Radiasi 12 13

Embed Size (px)

Citation preview

  • 8/13/2019 Radiasi 12 13

    1/64

    Radiation

    Danar - PTM UNS 1

    ea rans er

  • 8/13/2019 Radiasi 12 13

    2/64

    Conduction, Convection, & Radiation

    Danar - PTM UNS 2

    Convection: The transfer of heat by the actual motion of a fluid(liquid or gas) in the form of currents Conduction: The transfer of heat by direct contact of particles

    of matter

    Radiation: Heat transfer by electromagnetic waves

  • 8/13/2019 Radiasi 12 13

    3/64

    Conduction, Convection, & Radiation Conduction

    Convection Radition

    Danar - PTM UNS 3

  • 8/13/2019 Radiasi 12 13

    4/64

    Tiga cara heat transfer:Tiga cara heat transfer: konduksi, konveksi, radiasikonduksi, konveksi, radiasiKita telah mempelajari konduksi dan konveksiKita telah mempelajari konduksi dan konveksi

    Thermal radiation Electromagnetic radiation which

    Radiation: Heat transferred byelectromagnetic radiation

    Danar - PTM UNS 4

    temperature differenceExamples: Sun, boiler

    Black body An ideal thermal radiator emitting energy

    at a rate proportional to the fourth powerof the absolute temperature of the bodyand directly proportional to its surface

    4emitted T A =

  • 8/13/2019 Radiasi 12 13

    5/64

    Radiasi tidak memerlukan sesuatu di antara

    dua benda untuk memindahkan energi!

    Humongoid Ball of Fire(a star, our sun)

    Danar - PTM UNS 5

    Note: Not to Scale

    Puny ball of mostly water(Earth)

  • 8/13/2019 Radiasi 12 13

    6/64

  • 8/13/2019 Radiasi 12 13

    7/64

    PerpindahanPerpindahan PanasPanas RadiasiRadiasi

    RadiasiRadiasi aadalahdalah prosesproses transporttransport panaspanas daridari bendabendabersuhubersuhu tinggitinggi keke bendabenda yangyang bersuhubersuhu lebihlebih rendahrendah, , bilabilabendabenda bendabenda ituitu terpisahterpisah didi dalamdalam ruangruang ((bahkanbahkandalamdalam ruangruang hampahampa sekalipunsekalipun) )

    q =q = A (TA (T 11 44 TT22 44 )) Dimana :Dimana : = Konstanta Stefan= Konstanta Stefan- -BoltzmanBoltzman

    5,669 x105,669 x10 --88 w/mw/m 22 kk44A = Luas penampangA = Luas penampangT = TemperaturT = Temperatur

  • 8/13/2019 Radiasi 12 13

    8/64

    ContohContoh: :DuaDua platplat hitamhitam taktak berhinggaberhingga yangyang suhunyasuhunyamasingmasing masingmasing 800800 00 CC dandan 300300 00 CC salingsalingbertukarbertukar kalorkalor melaluimelalui radiasiradiasi. . HitunglahHitunglahperpindahanperpindahan kalorkalor persatuanpersatuan luasluas. .

    Perpindahan Panas RadiasiPerpindahan Panas Radiasi

    PenyelesaianPenyelesaianDari persamaan:Dari persamaan:

    q =q = A (T1A (T144

    T2T244

    ))q/A =q/A = (T1(T1 44 T2T2 44 ))q/A = (5,669 x 10q/A = (5,669 x 10- -8)(10738)(1073 44 573573 44 ))q/A = 69,03 kW/mq/A = 69,03 kW/m 22

