24
RATIONAL K VALUES FOR BRIDGE PIER DESIGN David Liu, Ph.D., P.E., S.E. Robert Magliola, P.E., S.E. PARSONS

RATIONAL K VALUES FOR BRIDGE PIER DESIGN David Liu, Ph.D., P.E., S.E. Robert Magliola, P.E., S.E. PARSONS

Embed Size (px)

DESCRIPTION

FIG. 1. Effective length factors, K for columns.

Citation preview

Page 1: RATIONAL K VALUES FOR BRIDGE PIER DESIGN David Liu, Ph.D., P.E., S.E. Robert Magliola, P.E., S.E. PARSONS

RATIONAL K VALUES FOR BRIDGE PIER DESIGN

• David Liu, Ph.D., P.E., S.E.• Robert Magliola, P.E., S.E.

PARSONS

Page 2: RATIONAL K VALUES FOR BRIDGE PIER DESIGN David Liu, Ph.D., P.E., S.E. Robert Magliola, P.E., S.E. PARSONS

Part I – General Review

• What is the K value? effective length factor • Its application• Problems

2)(

2

KL

EIcrP

Page 3: RATIONAL K VALUES FOR BRIDGE PIER DESIGN David Liu, Ph.D., P.E., S.E. Robert Magliola, P.E., S.E. PARSONS

FIG. 1. Effective length factors, K for columns.

Page 4: RATIONAL K VALUES FOR BRIDGE PIER DESIGN David Liu, Ph.D., P.E., S.E. Robert Magliola, P.E., S.E. PARSONS

FIG. 2. Alignment charts for effective length of columns in

frames

Page 5: RATIONAL K VALUES FOR BRIDGE PIER DESIGN David Liu, Ph.D., P.E., S.E. Robert Magliola, P.E., S.E. PARSONS

gg

cc

LILI

G//

Page 6: RATIONAL K VALUES FOR BRIDGE PIER DESIGN David Liu, Ph.D., P.E., S.E. Robert Magliola, P.E., S.E. PARSONS

Mathematical formula

• Braced column

• Un-braced column

0.1)(05.07.0 BA GGK

0.1)(05.085.0 min GK

,2aveG aveave GGK

1

2020

,2aveGaveGK 19.0

Page 7: RATIONAL K VALUES FOR BRIDGE PIER DESIGN David Liu, Ph.D., P.E., S.E. Robert Magliola, P.E., S.E. PARSONS

AASHTO LRFD

Un-braced Columns

Ga 1.5 footing anchored on

rock 3.0 footing not anchored on

rock 5.0 footing on soil 1.0 footing on group piles

k

kGG

kGG

ba

ba

tan)(6

36)( 2

Page 8: RATIONAL K VALUES FOR BRIDGE PIER DESIGN David Liu, Ph.D., P.E., S.E. Robert Magliola, P.E., S.E. PARSONS

Modified k Values

• Effective length factor for columns in braced or un-braced frames

• Journal of Structural Engineering, 1988,1989

• Lian Duan and W.F. Chen

Page 9: RATIONAL K VALUES FOR BRIDGE PIER DESIGN David Liu, Ph.D., P.E., S.E. Robert Magliola, P.E., S.E. PARSONS

AASHTO Guidelines

Slenderness effects in compression members

• P-delta analysis

• Moment magnification method

Page 10: RATIONAL K VALUES FOR BRIDGE PIER DESIGN David Liu, Ph.D., P.E., S.E. Robert Magliola, P.E., S.E. PARSONS

Moment Magnification Method

K=1 for braced columnK>1 for unbraced column

Neglect effects of slenderness• K L/r < 34-(12 M1b/M2b) braced column• K L/r < 22 un-braced column• K L/r >100 use P-delta analysis

Page 11: RATIONAL K VALUES FOR BRIDGE PIER DESIGN David Liu, Ph.D., P.E., S.E. Robert Magliola, P.E., S.E. PARSONS

