39
Reach Control Problem on Simplices Mireille E. Broucke Systems Control Group Department of Electrical and Computer Engineering University of Toronto May 7, 2012

ReachControlProblemonSimplicesbroucke/Webpapers/toronto12_talk.pdf · – Marcus Ganness, MASc – Dr. Zhiyun Lin, Postdoc – Bartek Roszak, MASc • Current Students – Mohamed

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: ReachControlProblemonSimplicesbroucke/Webpapers/toronto12_talk.pdf · – Marcus Ganness, MASc – Dr. Zhiyun Lin, Postdoc – Bartek Roszak, MASc • Current Students – Mohamed

Reach Control Problem on Simplices

Mireille E. Broucke

Systems Control Group

Department of Electrical and Computer Engineering

University of Toronto

May 7, 2012

Page 2: ReachControlProblemonSimplicesbroucke/Webpapers/toronto12_talk.pdf · – Marcus Ganness, MASc – Dr. Zhiyun Lin, Postdoc – Bartek Roszak, MASc • Current Students – Mohamed

Acknowledgements

• Past Students

– Graeme Ashford, MASc

– Marcus Ganness, MASc

– Dr. Zhiyun Lin, Postdoc

– Bartek Roszak, MASc

• Current Students

– Mohamed Helwa, PhD

– Dr. Elham Semsar-Kazerooni, Postdoc

– Krishnaa Mehta, MASc

• [HvS04] L.C.G.J.M. Habets and J.H. van Schuppen. A control

problem for affine dynamical systems on a full-dimensional

polytope. Automatica 40, 2004.

0

Page 3: ReachControlProblemonSimplicesbroucke/Webpapers/toronto12_talk.pdf · – Marcus Ganness, MASc – Dr. Zhiyun Lin, Postdoc – Bartek Roszak, MASc • Current Students – Mohamed

Motivating Example

Motivating Example 1

Page 4: ReachControlProblemonSimplicesbroucke/Webpapers/toronto12_talk.pdf · – Marcus Ganness, MASc – Dr. Zhiyun Lin, Postdoc – Bartek Roszak, MASc • Current Students – Mohamed

Cart and Conveyor Belts

Control Specifications:

1. Safety: |x| ≤ 3, |x| ≤ 3, |x+ x| ≤ 3.

2. Liveness: |x|+ |x| ≥ 1.

3. Temporal behavior: Every box arriving on conveyor 1 is picked up

and deposited on conveyor 2.

Motivating Example 2

Page 5: ReachControlProblemonSimplicesbroucke/Webpapers/toronto12_talk.pdf · – Marcus Ganness, MASc – Dr. Zhiyun Lin, Postdoc – Bartek Roszak, MASc • Current Students – Mohamed

State Space View

• The state space is a polytope with a hole, not Rn.

• The safety specification determines the outer boundary.

• The liveness specification creates the hole.

• The arrows capture the temporal behavior.

Motivating Example 3

Page 6: ReachControlProblemonSimplicesbroucke/Webpapers/toronto12_talk.pdf · – Marcus Ganness, MASc – Dr. Zhiyun Lin, Postdoc – Bartek Roszak, MASc • Current Students – Mohamed

Naive Approach

• Equilibrium stabilization gives no guarantee of safety or liveness.

• Safety, if achieved, is not robust.

• Difficult to design for trade-off between safety and liveness.

• Operationally inefficient - system must be run unnaturally slowly.

Motivating Example 4

Page 7: ReachControlProblemonSimplicesbroucke/Webpapers/toronto12_talk.pdf · – Marcus Ganness, MASc – Dr. Zhiyun Lin, Postdoc – Bartek Roszak, MASc • Current Students – Mohamed

Preferred Approach

• Safety is built in up front and is provably robust.

• Liveness can be traded off with safety by adjusting the size of the hole.

• Triangulation is used in algebraic topology, physics, numerical solution of

PDE’s, computer graphics, etc. Why not in control theory?