  • 8/13/2019 Radiasi 12 13

    9/64

    RADIASI TERMALRADIASI TERMALJikaJika suatusuatu bendabenda ditempatkanditempatkan dalamdalam

    pengurungpengurung, , dandan suhusuhu pengurungpengurung lebihlebihrendahrendah daridari padapada suhusuhu bendabenda, , makamaka suhusuhubendabenda tersebuttersebut akanakan turunturun, , sekalipunsekalipun

    ruangruang dalamdalam pengurungpengurung tersebuttersebut hampahampa. .ProsesProses pemindahanpemindahan panaspanas yangyang terjaditerjadihanyahanya sematasemata karenakarena bendabenda suhusuhu dandantanpatanpa bantuanbantuan zatzat perantaraperantara (medium),(medium),disebutdisebut perpindahanperpindahan panas panas radiasiradiasi

  • 8/13/2019 Radiasi 12 13

    10/64

  • 8/13/2019 Radiasi 12 13

    11/64

    SedangSedang radiasiradiasi termaltermal, , energienergi pancarannyapancarannyaditentukanditentukan berdasarkanberdasarkan suhusuhu bendabendatersebuttersebut. .

    DaerahDaerah spektrumspektrum panjangpanjang gelombanggelombang

    RADIASI TERMALRADIASI TERMAL

    ra iasira iasi termaterma a a aa a a ariari ,1,1 sampaisampaidengandengan 100100 mikronmikron

    RadiasiRadiasi mataharimatahari juga juga merupakanmerupakan radiasiradiasitermaltermal dengandengan daerahdaerah panjangpanjang gelombanggelombangkhususkhusus yaituyaitu 0, 250, 25 s.d.s.d. 33 mikronmikron

  • 8/13/2019 Radiasi 12 13

    12/64

  • 8/13/2019 Radiasi 12 13

    13/64

  • 8/13/2019 Radiasi 12 13

    14/64

    electromagnetic spectrum

    microwaves,cell phones

    TV thermalradiation

    Danar - PTM UNS 14

    radiowaves visible

    x-rays

  • 8/13/2019 Radiasi 12 13

    15/64

    visible electromagnetic waves: LIGHTshorter wavelength more energy

    Danar - PTM UNS 15

    visible lightthermalradiation UV radiation

    produces sunburn

  • 8/13/2019 Radiasi 12 13

    16/64

    Thermal radiation spectrum The intensity of

    radiation increaseswith temperature the color shifts toward

    Danar - PTM UNS 16

    the blue at highertemperatures

    The UV radiation from

    the sun is just beyondthe violet (11,000 F)

  • 8/13/2019 Radiasi 12 13

    17/64

    RADIASI BENDA HITAMRADIASI BENDA HITAM

    BendaBenda hitamhitam adalahadalah idealisasiidealisasi bendabenda yangyangpadapada suhusuhu berapapunberapapun, , memancarkanmemancarkan atau ataumenyerapmenyerap seluruhseluruh radiasiradiasi padapada panjangpanjang

    ((disebutdisebut RADIATOR SEMPURNARADIATOR SEMPURNA ).).

    DayaDaya pancarpancar bendabenda hitamhitam tergantungtergantung daridari

    suhusuhu dandan panjangpanjang gelombangnyagelombangnya. .

  • 8/13/2019 Radiasi 12 13

    18/64

  • 8/13/2019 Radiasi 12 13

    19/64

  • 8/13/2019 Radiasi 12 13

    20/64

  • 8/13/2019 Radiasi 12 13

    21/64

  • 8/13/2019 Radiasi 12 13

    22/64

    Irradiation, G

    Radiation energyincident on a surfaceper unit surface area

    per unit time

    Fractionabsorbed by

    Fractionreflected by

    Danar - PTM UNS 22

    surface sur ace

    Fractiontransmitted by

    surface

  • 8/13/2019 Radiasi 12 13

    23/64

    The First Law of Thermodynamics :

    Danar - PTM UNS 23

    The above is for total hemispherical properties, i.e. for all directions andwavelengths incident.

    Can also consider the same definitions for specific wavelength or direction:

  • 8/13/2019 Radiasi 12 13

    24/64

    Radiation

    Danar - PTM UNS 24

    The absorption of radiation incident on an opaque surface ofabsorptivity . Kirchhoffs law states that emissivity=absorptivityat a given temperature and wavelength.

