35
1 Raven – Subaru Seminar - Hilo, Feb. 5, 2014 Raven a scientific and technical Multi-Object Adaptive Optics (MOAO) demonstrator Olivier Lardière, Célia Blain, Colin Bradley, Reston Nash, Darryl Gamroth, Kate Jackson, Dave Andersen, Shin Oya, Yoshito Ono, & all RAVEN team

RavenTo Raven B C 12 Calibration Unit = Subaru Telescope in a box! Source light pipe LGS source • 80-180km range Pinhole array • 2.9’FoV • Field rotation Optical Relay •F/13.6

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: RavenTo Raven B C 12 Calibration Unit = Subaru Telescope in a box! Source light pipe LGS source • 80-180km range Pinhole array • 2.9’FoV • Field rotation Optical Relay •F/13.6

1 Raven – Subaru Seminar - Hilo, Feb. 5, 2014

Raven a scientific and technical

Multi-Object Adaptive Optics (MOAO) demonstrator

Olivier Lardière, Célia Blain, Colin Bradley, Reston Nash, Darryl Gamroth, Kate Jackson, Dave Andersen, Shin Oya, Yoshito Ono,

& all RAVEN team

Page 2: RavenTo Raven B C 12 Calibration Unit = Subaru Telescope in a box! Source light pipe LGS source • 80-180km range Pinhole array • 2.9’FoV • Field rotation Optical Relay •F/13.6

Why MOAO?

AO corrected FoV is limited by anisoplanetism

2

Image of galactic centre:

w/o anisoplanetism w/ anisoplanetism

ONERA

Page 3: RavenTo Raven B C 12 Calibration Unit = Subaru Telescope in a box! Source light pipe LGS source • 80-180km range Pinhole array • 2.9’FoV • Field rotation Optical Relay •F/13.6

How to increase the corrected FoV?

7-8 March

2011

O. Lardière et al. ― Raven Optical Design ― RAVEN CoDR, HIA/UVic 3

Increase the # of guide stars and DMs

Page 4: RavenTo Raven B C 12 Calibration Unit = Subaru Telescope in a box! Source light pipe LGS source • 80-180km range Pinhole array • 2.9’FoV • Field rotation Optical Relay •F/13.6

Multi-Object Adaptive Optics

We don’t need to correct the whole FoV, just a few patches

MOAO uses multiple WFSs to reconstruct a volume of turbulence

A single DM can be used to apply the optimal AO correction for any single location in the field

4 ESO

Page 5: RavenTo Raven B C 12 Calibration Unit = Subaru Telescope in a box! Source light pipe LGS source • 80-180km range Pinhole array • 2.9’FoV • Field rotation Optical Relay •F/13.6

Multi-Object Adaptive Optics

We don’t need to correct the whole FoV, just a few patches

MOAO uses multiple WFSs to reconstruct a volume of turbulence

A single DM can be used to apply the optimal AO correction for any single location in the field

MOAO correction is applied in open loop

5 ESO

Page 6: RavenTo Raven B C 12 Calibration Unit = Subaru Telescope in a box! Source light pipe LGS source • 80-180km range Pinhole array • 2.9’FoV • Field rotation Optical Relay •F/13.6

MOAO Challenges

Pickoff system • Up to 20 deployable pickoff

mirrors are planned for ELTs (IRMOS, MOSAIC)

6

IRMOS (Eikenberry & Andersen 2006)

Page 7: RavenTo Raven B C 12 Calibration Unit = Subaru Telescope in a box! Source light pipe LGS source • 80-180km range Pinhole array • 2.9’FoV • Field rotation Optical Relay •F/13.6

MOAO Challenges

Pickoff system • Up to 20 deployable pickoff

mirrors are planned for ELTs (IRMOS, MOSAIC)

Tomography • Finite number of WFSs

• Requires turbulence model

• Noise & static error propagation

Open-loop control • Wide-field WFS

• DM linearity & repeatability

• DM/WFS calibration 7

IRMOS (Eikenberry & Andersen 2006)

Page 8: RavenTo Raven B C 12 Calibration Unit = Subaru Telescope in a box! Source light pipe LGS source • 80-180km range Pinhole array • 2.9’FoV • Field rotation Optical Relay •F/13.6

