22
Raffaello D’Andrea Cornell University Design and Control of Interconnected Systems

Raffaello D’Andrea Cornell University

  • Upload
    frey

  • View
    34

  • Download
    3

Embed Size (px)

DESCRIPTION

Design and Control of Interconnected Systems. Raffaello D’Andrea Cornell University. Examples. Power generation and distribution Vehicle platoons Satellite formation flight Paper processing Adaptive optics MEMS data storage Optical switching “Smart” structures - PowerPoint PPT Presentation

Citation preview

Page 1: Raffaello D’Andrea Cornell University

Raffaello D’AndreaCornell University

Design and Control of Interconnected Systems

Page 2: Raffaello D’Andrea Cornell University
Page 3: Raffaello D’Andrea Cornell University
Page 4: Raffaello D’Andrea Cornell University

Examples•Power generation and distribution•Vehicle platoons•Satellite formation flight•Paper processing•Adaptive optics•MEMS data storage•Optical switching•“Smart” structures and so on...Common thread:

• Distributed sensing and actuation capabilities• Highly structured interconnection topology

Page 5: Raffaello D’Andrea Cornell University

General Problem Class

PLANT CONTROLLER

,1 , ,1 ,( , ), ( , )i i i L i i i Lw w w v v v

, ,i j j iw v

Stability, performance, robustnessRequirements:

Gi

vi

di

uiyi

zi

wi

Gi

uiyi

~wi~ vi

~

Page 6: Raffaello D’Andrea Cornell University

d z

ww

v

v

Basic building block, one spatial dimension

Simplest case: Homogeneous Systems

( , , )

( , )( , )

xw f x v dz

w w wv v v

Page 7: Raffaello D’Andrea Cornell University

PERIODIC CONFIGURATION

Page 8: Raffaello D’Andrea Cornell University

BOUNDARY CONDITIONS

Page 9: Raffaello D’Andrea Cornell University

INFINITE EXTENT SYSTEM

Page 10: Raffaello D’Andrea Cornell University

2D, 2D BOUNDARY CONDITIONS

Page 11: Raffaello D’Andrea Cornell University

2D, 1D BOUNDARY CONDITIONS

Page 12: Raffaello D’Andrea Cornell University

2D, NO BOUNDARY CONDITIONS

Page 13: Raffaello D’Andrea Cornell University

Results for linear and piece-wise linear systems

Theorem: If the following semidefinite program has a solution:

01

0N

ll

l Pq P

where N and the are fixed, and onlya function of the basic building block, then

lP

D’Andrea ’98, D’Andrea & Dullerud ‘03

|| || || ||dz all interconnected systems are well-posed, stable, and

d z

ww

v

v

Page 14: Raffaello D’Andrea Cornell University

d z

ww

v

v

y u

( , ),

( , )M

x xw w ww vv v vz d

y u

Basic building block: control design

Design controller that has the same structure as the plant:

y u

Kw

Kw

Kv

Kv

Page 15: Raffaello D’Andrea Cornell University

PERIODIC CONFIGURATION

Page 16: Raffaello D’Andrea Cornell University

2D, 2D BOUNDARY CONDITIONS

Page 17: Raffaello D’Andrea Cornell University

Properties of design

•Controller has the same structure as the plant

•Finite dimensional, convex optimization problem

•Optimization problem size is independent of the number of units

Page 18: Raffaello D’Andrea Cornell University

Arbitrary interconnections, heterogeneous components

Page 19: Raffaello D’Andrea Cornell University

Arbitrary interconnections, heterogeneous components

Page 20: Raffaello D’Andrea Cornell University

Theorem: the interconnected system is well-posed, stable, and if the following coupled semidefinite programs have a solution:|| || || ||dz

Langbort, Chandra, & D’Andrea ’03Chandra, Langbort, & D’Andrea ‘03

,

,0, ,, , , , , ,1 1

0, , 1i j

i j k i j k j iii j kkj k

NLP Pq q q i L

if the subsystems are not interconnected:0,i jN

Page 21: Raffaello D’Andrea Cornell University

Theorem: the interconnected system is well-posed, stable, and if the following coupled semidefinite programs have a solution:|| || || ||dz

Langbort, Chandra, & D’Andrea ’03Chandra, Langbort, & D’Andrea ‘03

,

,0, ,, , , , , ,1 1

0, , 1i j

i j k i j k j iii j kkj k

NLP Pq q q i L

if the subsystems are not interconnected:0,i jN

When working with linearized dynamics, results generalize tocontrol system design

Page 22: Raffaello D’Andrea Cornell University

Summary

• Semidefinite programming a powerful tool for controldesign and analysis of interconnected systems

• Generalization of powerful results for single systems:linear, piece-wise linear, nonlinear

• Leads to distributed semidefinite programs, whosestructure is captured by interconnection topology