42
1 R R - - Estimation for Estimation for Allpass Allpass Time Series Models Time Series Models Richard A. Davis Department of Statistics Colorado State University http://www.stat.colostate.edu/~rdavis/lectures/ Joint work with Beth Andrews, Colorado State University Jay Breidt, Colorado State University

R-Estimation for Allpass Time Series Modelsrdavis/lectures/Wollongong_03.pdf · R-Estimation for Allpass Time Series Models ... 0 1020 3040 Lag ACF 0.0 0.2 0.4 0.6 0.8 1.0 (b) ACF,

  • Upload
    ngodung

  • View
    218

  • Download
    3

Embed Size (px)

Citation preview

Page 1: R-Estimation for Allpass Time Series Modelsrdavis/lectures/Wollongong_03.pdf · R-Estimation for Allpass Time Series Models ... 0 1020 3040 Lag ACF 0.0 0.2 0.4 0.6 0.8 1.0 (b) ACF,

1

RR--Estimation forEstimation for AllpassAllpass Time Series ModelsTime Series Models

Richard A. Davis

Department of StatisticsColorado State University

http://www.stat.colostate.edu/~rdavis/lectures/

Joint work with Beth Andrews, Colorado State UniversityJay Breidt, Colorado State University

Page 2: R-Estimation for Allpass Time Series Modelsrdavis/lectures/Wollongong_03.pdf · R-Estimation for Allpass Time Series Models ... 0 1020 3040 Lag ACF 0.0 0.2 0.4 0.6 0.8 1.0 (b) ACF,

2

Introduction• properties of financial time series• motivating example • all-pass models and their properties

Estimation• likelihood approximation• MLE, R-estimation, and LAD• asymptotic results• order selection

Empirical results• simulation

Noninvertible MA processespreliminariesa two-step estimation procedureMicrosoft trading volume

Summary

Page 3: R-Estimation for Allpass Time Series Modelsrdavis/lectures/Wollongong_03.pdf · R-Estimation for Allpass Time Series Models ... 0 1020 3040 Lag ACF 0.0 0.2 0.4 0.6 0.8 1.0 (b) ACF,

3

Financial Time SeriesLog returns, Xt = 100*(ln (Pt) - ln (Pt-1)), of financial assets often exhibit:

• heavy-tailed marginal distributionsP(|X1| > x) ~ C x−α, 0 < α < 4.

• lack of serial correlationnear 0 for all lags h > 0 (MGD sequence)

• |Xt| and Xt2 have slowly decaying autocorrelations

converge to 0 slowly as h → ∞

• process exhibits ‘stochastic volatility’

)(ˆ hXρ

)(ˆ and )(ˆ 2|| hh XX ρρ

Nonlinear models Xt = σtZt , {Zt} ~ IID(0,1)

• ARCH and its variants (Engle `82; Bollerslev, Chou, and Kroner 1992)

• Stochastic volatility (Clark 1973; Taylor 1986)

Page 4: R-Estimation for Allpass Time Series Modelsrdavis/lectures/Wollongong_03.pdf · R-Estimation for Allpass Time Series Models ... 0 1020 3040 Lag ACF 0.0 0.2 0.4 0.6 0.8 1.0 (b) ACF,

40 10 20 30 40

Lag

0.0

0.2

0.4

0.6

0.8

1.0

AC

F

(a) ACF, Squares of IBM (1st half)

0 10 20 30 40

Lag

0.0

0.2

0.4

0.6

0.8

1.0

AC

F

(b) ACF, Squares of IBM (2nd half)1962 1967 1972 1977 1982 1987 1992 1997

time

-20

-10

010

100*

log(

retu

rns)

Log returns for IBM 1/3/62 – 11/3/00 (blue = 1961-1981)

Page 5: R-Estimation for Allpass Time Series Modelsrdavis/lectures/Wollongong_03.pdf · R-Estimation for Allpass Time Series Models ... 0 1020 3040 Lag ACF 0.0 0.2 0.4 0.6 0.8 1.0 (b) ACF,