Motivating Example 5

Page 8: ReachControlProblemonSimplicesbroucke/Webpapers/toronto12_talk.pdf · – Marcus Ganness, MASc – Dr. Zhiyun Lin, Postdoc – Bartek Roszak, MASc • Current Students – Mohamed

Reach Control Problem

Reach Control Problem 6

Page 9: ReachControlProblemonSimplicesbroucke/Webpapers/toronto12_talk.pdf · – Marcus Ganness, MASc – Dr. Zhiyun Lin, Postdoc – Bartek Roszak, MASc • Current Students – Mohamed

What is Given

1. An affine system

x = Ax+Bu+ a , x ∈ Rn, u ∈ R

m . (1)

2. An n-dimensional simplex S = conv{v0, . . . , vn}.

3. A set of restricted facets {F1, . . . ,Fn}.

4. One exit facet F0.

Reach Control Problem 7

Page 10: ReachControlProblemonSimplicesbroucke/Webpapers/toronto12_talk.pdf · – Marcus Ganness, MASc – Dr. Zhiyun Lin, Postdoc – Bartek Roszak, MASc • Current Students – Mohamed

The Setup

v0

v1 v2C(v1) C(v2)

h1h2

B = ImB

F0

S

O = {x | Ax+ a ∈ B}

cone(S)

Notation: C(vi) :={y ∈ R

n | hj · y ≤ 0 , j 6= i}

Reach Control Problem 8

Page 11: ReachControlProblemonSimplicesbroucke/Webpapers/toronto12_talk.pdf · – Marcus Ganness, MASc – Dr. Zhiyun Lin, Postdoc – Bartek Roszak, MASc • Current Students – Mohamed

Problem Statement

Problem. (RCP) Given simplex S and system (1), find u(x) such

that: for each x0 ∈ S there exist T ≥ 0 and γ > 0 such that

• x(t) ∈ S for all t ∈ [0, T ],

• x(T ) ∈ F0, and

• x(t) /∈ S for all t ∈ (T, T + γ).

Notation: SS

−→ F0 by feedback of class U.

Reach Control Problem 9

Page 12: ReachControlProblemonSimplicesbroucke/Webpapers/toronto12_talk.pdf · – Marcus Ganness, MASc – Dr. Zhiyun Lin, Postdoc – Bartek Roszak, MASc • Current Students – Mohamed

Basic Principles

Basic Principles 10

Page 13: ReachControlProblemonSimplicesbroucke/Webpapers/toronto12_talk.pdf · – Marcus Ganness, MASc – Dr. Zhiyun Lin, Postdoc – Bartek Roszak, MASc • Current Students – Mohamed

Convexity and Affine Systems

Consider an affine system x = Ax+ a. If for all vertices v in Fi,

hi · (Av + a) ≤ 0,

then

• hi · (Ax+ a) ≤ 0, ∀x ∈ Fi.

• Trajectories that leave S do so through a facet Fj , j 6= i.

vj

vk

Fi

hi

Basic Principles 11

Page 14: ReachControlProblemonSimplicesbroucke/Webpapers/toronto12_talk.pdf · – Marcus Ganness, MASc – Dr. Zhiyun Lin, Postdoc – Bartek Roszak, MASc • Current Students – Mohamed

Affine Feedback

v1

v2v0

u1 = Kv1 + g

u2 = Kv2 + g

u0 = Kv0 + g

x = Ax+Bu+ au = Kx+ g

vT0 1...

vTn 1

︸ ︷︷ ︸

invertible

KT

gT

=

uT0

...

uTn

,

x = Ax+ B(Kx+ g) + a

= Ax+ a.

[HvS04] L.C.G.J.M. Habets and J.H. van Schuppen. Automatica 2004.

Basic Principles 12

Page 15: ReachControlProblemonSimplicesbroucke/Webpapers/toronto12_talk.pdf · – Marcus Ganness, MASc – Dr. Zhiyun Lin, Postdoc – Bartek Roszak, MASc • Current Students – Mohamed

Escaping Compact, Convex Sets

Theorem. Consider an affine system x = Ax+ a on S. If

Ax+ a 6= 0 , ∀x ∈ S ,

then trajectories starting in S leave S in finite time.

Basic Principles 13

Page 16: ReachControlProblemonSimplicesbroucke/Webpapers/toronto12_talk.pdf · – Marcus Ganness, MASc – Dr. Zhiyun Lin, Postdoc – Bartek Roszak, MASc • Current Students – Mohamed

Affine Feedback

Affine Feedback 14

Page 17: ReachControlProblemonSimplicesbroucke/Webpapers/toronto12_talk.pdf · – Marcus Ganness, MASc – Dr. Zhiyun Lin, Postdoc – Bartek Roszak, MASc • Current Students – Mohamed

A First Result

Theorem. SS

−→ F0 by affine feedback iff there exists

u(x) = Kx+ g such that

(a) The invariance conditions hold:

Avi + a+Bu(vi) ∈ C(vi), i ∈ {0, . . . , n}.

(b) The closed-loop system has no equilibrium in S.

[HvS06] L.C.G.J.M. Habets and J.H. van Schuppen. IEEE TAC 2006.