Moment Magnification Method ssbbc

MMM22

0.11

c

u

m

b

PP

C

0.11

1

c

u

s

PP

Page 12: RATIONAL K VALUES FOR BRIDGE PIER DESIGN David Liu, Ph.D., P.E., S.E. Robert Magliola, P.E., S.E. PARSONS

Moment Magnification Method

2

2

)(u

c klEIP

d

gcIE

EI

1

5.2

)/(4.06.021 bbm

MMC

Page 13: RATIONAL K VALUES FOR BRIDGE PIER DESIGN David Liu, Ph.D., P.E., S.E. Robert Magliola, P.E., S.E. PARSONS

Moment Magnification Method

Pier cap design for un-braced column

Total magnified moment at top of column

Page 14: RATIONAL K VALUES FOR BRIDGE PIER DESIGN David Liu, Ph.D., P.E., S.E. Robert Magliola, P.E., S.E. PARSONS

FIG. 3. Structural Model for a Single Span Frame.

Page 15: RATIONAL K VALUES FOR BRIDGE PIER DESIGN David Liu, Ph.D., P.E., S.E. Robert Magliola, P.E., S.E. PARSONS

FIG. 4. Bridge Elevation.

Page 16: RATIONAL K VALUES FOR BRIDGE PIER DESIGN David Liu, Ph.D., P.E., S.E. Robert Magliola, P.E., S.E. PARSONS

FIG. 5. Typical Sections.

Page 17: RATIONAL K VALUES FOR BRIDGE PIER DESIGN David Liu, Ph.D., P.E., S.E. Robert Magliola, P.E., S.E. PARSONS

FIG. 6. Pier Plan and Elevation

Page 18: RATIONAL K VALUES FOR BRIDGE PIER DESIGN David Liu, Ph.D., P.E., S.E. Robert Magliola, P.E., S.E. PARSONS

Pier Top Connection

Page 19: RATIONAL K VALUES FOR BRIDGE PIER DESIGN David Liu, Ph.D., P.E., S.E. Robert Magliola, P.E., S.E. PARSONS

FIG. 7. Pier Footings.

Page 20: RATIONAL K VALUES FOR BRIDGE PIER DESIGN David Liu, Ph.D., P.E., S.E. Robert Magliola, P.E., S.E. PARSONS

FIG. 8. GT STRUDL Model.

Page 21: RATIONAL K VALUES FOR BRIDGE PIER DESIGN David Liu, Ph.D., P.E., S.E. Robert Magliola, P.E., S.E. PARSONS

GT STRUDL INPUT

• Apply unit load at top of pier• Perform buckling analysis• List buckling shape• Member releases are not allowed.

Page 22: RATIONAL K VALUES FOR BRIDGE PIER DESIGN David Liu, Ph.D., P.E., S.E. Robert Magliola, P.E., S.E. PARSONS

FIG. 9. Buckling Mode Shapes.

Page 23: RATIONAL K VALUES FOR BRIDGE PIER DESIGN David Liu, Ph.D., P.E., S.E. Robert Magliola, P.E., S.E. PARSONS

Table 1: Buckling Loads and K Values

  

Piers L Pcr Kx

  ft kips  

2 53.2 135318 0.98

3 51.2 132931 1.03

4 53.9 155157 0.91

5 49.6 130115 1.08

6 45.5 120744 1.22

Page 24: RATIONAL K VALUES FOR BRIDGE PIER DESIGN David Liu, Ph.D., P.E., S.E. Robert Magliola, P.E., S.E. PARSONS

Findings• The buckling load is sensitive to where the unit load is

applied to.• Applying the unit load to all the piers at the same time will

give you too conservative results.• Adding more members in the superstructure does not change

the buckling loads.• Adding more members in the substructure does not change

the buckling loads.• Typical K values used for pier design are very conservative.