5

All-pass model of order 2 (t3 noise )

0 1 0 2 0 3 0 4 0

0.0

0.2

0.4

0.6

0.8

1.0

L a g

AC

F

A C F : (a llp a s s )2

0 1 0 2 0 3 0 4 0

0.0

0.2

0.4

0.6

0.8

1.0

L a g

AC

F

A C F : (a llp a s s )

modelsample

t

X(t)

0 200 400 600 800 1000

-30

-20

-10

010

20

Page 6: R-Estimation for Allpass Time Series Modelsrdavis/lectures/Wollongong_03.pdf · R-Estimation for Allpass Time Series Models ... 0 1020 3040 Lag ACF 0.0 0.2 0.4 0.6 0.8 1.0 (b) ACF,

6

All-pass Models

Causal AR polynomial: φ(z)=1−φ1z − − φpzp , φ(z) ≠ 0 for |z|≤1.

Define MA polynomial:

θ(z) = −zp φ(z−1)/φp = −(zp −φ1zp-1 − − φp)/ φp

≠ 0 for |z|≥1 (MA polynomial is non-invertible).

Model for data {Xt} : φ(B)Xt = θ(B) Zt , {Zt} ~ IID (non-Gaussian)

BkXt = Xt-k

Examples:

All-pass(1): Xt − φ Xt-1 = Zt − φ−1 Zt-1 , | φ | < 1.

All-pass(2): Xt − φ1 Xt-1 − φ2 Xt-2 = Zt + φ1/ φ2 Zt-1 − 1/ φ2 Zt-2

L

L

Page 7: R-Estimation for Allpass Time Series Modelsrdavis/lectures/Wollongong_03.pdf · R-Estimation for Allpass Time Series Models ... 0 1020 3040 Lag ACF 0.0 0.2 0.4 0.6 0.8 1.0 (b) ACF,

7

Properties:• causal, non-invertible ARMA with MA representation

• uncorrelated (flat spectrum)

• zero mean• data are dependent if noise is non-Gaussian

(e.g. Breidt & Davis 1991).• squares and absolute values are correlated.

• Xt is heavy-tailed if noise is heavy-tailed.

πφσ

σ

φφ

φ=ω

ω−

ωω−

22)(

)()( 2

22

22

22

pi

p

iip

Xe

eef

jt0j

jtp

1

t )()(

=

∑ψ=φφ−

φ= ZZ

BBBX

p

jt0j

jtp

1

t )()(

=

∑ψ=φφ−

φ= ZZ

BBBX

p

πφσ

σ

φφ

φ=ω

ω−

ωω−

22)(

)()( 2

22

22

22

pi

p

iip

Xe

eef

Page 8: R-Estimation for Allpass Time Series Modelsrdavis/lectures/Wollongong_03.pdf · R-Estimation for Allpass Time Series Models ... 0 1020 3040 Lag ACF 0.0 0.2 0.4 0.6 0.8 1.0 (b) ACF,

8

Second-order moment techniques do not work

• least squares

• Gaussian likelihood

Higher-order cumulant methods

• Giannakis and Swami (1990)

• Chi and Kung (1995)

Non-Gaussian likelihood methods

• likelihood approximation assuming known density

• quasi-likelihood

Other

• LAD- least absolute deviation

• R-estimation (minimum dispersion)

Estimation for All-Pass Models

Page 9: R-Estimation for Allpass Time Series Modelsrdavis/lectures/Wollongong_03.pdf · R-Estimation for Allpass Time Series Models ... 0 1020 3040 Lag ACF 0.0 0.2 0.4 0.6 0.8 1.0 (b) ACF,

9

Approximating the likelihoodData: (X1, . . ., Xn)

Model:

where φ0r is the last non-zero coefficient among the φ0j’s.

Noise:

where zt =Zt / φ0r.