[RosBro06] B. Roszak and M.E. Broucke. Automatica 2006.

Affine Feedback 15

Page 18: ReachControlProblemonSimplicesbroucke/Webpapers/toronto12_talk.pdf · – Marcus Ganness, MASc – Dr. Zhiyun Lin, Postdoc – Bartek Roszak, MASc • Current Students – Mohamed

Numerical Example

x =

0 1

0 0

x+

0

1

u+

4

1

S determined by: v0 = (−1,−3), v1 = (4,−1), and v2 = (3,−6).

Invariance conditions give:

• hT1 (Av0 +Bu0 + a) ≤ 0 ⇒ u0 ≥ −1.75

• hT2 (Av0 +Bu0 + a) ≤ 0 ⇒ u0 ≤ −0.6

• hT2 (Av1 +Bu1 + a) ≤ 0 ⇒ u1 ≤ 0.2

• hT1 (Av2 +Bu2 + a) ≤ 0 ⇒ u2 ≥ 0.5.

Affine Feedback 16

Page 19: ReachControlProblemonSimplicesbroucke/Webpapers/toronto12_talk.pdf · – Marcus Ganness, MASc – Dr. Zhiyun Lin, Postdoc – Bartek Roszak, MASc • Current Students – Mohamed

Numerical Example

Choose u0 = −1.175, u1 = 0.2, u2 = 0.5.

h1

h2

v0 = (−1,−3)

v1 = (4,−1)

v2 = (3,−6)

F0

equilibrium

Affine Feedback 17

Page 20: ReachControlProblemonSimplicesbroucke/Webpapers/toronto12_talk.pdf · – Marcus Ganness, MASc – Dr. Zhiyun Lin, Postdoc – Bartek Roszak, MASc • Current Students – Mohamed

Numerical Example

The affine feedback is: u = [0.325 − 0.125]x− 1.225

h1

h2

v0 = (−1,−3)

v1 = (4,−1)

v2 = (3,−6)

F0

equilibrium

Affine Feedback 18

Page 21: ReachControlProblemonSimplicesbroucke/Webpapers/toronto12_talk.pdf · – Marcus Ganness, MASc – Dr. Zhiyun Lin, Postdoc – Bartek Roszak, MASc • Current Students – Mohamed

Equilibrium Set and Triangulations

Let B = ImB. The equilibrium set is

O = {x | Ax+ a ∈ B} .

Define

G := S ∩ O .

Assumption. If G 6= ∅, then G is a κ-dimensional face of S, where

0 ≤ κ < n. Reorder indices so that

G = conv{v1, . . . , vκ+1} .

Note: v0 6∈ G, otherwise there’s a trivial solution to RCP.

Can be achieved using the placing triangulation.

Affine Feedback 19

Page 22: ReachControlProblemonSimplicesbroucke/Webpapers/toronto12_talk.pdf · – Marcus Ganness, MASc – Dr. Zhiyun Lin, Postdoc – Bartek Roszak, MASc • Current Students – Mohamed

A Second Result

Theorem. Suppose the triangulation assumption holds. TFAE:

(a) SS

−→ F0 by affine feedback.

(b) SS

−→ F0 by continuous state feedback.

Proof. Fixed point argument using Sperner’s lemma, M -matrices.

[B10] M.E. Broucke. SIAM J. Control and Opt. 2010.

Affine Feedback 20

Page 23: ReachControlProblemonSimplicesbroucke/Webpapers/toronto12_talk.pdf · – Marcus Ganness, MASc – Dr. Zhiyun Lin, Postdoc – Bartek Roszak, MASc • Current Students – Mohamed

Limits of Continuous State Feedback

S

v0

v1

v2

y0

b1

b2

F0

F1

F2

Let u(x) be a continuous state feedback satisyfing the invariance conditions. If B = sp{b}

and G = v1v2, then

y(x) := c(x)b , x ∈ v1v2 c : Rn

→ R continuous ,

where c(v1) ≥ 0 and c(v2) ≤ 0. By Intermediate Value Theorem there exists x s.t. c(x) = 0.

