoppler resolvedmeasurements (Section 3.7.3) in order to

    obtain informationontheproductvelocities. REMPI isalsocommonlycombinedwithtimeofflightmass

    spectrometryorvelocitymap imaging toobtainvelocity information. A timeofflightprofileprovidesa

    onedimensional projection of the velocity distribution, while velocitymap imaging yeilds a two

    dimensionalprojection.

    3.9 Comparisonofresults:thelabtocentreofmassframetransformation

    Asnoted inSection3.7,theproductscatteringdistributionsrecorded ina reactiondynamicsexperiment

    arerecorded insome fairlyarbitrary laboratory (lab)frameofreference,determinedbythegeometryof

    theexperiment. Tocomparetheresultsofdifferentexperiments (andalso tocompareexperimentwith

    theory)weneed to transform the results into a common frameof reference called the centre ofmass

    frame. IntheCM frame,theobserver istravellingalongwiththecentreofmassofthesystem,so the

    totalmomentum in this frame is zero, and the reactants appear to undergo a headon collision at the

    positionoftheircentreofmass,asillustratedbelow.

  • 8/12/2019 Reaction Dynamics Lecture Notes 2012

    37/38

    37

    37

    The CM frame is independent of experimental geometry, allowing results from different types of

    experiments tobe compared,andalsoprovidesamuchmore intuitivepictureof thecollisiondynamics

    thanany lab frame. Asanexample, forwardand backwardscattering isalwaysdefinedrelativetothe

    CMframe,whereasinthelabframethesetermscanbeambiguoustosaytheleast.

    Analogy: Insomesense,choosing to transformalldatafrom reactiondynamicsexperiments into theCMframe isalittleliketransformingalldatafromNMRspectroscopyexperimentsintounitsofchemicalshift.

    Thetransformationallowsdatafromdifferentdynamicsexperiments(c.f.differentspectrometers inNMR)

    tobecompareddirectly.

    3.9.1. CalculationsinvolvingtheCMandlabframes

    WewillnowworkthroughalabtoCMframetransformationforanelasticcollision. Itisstraightforwardto

    extendthefollowingtoinelasticorreactivecollisions;allyouhavetodoisaddorsubtracttheappropriate

    energychange (rH in thecaseofareaction) from theenergyof thecollisionproducts. Whileworkingthroughthefollowinganalysis,notethatvelocityisavectorquantity.

    Usually,we know the velocitiesof the twoparticlesbefore the collision, v1 and v2. These areour lab

    framevelocities. ThekineticenergiesofthetwoparticlesareK1=m1v12andK2=m2v2

    2,andthetotal

    kineticenergyis

    K = K1+K2 = m1v12+m2v2

    2 (labframe) (3.13)

    At some point we will need to determine the velocities in the CM frame call them u1 and u2 to

    differentiate them fromthe lab framevelocities. This isasimplecalculation todo. Remember that thecentreofmassframeisjusttheframeinwhichwearetravellingalongwiththecentreofmass. Thismeans

    thatallwehavetodotogofromlabframetoCMframevelocitiesissubtractthevelocityvCMofthecentre

    ofmass.

    u1=v1vCM

    u2=v2vCM (3.14)

    We candeterminevCMbynoting that the totalmomentumof the systemmaybewritteneither as the

    momentumofthecentreofmass,MvCM,withMthetotalmassofthetwoparticles,orasthesumofthe

    momentaofthetwoindividualparticles.

    MvCM=m1v1+m2v2 vCM =m1v1+m2v2

    M (3.15)

    Thefactthatthetotalmomentum iszero intheCMframegivesusanotherapproachtofindingtheCM

    framevelocities. Sincevrel=v1v2 = u1u2,andm1u1=m2u2,weobtain

    u1 =m2M

    vrel and u2 =m1M

    vrel (3.16)

    Inadditiontodefiningthemomentumassociatedwiththemotionofthecentreofmass,wecanalsodefinethekineticenergyassociatedwiththismotion.

  • 8/12/2019 Reaction Dynamics Lecture Notes 2012

    38/38

    38

    KCM=MvCM2 (3.17)

    Notethatbecausethetotalmomentumofthesystemhastobeconserved,thevelocity,momentum,and

    kineticenergyof the centreofmassareconserved throughout the collision (this is true forany typeof

    collision, including inelastic and reactiveones). As noted earlier, energy tied up in themotionof the

    centreofmassisthereforenotavailableforthecollision. Forareactivecollision,thisenergydoesnothelp

    overcomeanyactivationbarrierthatmightbepresent.

    Having defined the total kinetic energy and the kinetic energy associatedwith the centreofmass, the

    remainingkineticenergyisofcoursetheenergyassociatedwithrelativemotionofthetwoparticles. This

    energy is available for the collision, and from Section 1.2we recognise it as the collision energy, also

    sometimesreferredtoastheCMframekineticenergy.

    Krel=vrel2 (3.18)

    Wehavenowdeterminedalloftherelevantparametersinvolvingthereactants. Theproductvelocitesmay

    bedeterminedbyrequiringthatmomentumandkineticenergy(ortotalenergy inthecaseofaninelastic

    or reactive collision) are conserved during the collision. Usually it ismost straightforward to do this

    calculation in theCM frame, though it shouldworkjust aswell in the lab frame, albeitwith somewhat

    trickieralgebra.

    m1u1+m2u2 = m1u1+m2u2 (momentumconservation)

    m1u12+m2u2

    2= m1u1

    2+m2u2

    2 (energyconservation) (3.19)

    Thesetwoequationssimplyconstitutetwoequationsinthetwounknownsu1andu2(thefinalCMframe

    velocities). For an inelasticor reactive collision, the secondequationwould include an additional termcontaining the change in internal energy for an inelastic collision, or reaction enthalpy for a reactive

    collision. RecallthatintheCMframethetotalmomentumiszerobothbeforeandafterthecollision. This

    simplifiesthesituationconsiderably,sincethefirstequationbecomessimply

    m1u1+m2u2=0 (3.20)

    OncewehavesolvedtheequationstodeterminetheCMframevelocitiesafterthecollision,wecanfind

    theequivalentlabframevelocitiesforcomparisonwithexperimentsimplybyaddingonthevelocityofthe

    CM(which,remember,staysconstantthroughoutthecollision).

    v1=u1+vCM

    v2=u2+vCM (3.21)

    SUMMARY

    Atthispoint,youshouldbewellequippedwithmanyofthebasicconceptsofmolecularreactiondynamics.

    In the next four lectures these ideaswill be developed inmore detail and youwill be introduced to a

    numberofexamplestoillustratethedynamicsofabroadrangeofdifferentchemicalsystems.