More generally define,

Note: zt(φ0) is a close approximation to zt (initialization error)

rtpptpt

ptptt

ZZZ

XXX

00101

0101

/)( φφ−−φ−−

φ++φ=

+−−

−−

L

L

),( 01010101 ptptttpptpt XXXzzz −−+−− φ−−φ−−φ++φ= LL

⎩⎨⎧

+=φ−φ++φ++=

=+−

− .1,..., if ,)()()(,1,..., if ,0

)(11 pntXBzz

npntz

ttpptpt φφ

φL

rtpptpt

ptptt

ZZZ

XXX

00101

0101

/)( φφ−−φ−−

φ++φ=

+−−

−−

L

L

),( 01010101 ptptttpptpt XXXzzz −−+−− φ−−φ−−φ++φ= LL

⎩⎨⎧

+=φ−φ++φ++=

=+−

− .1,..., if ,)()()(,1,..., if ,0

)(11 pntXBzz

npntz

ttpptpt φφ

φL

Page 10: R-Estimation for Allpass Time Series Modelsrdavis/lectures/Wollongong_03.pdf · R-Estimation for Allpass Time Series Models ... 0 1020 3040 Lag ACF 0.0 0.2 0.4 0.6 0.8 1.0 (b) ACF,

11

Log-likelihood:

where fσ(z)= σ−1 f(z/σ).

Least absolute deviations: choose Laplace density

and log-likelihood becomes

Concentrated Laplacian likelihood

Maximizing l(φ) is equivalent to minimizing the absolute deviations

))((ln|)|/ln()(),(1

1 φφ ∑−

=

− φσ+φσ−−=σpn

ttqq zfpnL

|)|2exp(2

1)( zzf −=

||/ ,/|)(|2ln)(constant1

q

pn

ttzpn φσ=κκ−κ−− ∑

=

φ

|)(|ln)(constant)(1

φφ ∑−

=

−−=pn

ttzpnl

.|)(|)(1

n φφ ∑−

=

=pn

ttzm

|)|2exp(2

1)( zzf −=

||/ ,/|)(|2ln)(constant1

q

pn

ttzpn φσ=κκ−κ−− ∑

=

φ

|)(|ln)(constant)(1

φφ ∑−

=

−−=pn

ttzpnl

.|)(|)(1

n φφ ∑−

=

=pn

ttzm

))((ln|)|/ln()(),(1

1 φφ ∑−

=

− φσ+φσ−−=σpn

ttqq zfpnL

Page 11: R-Estimation for Allpass Time Series Modelsrdavis/lectures/Wollongong_03.pdf · R-Estimation for Allpass Time Series Models ... 0 1020 3040 Lag ACF 0.0 0.2 0.4 0.6 0.8 1.0 (b) ACF,

12

Assumptions for MLE

Assume {Zt} iid fσ(z)=σ−1f(σ−1z) with

• σ a scale parameter

• mean 0, variance σ2

• further smoothness assumptions (integrability,symmetry, etc.) on f

• Fisher information:

dzzfzfI )(/))('(~ 22 ∫−σ=

Page 12: R-Estimation for Allpass Time Series Modelsrdavis/lectures/Wollongong_03.pdf · R-Estimation for Allpass Time Series Models ... 0 1020 3040 Lag ACF 0.0 0.2 0.4 0.6 0.8 1.0 (b) ACF,

13

Assumptions for MLE

Assume {Zt} iid fσ(z)=σ−1f(σ−1z) with

• σ a scale parameter

• mean 0, variance σ2

• further smoothness assumptions (integrability,symmetry, etc.) on f

• Fisher information:

Results

Let γ(h) = ACVF of AR model with AR poly φ0(.) and

dzzfzfI )(/))('(~ 22 ∫−σ=

p1kj,k)]-j([ =γ=Γp

))1~(2

1,0() ˆ( 1220MLE

−Γσ−σ

→− p

D

INn φφ

Page 13: R-Estimation for Allpass Time Series Modelsrdavis/lectures/Wollongong_03.pdf · R-Estimation for Allpass Time Series Models ... 0 1020 3040 Lag ACF 0.0 0.2 0.4 0.6 0.8 1.0 (b) ACF,

14

Further comments on MLE

Let α=(φ1, . . . , φp, σ /|φp|, β1, . . . , βq), where β1, . . . , βq are theparameters of pdf f.