  • 8/13/2019 Radiasi 12 13

    25/64

    QQQQ ++=

    1 / / / =++ QQQQQQ

    Absorbed Q Reflected Q Transmitted Q

    Heat balance

    or

    Q

    Radiation properties

    Danar - PTM UNS 25

    QQ =

    1=++

    SetQQ =

    QQ =

    absorptivity

    reflectivity

    transmissivity

  • 8/13/2019 Radiasi 12 13

    26/64

    Emission and Absorptionare balanced

    Danar - PTM UNS 26

  • 8/13/2019 Radiasi 12 13

    27/64

    Practical considerations wear light clothing

    in summer lightclothing absorbsless sunlight

    Danar - PTM UNS 27

    cover all bodyparts in winterwarm body parts(like your head)emit radiation

  • 8/13/2019 Radiasi 12 13

    28/64

  • 8/13/2019 Radiasi 12 13

    29/64

    STEFAN-BOLTZMANN LAWThe maximum rate of radiation that can be emitted from a surfaceat an absolute temperature is;

    Stefan-Boltzman

    constant=5.6710 -8 W/m 2.K 4

    Black body : an idealized surface that emits radiation at this maximum

    4max, S S emit T AQ =

    Danar - PTM UNS 29

    Black body radiation : radiation emitted by blackbodies

    Real surfaces emit less radiation

    1=

    10 For real bodies

    For blackbodies

    Emissivity of the surface

    4

    S S emit T AQ =

  • 8/13/2019 Radiasi 12 13

    30/64

    RadiationStefan-Boltzman law

    [ W / m 2 ]( )44 sur s T T q =

    Danar - PTM UNS 30

    q rad = h r A (T s T sur ) [ W ]

    radiation heat transfer coefficient,Stefan Boltzman const. , = 5.67 x 10 -8 [ W/m 2.K4 ]

    = emissivity

    ( )( )22

    sur ssur sr T T T T h ++=

  • 8/13/2019 Radiasi 12 13

    31/64

    STEFAN-BOLTZMANN LAW Stefan showed that the total power emitted

    per unit area, R, called the total emissivepower or total emittance is given by the

    Danar - PTM UNS 31

    4 R e T =

    Emissivity,characterisicof surface, 1 e

    Constant independentof surface

    Temperature onabsolute scale

  • 8/13/2019 Radiasi 12 13

    32/64

    STEFAN-BOLTZMANN LAW If a body is in thermal equilibrium with its

    surroundings, it must absorb and admit thesame amount of radiant energy(otherwise

    Danar - PTM UNS 32

    A blackbody is a perfect absorber so if it is

    emitting thermal radiation we must have

    e=1

  • 8/13/2019 Radiasi 12 13

    33/64

    STEFAN-BOLTZMANN LAW Stefan-Boltzmann law: the maximum rate

    of radiation that can be emitted from asurface at an absolute temperature T s is

    Danar - PTM UNS 33

    : Stefan-Boltzmann constant=5.67x10 -8 W/m 2K4

    )(4max, W AT Q semit =&

  • 8/13/2019 Radiasi 12 13

    34/64

    STEFAN-BOLTZMANN LAW The radiation emitted by all real surfaces

    is less than the radiation emitted by ablackbody at the same temperature, and isexpressed as

    Danar - PTM UNS 34

    : the emissivity of the surface ( ) =1 for blackbody

    )(4 W AT Q semit =&10

  • 8/13/2019 Radiasi 12 13

    35/64

    STEFAN-BOLTZMANN LAW Absorptivity, : the fraction of the radiation

    energy incident on a surface that isabsorbed by the surface. 10

    Danar - PTM UNS 35

    A blackbody absorbs the entire radiationincident on it, i.e., =1

  • 8/13/2019 Radiasi 12 13

    36/64

  • 8/13/2019 Radiasi 12 13

    37/64

    Radiation heat transfer between a surface

    and the surfaces surrrounding it

    Danar - PTM UNS 37

  • 8/13/2019 Radiasi 12 13

    38/64

    Heat loss from a person

    Danar - PTM UNS 38

  • 8/13/2019 Radiasi 12 13

    39/64

    )( 44 surr S S rad T T AQ =

    )(

    = T T AhQ S S combined total

    Danar - PTM UNS 39

    Combined heat transfer coefficient includes effects of bothconvection and radiation in such an example and conductionheat transfer may be neglected.