Affine Feedback 21

Page 24: ReachControlProblemonSimplicesbroucke/Webpapers/toronto12_talk.pdf · – Marcus Ganness, MASc – Dr. Zhiyun Lin, Postdoc – Bartek Roszak, MASc • Current Students – Mohamed

Conditions for a Topological Obstruction

1. B ∩ cone(S) = 0 nontriviality condition

2. 6 ∃ lin. indep. set {b1, . . . , bκ+1 | bi ∈ B ∩ C(vi)} system is “underactuated”

v0

v1

v2

v3

b1b2

h3

O

B

G

cone(S)

Affine Feedback 22

Page 25: ReachControlProblemonSimplicesbroucke/Webpapers/toronto12_talk.pdf · – Marcus Ganness, MASc – Dr. Zhiyun Lin, Postdoc – Bartek Roszak, MASc • Current Students – Mohamed

Reach Control Indices

Reach Control Indices 23

Page 26: ReachControlProblemonSimplicesbroucke/Webpapers/toronto12_talk.pdf · – Marcus Ganness, MASc – Dr. Zhiyun Lin, Postdoc – Bartek Roszak, MASc • Current Students – Mohamed

M -Matrices

Let 1 ≤ p ≤ q ≤ κ+ 1 and bi ∈ B ∩ C(vi). Define

Mp,q :=

(hp · bp) (hp · bp+1) · · · (hp · bq)...

......

(hq · bp) (hq · bp+1) · · · (hq · bq)

∈ R

(q−p+1)×(q−p+1) .

• A matrix is a Z -matrix if the off-diagonal elements are

non-positive.

• Because bi ∈ B ∩ C(vi), each Mp,q is a Z -matrix.

• A Z -matrix is a non-singular M -matrix if every real eigenvalue

is positive.

• Because B ∩ cone(S) = 0, certain Mp,q are non-singular

M -matrices.

Reach Control Indices 24

Page 27: ReachControlProblemonSimplicesbroucke/Webpapers/toronto12_talk.pdf · – Marcus Ganness, MASc – Dr. Zhiyun Lin, Postdoc – Bartek Roszak, MASc • Current Students – Mohamed

Reach Control Indices

Theorem. There exist integers r1, . . . , rp ≥ 2 such that w.l.o.g.

B ∩ C(vi) ⊂ sp{bm1 , . . . , bm1+r1−1} , i = m1, . . . ,m1 + r1 − 1 ,

.

.

.

.

.

.

B ∩ C(vi) ⊂ sp{bmp , . . . , bmp+rp−1} , i = mp, . . . ,mp + rp − 1 ,

where bi ∈ B ∩ C(vi) and

mk := r1 + · · ·+ rk−1 + 1 , k = 1, . . . , p. Moreover, for each

k = 1, . . . , p, {bmk, . . . , bmk+rk−2} are linearly independent and

bmk+rk−1 = cmkbmk

+ · · ·+ cmk+rk−2bmk+rk−2 , ci < 0 .

{r1, . . . , rp} are called the reach control indices of system (1).

[BG12] M.E. Broucke and M. Ganness. IEEE TAC, in revision 2012.

Reach Control Indices 25

Page 28: ReachControlProblemonSimplicesbroucke/Webpapers/toronto12_talk.pdf · – Marcus Ganness, MASc – Dr. Zhiyun Lin, Postdoc – Bartek Roszak, MASc • Current Students – Mohamed

Reach Control Indices

For k = 1, . . . , p define

Gk := conv{vmk

, . . . , vmk+rk−1

}.

Theorem. Let u(x) be a continuous state feedback satisfying the

invariance conditions. Then each Gk contains an equilibrium of the

closed-loop system.

[B10] M.E. Broucke. SIAM J. Control and Opt. 2010.

Reach Control Indices 26

Page 29: ReachControlProblemonSimplicesbroucke/Webpapers/toronto12_talk.pdf · – Marcus Ganness, MASc – Dr. Zhiyun Lin, Postdoc – Bartek Roszak, MASc • Current Students – Mohamed

Piecewise Affine Feedback

Piecewise Affine Feedback 27

Page 30: ReachControlProblemonSimplicesbroucke/Webpapers/toronto12_talk.pdf · – Marcus Ganness, MASc – Dr. Zhiyun Lin, Postdoc – Bartek Roszak, MASc • Current Students – Mohamed

Piecewise Affine Feedback

(a) (b)

S

S1

S2

x

v′

v0v0

v1v1 v2v2

y0y0

b1b1

b2b2

F0F0

F1F2

O

cone(S)cone(S1)

• As we slide v′ from v0 to v1, cone(S1) widens at v2 until b1 points into cone(S1). For

such v′, S1 S1

−→ F0 by affine feedback.

• S2 is not “underactuated” since G2 = {v2}. Thus, S2 S2

−→ S1 ∩ S2 by affine feedback.