Set

(Fisher Information)

{ }

dzzfzfzf

dzzfzfzfz

dzzfzfz

dzzfzf

T

f

p

p

0

0

0

0

00

0

0

0

0

00

00

ββ

ββ

ββ

ββ

ββ

ββ

ββ

∂∂

∂∂

=

∂∂

α−=

−α=

σ=

∫∫

−+

−+

);();();(

1)(I

);();();('L

1);(/));('(K

);(/));('(I

11,0

2221,0

220

Page 14: R-Estimation for Allpass Time Series Modelsrdavis/lectures/Wollongong_03.pdf · R-Estimation for Allpass Time Series Models ... 0 1020 3040 Lag ACF 0.0 0.2 0.4 0.6 0.8 1.0 (b) ACF,

15

Under smoothness conditions on f wrt β1, . . . , βq we have

where

Note: is asymptotically independent of and

),,0() ˆ( 10MLE

−∑→− NnD

αα

⎥⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢⎢

−−−−−−

Γσ−σ

=∑−−−−−

−−−−−

11111

11111

1220

1

)'ˆ(ˆ)'ˆ()'ˆ('ˆ)'ˆ(

)1ˆ(21

LKLIKLLKLILKLILKLILK

I

ff

ff

p

00

00

ˆMLEφ ˆ MLE1,p+α ˆ

MLEβ

Page 15: R-Estimation for Allpass Time Series Modelsrdavis/lectures/Wollongong_03.pdf · R-Estimation for Allpass Time Series Models ... 0 1020 3040 Lag ACF 0.0 0.2 0.4 0.6 0.8 1.0 (b) ACF,

16

Asymptotic Covariance Matrix• For LS estimators of AR(p):

• For LAD estimators of AR(p):

• For LAD estimators of AP(p):

• For MLE estimators of AP(p):

),0() ˆ( 120LS

−Γσ→− p

DNn φφ

))0(4

1,0() ˆ( 12220LAD

−Γσσ

→− p

D

fNn φφ

))1ˆ(2

1,0() ˆ( 1220MLE

−Γσ−σ

→− p

D

INn φφ

)|)|)0(2(2

|)(|Var,0() ˆ( 122

12

10LAD

σ

Γσ−σ

→− p

D

ZEfZNn φφ

),0() ˆ( 120LS

−Γσ→− p

DNn φφ

))0(4

1,0() ˆ( 12220LAD

−Γσσ

→− p

D

fNn φφ

)|)|)0(2(2

|)(|Var,0() ˆ( 122

12

10LAD

σ

Γσ−σ

→− p

D

ZEfZNn φφ

))1ˆ(2

1,0() ˆ( 1220MLE

−Γσ−σ

→− p

D

INn φφ

Page 16: R-Estimation for Allpass Time Series Modelsrdavis/lectures/Wollongong_03.pdf · R-Estimation for Allpass Time Series Models ... 0 1020 3040 Lag ACF 0.0 0.2 0.4 0.6 0.8 1.0 (b) ACF,

17

Laplace: (LAD=MLE)

Students tν, ν >2:

LAD:

MLE:

Student’s t3: LAD: .7337

MLE: 0.5

ARE: .7337/.5=1.4674

)1ˆ(21

21

|)|)0(2(2|)(|Var

221

21

−σ==

−σ σ IZEfZ

))2/)1(()2(4)2/()1(()2/)1((8

)2( 2222 +νΓ−ν−νΓ−νπ

+νΓ−ν

12)3)(2(

)1ˆ(21

2

+ν−ν=

−σ I

)1ˆ(21

21

|)|)0(2(2|)(|Var

221

21

−σ==

−σ σ IZEfZ

))2/)1(()2(4)2/()1(()2/)1((8

)2( 2222 +νΓ−ν−νΓ−νπ

+νΓ−ν

12)3)(2(

)1ˆ(21

2

+ν−ν=

−σ I

Page 17: R-Estimation for Allpass Time Series Modelsrdavis/lectures/Wollongong_03.pdf · R-Estimation for Allpass Time Series Models ... 0 1020 3040 Lag ACF 0.0 0.2 0.4 0.6 0.8 1.0 (b) ACF,