Goals of Raven

Technical & Science demonstrator • Prepare MOAO instrumentation for ELTs

• Get first science results from MOAO

Raven = 1st MOAO system on an 8m-class telescope feeding a NIR science instrument (IRCS): • Founded by CFI (Canadian Fund for Innovation) ~ 4M$

• Designed and built by UVic, HIA/NRC and INO

• Fast track project:

o CoDR in Mar 2011

o Shipped to Subaru in Jan. 2014,

o First night in May 2014

8

Page 9: RavenTo Raven B C 12 Calibration Unit = Subaru Telescope in a box! Source light pipe LGS source • 80-180km range Pinhole array • 2.9’FoV • Field rotation Optical Relay •F/13.6

Raven Concept

9

• 2 science targets are reimaged on the IRCS slit

• Each target can be positioned on the slit by moving the pickoff arms

• Each target can be rotated with the K-mirror

Page 10: RavenTo Raven B C 12 Calibration Unit = Subaru Telescope in a box! Source light pipe LGS source • 80-180km range Pinhole array • 2.9’FoV • Field rotation Optical Relay •F/13.6

Optical Layout

10

Page 11: RavenTo Raven B C 12 Calibration Unit = Subaru Telescope in a box! Source light pipe LGS source • 80-180km range Pinhole array • 2.9’FoV • Field rotation Optical Relay •F/13.6

CAD Model

11

Page 12: RavenTo Raven B C 12 Calibration Unit = Subaru Telescope in a box! Source light pipe LGS source • 80-180km range Pinhole array • 2.9’FoV • Field rotation Optical Relay •F/13.6

To Raven

B

C

12

Calibration Unit = Subaru Telescope in a box!

Source light pipe

LGS source • 80-180km range

Pinhole array • 2.9’FoV • Field rotation

Optical Relay • F/13.6 • Exit Pupil at ∞

DM • Poke matrices • Ground layer

Phase screens • 5 & 10km

Page 13: RavenTo Raven B C 12 Calibration Unit = Subaru Telescope in a box! Source light pipe LGS source • 80-180km range Pinhole array • 2.9’FoV • Field rotation Optical Relay •F/13.6

The 2 science channels implemented

Raven Acceptance Review, Nov 26, 2013 – Victoria, BC 13

Page 14: RavenTo Raven B C 12 Calibration Unit = Subaru Telescope in a box! Source light pipe LGS source • 80-180km range Pinhole array • 2.9’FoV • Field rotation Optical Relay •F/13.6

O. Lardière et al. ― Raven ― AO Tomography workshop, Leiden, 9 July 2012 14

Raven pick-off mirrors

Acquisition camera image

Page 15: RavenTo Raven B C 12 Calibration Unit = Subaru Telescope in a box! Source light pipe LGS source • 80-180km range Pinhole array • 2.9’FoV • Field rotation Optical Relay •F/13.6

Field rotation tracking

Page 16: RavenTo Raven B C 12 Calibration Unit = Subaru Telescope in a box! Source light pipe LGS source • 80-180km range Pinhole array • 2.9’FoV • Field rotation Optical Relay •F/13.6

Simulation for a real science case

16

Example for Stanek field on 20/06/2013

Raven Acceptance Review – Victoria, Nov 26, 2013

Page 17: RavenTo Raven B C 12 Calibration Unit = Subaru Telescope in a box! Source light pipe LGS source • 80-180km range Pinhole array • 2.9’FoV • Field rotation Optical Relay •F/13.6

Hardware completed at UVic (July 2012)

17

• All the opto-mechanical

components are installed

and aligned

• Most of the electronics

are mounted in the frame

under the bench

Page 18: RavenTo Raven B C 12 Calibration Unit = Subaru Telescope in a box! Source light pipe LGS source • 80-180km range Pinhole array • 2.9’FoV • Field rotation Optical Relay •F/13.6

Software architecture

18

The Raven Software is divided into 3 subsystems:

• The AO Sequencer (AOS) sets up the system and controls all non-real-time hardware, provides a user interface.