Piecewise Affine Feedback 28

Page 31: ReachControlProblemonSimplicesbroucke/Webpapers/toronto12_talk.pdf · – Marcus Ganness, MASc – Dr. Zhiyun Lin, Postdoc – Bartek Roszak, MASc • Current Students – Mohamed

Recursive Subdivision Algorithm

Subdivision Algorithm:

1. Set k = 1.

2. Select v′ ∈ (v0, vmk) such that B ∩ cone(Sk) 6= 0, where

Sk := conv{v′, v1, . . . , vn}.

3. Set S := conv{v0, v1, . . . , vmk−1, v′, vmk+1, . . . , vn}.

4. If k < p, set k := k + 1 and go to step 2.

5. Set Sp+1 := S.

v0 v0v0

v1v1

v1

v2 v2v2

v′

F0 F10

h′SS

S1

Piecewise Affine Feedback 29

Page 32: ReachControlProblemonSimplicesbroucke/Webpapers/toronto12_talk.pdf · – Marcus Ganness, MASc – Dr. Zhiyun Lin, Postdoc – Bartek Roszak, MASc • Current Students – Mohamed

Piecewise Affine Feedback

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1−0.2

0

0.2

0.4

0.6

0.8

1

F0

O

(a) Affine feedback

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1−0.2

0

0.2

0.4

0.6

0.8

1

1.2

F0’

F0

(b) PWA feedback

Piecewise Affine Feedback 30

Page 33: ReachControlProblemonSimplicesbroucke/Webpapers/toronto12_talk.pdf · – Marcus Ganness, MASc – Dr. Zhiyun Lin, Postdoc – Bartek Roszak, MASc • Current Students – Mohamed

A Third Result

Theorem. Suppose the triangulation assumption holds. For a

somewhat stronger version of RCP, TFAE:

1. SS

−→ F0 by piecewise affine feedback.

2. SS

−→ F0 by open-loop controls.

[BG12] M.E. Broucke and M. Ganness. IEEE TAC, in revision 2012.

Piecewise Affine Feedback 31

Page 34: ReachControlProblemonSimplicesbroucke/Webpapers/toronto12_talk.pdf · – Marcus Ganness, MASc – Dr. Zhiyun Lin, Postdoc – Bartek Roszak, MASc • Current Students – Mohamed

Time-varying Affine Feedback

Piecewise Affine Feedback 32

Page 35: ReachControlProblemonSimplicesbroucke/Webpapers/toronto12_talk.pdf · – Marcus Ganness, MASc – Dr. Zhiyun Lin, Postdoc – Bartek Roszak, MASc • Current Students – Mohamed

Time-varying Affine Feedback

Equilibria are such a drag...

v0v0

v1 v1v2v2xx

Piecewise Affine Feedback 33

Page 36: ReachControlProblemonSimplicesbroucke/Webpapers/toronto12_talk.pdf · – Marcus Ganness, MASc – Dr. Zhiyun Lin, Postdoc – Bartek Roszak, MASc • Current Students – Mohamed

A Fourth Result

Theorem. Suppose the triangulation assumption holds and the

invariance conditions are solvable. There exists c > 0 sufficiently small

such that SS

−→ F0 using the time-varying affine feedback

u(x, t) = e−ctu0(x) + (1− e−ct)u∞(x)

where u0(x) = K0x+ g0 places closed-loop equilibria at

vm1 , . . . , vmp

and u∞(x) = K∞x+ g∞ places closed-loop equilibria at

vm1+r1−1, . . . , vmp+rp−1 .

[AB12] G. Ashford and M. Broucke. Automatica, accepted 2012.

Piecewise Affine Feedback 34

Page 37: ReachControlProblemonSimplicesbroucke/Webpapers/toronto12_talk.pdf · – Marcus Ganness, MASc – Dr. Zhiyun Lin, Postdoc – Bartek Roszak, MASc • Current Students – Mohamed

Motivating Example

Motivating Example 35

Page 38: ReachControlProblemonSimplicesbroucke/Webpapers/toronto12_talk.pdf · – Marcus Ganness, MASc – Dr. Zhiyun Lin, Postdoc – Bartek Roszak, MASc • Current Students – Mohamed

Preferred Approach

B

O

B ∩ cone(S) 6= 0

S ∩ O = ∅ [B10]

B ∩ cone(S) 6= 0 [B10]

[AB12] or [BG12]

Motivating Example 36

Page 39: ReachControlProblemonSimplicesbroucke/Webpapers/toronto12_talk.pdf · – Marcus Ganness, MASc – Dr. Zhiyun Lin, Postdoc – Bartek Roszak, MASc • Current Students – Mohamed

Final Design

−4 −3 −2 −1 0 1 2 3 4

−4

−3

−2

−1

0

1

2

3

4

Motivating Example 37