18

R-Estimation:

Minimize the objective function

where {z(t)(φ)} are the ordered {zt(φ)}, and the weight function ϕ satisfies:

• ϕ is differentiable and nondecreasing on (0,1)

• ϕ´ is uniformly continuous

• ϕ(x) = −ϕ(1−x)

)(1

( )(1t

φφ) t

pn

zpntS ∑

=⎟⎟⎠

⎞⎜⎜⎝

⎛+−

ϕ=

Page 18: R-Estimation for Allpass Time Series Modelsrdavis/lectures/Wollongong_03.pdf · R-Estimation for Allpass Time Series Models ... 0 1020 3040 Lag ACF 0.0 0.2 0.4 0.6 0.8 1.0 (b) ACF,

19

R-Estimation:

Minimize the objective function

where {z(t)(φ)} are the ordered {zt(φ)}, and the weight function ϕ satisfies:

• ϕ is differentiable and nondecreasing on (0,1)

• ϕ´ is uniformly continuous

• ϕ(x) = −ϕ(1−x)

Remarks:

• For LAD, take

)(1

( )(1t

φφ) t

pn

zpntS ∑

=⎟⎟⎠

⎞⎜⎜⎝

⎛+−

ϕ=

)(1

((1t

φφ)

φ) t

pnt zpn

RS ∑−

=⎟⎟⎠

⎞⎜⎜⎝

⎛+−

ϕ=

1.x1/2 1,

1/2,x0 1,-)(

⎩⎨⎧

<<<<

=ϕ x

Page 19: R-Estimation for Allpass Time Series Modelsrdavis/lectures/Wollongong_03.pdf · R-Estimation for Allpass Time Series Models ... 0 1020 3040 Lag ACF 0.0 0.2 0.4 0.6 0.8 1.0 (b) ACF,

20

Assumptions for R-estimation

Assume {Zt} iid with density function f (distr F)

• mean 0, variance σ2

Assume weight function ϕ is nondecreasing and continuously differentiable with ϕ(x) = −ϕ(1−x)

Page 20: R-Estimation for Allpass Time Series Modelsrdavis/lectures/Wollongong_03.pdf · R-Estimation for Allpass Time Series Models ... 0 1020 3040 Lag ACF 0.0 0.2 0.4 0.6 0.8 1.0 (b) ACF,

21

Assumptions for R-estimation

Assume {Zt} iid with density function f (distr F)

• mean 0, variance σ2

Assume weight function ϕ is nondecreasing and continuously differentiable with ϕ(x) = −ϕ(1−x)

Results

Set

If then

∫∫∫ ϕ=ϕ=ϕ= −−1

0

11

0

11

0

2 )('))((L~ ,)()(K~ ,)(J~ dsssFfdsssFdss

))~~(2

~~,0() ˆ( 12

22

22

0R−Γσ

−σ−σ

→− p

D

KLKJNn φφ

,~~2 KL >σ

Page 21: R-Estimation for Allpass Time Series Modelsrdavis/lectures/Wollongong_03.pdf · R-Estimation for Allpass Time Series Models ... 0 1020 3040 Lag ACF 0.0 0.2 0.4 0.6 0.8 1.0 (b) ACF,

22

Further comments on R-estimation

ϕ(x) = x−1/2 is called the Wilcoxon weight function

By formally choosing we obtain

That is R = LAD, asymptotically.

The R-estimation objective function is smoother than the LAD-objective function and hence easier to minimize.