• The Real-Time Computer (RTC) processes the WFS pixels and generates the DM commands.

• The RTC Parameter Generator (RPG) updates the tomographic reconstructor as the conditions change using the WFS data (SLODAR or Learn&Apply).

User User

Page 19: RavenTo Raven B C 12 Calibration Unit = Subaru Telescope in a box! Source light pipe LGS source • 80-180km range Pinhole array • 2.9’FoV • Field rotation Optical Relay •F/13.6

RTC supports different AO modes

AO mode Description

SCAO Single Conjugated AO: Close loop on bright science target

MOAO Multi-Object AO: NGS (+LGS) WFSs feed tomographic reconstructor, then feed the DM (open loop)

GLAO Ground-layer AO: WFS slopes are averaged and sent to the DM (open loop)

HP MOAO + LP SCAO

High-Pass-filtered MOAO + Low-Pass-filtered SCAO: • Fast turbulence is corrected in open-loop MOAO, • Slow turbulence & quasi-static aberrations are corrected in close-

loop w/ the CLWFS running at low frame rate on a possibly faint compact science target.

Page 20: RavenTo Raven B C 12 Calibration Unit = Subaru Telescope in a box! Source light pipe LGS source • 80-180km range Pinhole array • 2.9’FoV • Field rotation Optical Relay •F/13.6

Olivier Lardière et al. ― Raven Science Meeting – Waikoloa Beach, July 25, 2013 20

TX=-0.06 TY=-0.07 Foc=-0.01 Max=5452

TX=0.02 TY=-0.01 Foc=-0.01 Max=8203

Min=-0.09 Max=0.07 Clip=0

2 4 6 8 10 12

2

4

6

8

10

12

TX=-0.08 TY=0.05 Foc=-0.01 Max=10309

-50 0 50-80

-60

-40

-20

0

20

40

60

80

TX=0.09 TY=0.06 Foc=-0.02 Max=5981

TX=0.10 TY=-0.03 Foc=0.01 Max=7106

TX=-0.00 TY=0.01 Foc=0.00 Max=9358

Min=-0.10 Max=0.08 Clip=0

2 4 6 8 10 12

2

4

6

8

10

12

AOS user

interface in

Matlab

Page 21: RavenTo Raven B C 12 Calibration Unit = Subaru Telescope in a box! Source light pipe LGS source • 80-180km range Pinhole array • 2.9’FoV • Field rotation Optical Relay •F/13.6

Raven Acceptance Review at UVic, 26 Nov. 2014

21

Page 22: RavenTo Raven B C 12 Calibration Unit = Subaru Telescope in a box! Source light pipe LGS source • 80-180km range Pinhole array • 2.9’FoV • Field rotation Optical Relay •F/13.6

Lab Results obtained at UVic

22

0 2 4 6 8 10 12 14 160

0.5

1

1.5

2

2.5

3

Time [sec.]

WF

E [

m r

ms

]

CL-WFS data, Wide asterism + LGS, Bright stars (R=9~10)

No AO (1.63 m rms)

GLAO (0.32 m rms)

Model-based MOAO (0.25 m rms)

Learn&Apply MOAO (0.22 m rms)

SCAO (0.14 m rms)

Page 23: RavenTo Raven B C 12 Calibration Unit = Subaru Telescope in a box! Source light pipe LGS source • 80-180km range Pinhole array • 2.9’FoV • Field rotation Optical Relay •F/13.6

Science camera long-exposure images

23

No AO – 60s exposure – l=1.0-1.7m

0.14”

Page 24: RavenTo Raven B C 12 Calibration Unit = Subaru Telescope in a box! Source light pipe LGS source • 80-180km range Pinhole array • 2.9’FoV • Field rotation Optical Relay •F/13.6

24

MOAO – 60s exposure – l=1.0-1.7m

Science camera long-exposure images

0.14”

Page 25: RavenTo Raven B C 12 Calibration Unit = Subaru Telescope in a box! Source light pipe LGS source • 80-180km range Pinhole array • 2.9’FoV • Field rotation Optical Relay •F/13.6

Science Camera long-exposure images

25

Bright & Wide Asterism + LGS

60s exposure

Page 26: RavenTo Raven B C 12 Calibration Unit = Subaru Telescope in a box! Source light pipe LGS source • 80-180km range Pinhole array • 2.9’FoV • Field rotation Optical Relay •F/13.6

Conclusions

Current performance meet science requirements • In agreement with error budget

• Good image correction: Strehl>20-50%

• Limiting magnitude R≥14.25 w/ CoG

Upgrades & expected improvements • Correlation centroiding (+1 mag.)