  • 8/13/2019 Radiasi 12 13

    40/64

  • 8/13/2019 Radiasi 12 13

    41/64

    Blackbody radiation

    Danar - PTM UNS 41

    Blackbody radiation represents the maximum amountof radiation that can be emitted from a surface at aspecified temperature. Stefan-Boltzmann law.

  • 8/13/2019 Radiasi 12 13

    42/64

    Blackbody Radiation "Blackbody radiation" refers to an object or

    system which absorbs all radiation incidentupon it and re-radiates energy which is

    Danar - PTM UNS 42

    ,not dependent upon the type of radiationwhich is incident upon it. The radiatedenergy can be considered to be producedby standing wave or resonant modes ofthe cavity which is radiating.

  • 8/13/2019 Radiasi 12 13

    43/64

    Cavity = Blackbody Radiation The radiation emitted from a cavity through a small hole

    ("cavity radiation") is very close to the theoretical

    blackbody curve for the same temperature. In the cavity,the radiation is in equilibrium with the material - most ofthe radiation stays inside the cavity, being continuallyemitted and re-absorbed by the walls.

    Danar - PTM UNS 43

    Radiation emitted from the outer surface of a materialwill not necessarily be fully thermalized - somefrequencies corresponding to certain transitions of thematerial, will be emitted preferentially. So, the blackbodycurve is not material-specific, but the actual emissionfrom an object will be.

    Cavity radiation will depend less on the material, and thesmaller the hole, the closer it will correspond to thetheoretical blackbody curve.

  • 8/13/2019 Radiasi 12 13

    44/64

    Black Body Radiation A black body: Is a model of a perfect radiator.

    Absorbs all energy that reaches it; reflects nothing. Therefore

    The energy emitted by a black body is the theoretical.0,1 ===

    Danar - PTM UNS 44

    maximum: This is Stefan-Boltzmann law; is the Stefan-Boltzmannconstant (5.6697E-8 W/m 2K4).

    The wavelength at which the maximum amount ofradiation occurs is given by Wiens law:

    Typical wavelengths are max = 10 m (far infrared) atroom temperature and max = 0.5 m (green) at 6000K.

    4

    T q =

    [mK]32.898E =T max

  • 8/13/2019 Radiasi 12 13

    45/64

    Blackbody Radiation

    Danar - PTM UNS 45

  • 8/13/2019 Radiasi 12 13

    46/64

    Real body4T =

    The net radiant exchange is

    )( 424

    1emittednet, T T

    A

    Danar - PTM UNS 46

    Radiation in an enclosure

    )( 424

    111 T T A =

    The Radiation Shape Factor (View Factor)

  • 8/13/2019 Radiasi 12 13

    47/64

    The Radiation Shape Factor (View Factor)

    Danar - PTM UNS 47

    2122121121

    212212

    121121

    b b

    b

    b

    E F A E F AQ

    E F AQ E F AQ

    =

    =

    =

    &

    &&

  • 8/13/2019 Radiasi 12 13

    48/64

    Although there are three mechanisms of

    heat transfer, a medium may involve onlytwo of them simultaneously

    Solids: conduction and radiationFluids:

    conduction and radiation no motion

    Danar - PTM UNS 48

    Heat transfer through a vacuumis by radiation only

    convection and radiation (in motion)conduction and convection (no radiation)