• Predictor (+2mag)

26

Page 27: RavenTo Raven B C 12 Calibration Unit = Subaru Telescope in a box! Source light pipe LGS source • 80-180km range Pinhole array • 2.9’FoV • Field rotation Optical Relay •F/13.6

Conclusions

Current performance meet science requirements • In agreement with error budget

• Good image correction: Strehl>20-50%

• Limiting magnitude R≥14.25 w/ CoG

Upgrades & expected improvements • Correlation centroiding (+1 mag.)

• Predictor (+2mag)

27

+2 mag

Page 28: RavenTo Raven B C 12 Calibration Unit = Subaru Telescope in a box! Source light pipe LGS source • 80-180km range Pinhole array • 2.9’FoV • Field rotation Optical Relay •F/13.6

Conclusions

Current performance meet science requirements • In agreement with error budget

• Good image correction: Strehl>20-50%

• Limiting magnitude R≥14.25 w/ CoG

Upgrades & expected improvements • Correlation centroiding (+1 mag.)

• Predictor (+2mag)

Science instrument ready to go on sky: • Engineering nights in May and Aug 2014

• Hoping for science nights in S14B and S15A

• Little risks for science cases as GLAO meets science requirements too.

28

Page 29: RavenTo Raven B C 12 Calibration Unit = Subaru Telescope in a box! Source light pipe LGS source • 80-180km range Pinhole array • 2.9’FoV • Field rotation Optical Relay •F/13.6

Raven arrival (Jan 6th)

Olivier Lardière et al. ― Raven Science Meeting – Waikoloa Beach, July 25, 2013 29

Matson SS Maui from Seattle to Honolulu

Photos: Shin Oya

Page 30: RavenTo Raven B C 12 Calibration Unit = Subaru Telescope in a box! Source light pipe LGS source • 80-180km range Pinhole array • 2.9’FoV • Field rotation Optical Relay •F/13.6

Raven in the SimLab (Jan 7th)

30 Photos: Shin Oya

Page 31: RavenTo Raven B C 12 Calibration Unit = Subaru Telescope in a box! Source light pipe LGS source • 80-180km range Pinhole array • 2.9’FoV • Field rotation Optical Relay •F/13.6

31

Raven in Simlab (Jan 7/8)

Photos: Shin Oya

Page 32: RavenTo Raven B C 12 Calibration Unit = Subaru Telescope in a box! Source light pipe LGS source • 80-180km range Pinhole array • 2.9’FoV • Field rotation Optical Relay •F/13.6

32

Raven in Simlab (Jan 7/8)

Photos: Shin Oya

Page 33: RavenTo Raven B C 12 Calibration Unit = Subaru Telescope in a box! Source light pipe LGS source • 80-180km range Pinhole array • 2.9’FoV • Field rotation Optical Relay •F/13.6

Alignment in SimLab clean room

33

Photos: Shin Oya

Page 34: RavenTo Raven B C 12 Calibration Unit = Subaru Telescope in a box! Source light pipe LGS source • 80-180km range Pinhole array • 2.9’FoV • Field rotation Optical Relay •F/13.6

2014 Schedule

34

Jan : Raven integration and alignment in the SimLab

• Feb-Mar :

• Software upgrades & consolidation

• Final tests

• Prepare observation plan

• Mid-Apr : Raven ships to summit in BSIT truck

• May 13/14 : First engineering nights

• Aug : 2nd run of engineering nights

Page 35: RavenTo Raven B C 12 Calibration Unit = Subaru Telescope in a box! Source light pipe LGS source • 80-180km range Pinhole array • 2.9’FoV • Field rotation Optical Relay •F/13.6

Thank you

35