    Blacken of Common Engineering Materials

  • 8/13/2019 Radiasi 12 13

    49/64

    material T,[ ]

    red brick 20 0.93

    fire brick 0.8 0.9

    steel (oxidized) 200 600 0.8

    steel (polished) 940 1100 0.55 0.61

    Blacken of Common Engineering Materials

    Danar - PTM UNS 49

    aluminum (oxidized) 200 600 0.11 0.19

    aluminum (polished) 225 575 0.039 0.057

    copper (oxidized) 200 600 0.57 0.87

    copper (polished) 0.03

    casting iron (oxidized) 200 600 0.64 0.78

    casting iron (polished) 330 910 0.6 0.7

  • 8/13/2019 Radiasi 12 13

    50/64

    IR images

    Danar - PTM UNS 50

  • 8/13/2019 Radiasi 12 13

    51/64

    IR Images

    Some materials aretransparent to infrared light,while opaque to visible light(note the plastic bag).

    Danar - PTM UNS 51

    Other materials aretransparent to visible light,while opaque or reflective to

    the infrared (note the man'sglasses)

    IR images

  • 8/13/2019 Radiasi 12 13

    52/64

    IR images

    Danar - PTM UNS 52

  • 8/13/2019 Radiasi 12 13

    53/64

    IR images

  • 8/13/2019 Radiasi 12 13

    54/64

    IR images

    Danar - PTM UNS 54

    Shown above is an Infrared Map of the Earth. Red areasrepresent regions of high heat retention in the atmosphere.

  • 8/13/2019 Radiasi 12 13

    55/64

    IR images

    Danar - PTM UNS 55

    Thermal Radiation

  • 8/13/2019 Radiasi 12 13

    56/64

    Thermal Radiation

    Danar - PTM UNS 56

  • 8/13/2019 Radiasi 12 13

    57/64

    Thermal Radiation

    Danar - PTM UNS 57

  • 8/13/2019 Radiasi 12 13

    58/64

    Thermal Radiation

    Danar - PTM UNS 58

    Different ways of reducing heat transferb t t i th l l t d th i

  • 8/13/2019 Radiasi 12 13

    59/64

    between two isothermal plates, and theireffectivenesses

    Danar - PTM UNS 59

    Different ways of reducing heat transferbet een t o isothermal plates and their

  • 8/13/2019 Radiasi 12 13

    60/64

    between two isothermal plates, and theireffectivenesses

    Danar - PTM UNS 60

    Thermal radiationThermal radiation is one kinds of the electromagnetic

  • 8/13/2019 Radiasi 12 13

    61/64

    =c

    Thermal radiation is one kinds of the electromagnetic

    radiation, so it is propagated at the speed of light, 3 10m/s.The following relation holds

    The propagation of thermal radiation takes place in the form ofdiscrete quanta, each quantum having an energy of

    where c speed of light wavelength frequency

    61

    E = = . - .s s anc s constant

    hmc E == 2relativistic relation between mass and energy

    2 / chm = ch

    ch

    c ==

    2momentum

    Stefan-Boltzmann Law4T E b =

    E b is called the emissive power of a blackbody , the energyradiated per unit time and per unit area by a black body

    T is the surface absolute temperature

    K) W/(m10669.5 28=

    Electromagnetic Spectrum

  • 8/13/2019 Radiasi 12 13

    62/64

    g p

    62

    Cosmic rays up to 4 10 -7 mGamma rays 4 10 -7 to 1.4 10 -4 mX-rays 1 10 -5 to 2 10 -2 mUltraviolet rays 1 10 -2 to 3.9 10 -4 m

    Visible light 0.38 to 0.76 mInfrared rays 0.76 to 1000 mRadio and 1000 to 2 10 10 mHertzian wavesHeat rays 0.1 to 100 m

  • 8/13/2019 Radiasi 12 13

    63/64

    Thermal radiation 0.1100mVisible light 0.35-0.75(0.380.76 )m

    most body on the earth

  • 8/13/2019 Radiasi 12 13

    64/64

    Danar - PTM UNS 64