1.x1/2 1,

1/2,x0 1,-)(

⎩⎨⎧

<<<<

=ϕ x

.|)|)0(2(2

|)(|Var)~~(2

~~12

21

2112

22

22−

σ

− Γσ−σ

=Γσ−σ

−σpp ZEf

ZKL

KJ

1.x1/2 1,

1/2,x0 1,-)(

⎩⎨⎧

<<<<

=ϕ x

.|)|)0(2(2

|)(|Var)~~(2

~~12

21

2112

22

22−

σ

− Γσ−σ

=Γσ−σ

−σpp ZEf

ZKL

KJ

Page 22: R-Estimation for Allpass Time Series Modelsrdavis/lectures/Wollongong_03.pdf · R-Estimation for Allpass Time Series Models ... 0 1020 3040 Lag ACF 0.0 0.2 0.4 0.6 0.8 1.0 (b) ACF,

23phi

-0.5 0.0 0.5

22.0

22.5

23.0

23.5

24.0

24.5

Objective Functions

R-estimation

LAD

Page 23: R-Estimation for Allpass Time Series Modelsrdavis/lectures/Wollongong_03.pdf · R-Estimation for Allpass Time Series Models ... 0 1020 3040 Lag ACF 0.0 0.2 0.4 0.6 0.8 1.0 (b) ACF,

24

Summary of asymptotics

Maximum likelihood:

R-estimation

Least absolute deviations:

))1~(2

1,0() ˆ( 1220MLE

−Γσ−σ

→− p

D

INn φφ

)|)|)0(2(2

|)(|Var,0() ˆ( 122

12

10LAD

σ

Γσ−σ

→− p

D

ZEfZNn φφ

))~~(2

~~,0() ˆ( 12

22

22

0R−Γσ

−σ−σ

→− p

D

KLKJNn φφ

Page 24: R-Estimation for Allpass Time Series Modelsrdavis/lectures/Wollongong_03.pdf · R-Estimation for Allpass Time Series Models ... 0 1020 3040 Lag ACF 0.0 0.2 0.4 0.6 0.8 1.0 (b) ACF,

25

Laplace: (LAD=MLE)

R: (using ϕ(x) = x−1/2, Wilcoxon)

LAD=MLE: 1/2

Students tν:

65

)~~(2

~~22

22

=−σ

−σKL

KJ

ν LAD R MLE LAD/R MLE/R3 .733 .520 .500 1.411 .9626 6.22 3.01 3.00 2.068 .9979 16.8 7.15 7.00 2.354 .98012 32.6 13.0 12.5 2.510 .96415 53.4 20.5 19.5 2.607 .95220 99.6 36.8 34.5 2.707 .93730 234 83.6 77.0 2.810 .921

Page 25: R-Estimation for Allpass Time Series Modelsrdavis/lectures/Wollongong_03.pdf · R-Estimation for Allpass Time Series Models ... 0 1020 3040 Lag ACF 0.0 0.2 0.4 0.6 0.8 1.0 (b) ACF,

26

Central Limit Theorem (R-estimation)

• Think of u = n1/2(φ−φ0) as an element of RRp

• Define

where Rt(φ) is the rank of zt(φ) among z1(φ), . . ., zn-p(φ).

• Then Sn(u) → S(u) in distribution on C(RRp), where

• Hence,

,)()1) ((- )()

1) (()(

10

0

1

1/2-0

-1/20 ∑∑

=

=⎟⎟⎠

⎞⎜⎜⎝

⎛+−

ϕ⎟⎟⎠

⎞⎜⎜⎝

⎛+

+−+

ϕ=pn

tt

tpn

tt

tn z

pnRnz

pnnRS φ

φφ

φ uuu

),||)~~(2 ,(~ ,'')~~(||)( 220

222210 prpr KJNKLS Γσφ−σ+Γσ−σφ= −−−− 0NNuuuu

)||)~~(2

~~,(~

)~~(2||

)(minarg)ˆ()(minarg

122

022

2212

20

02/1

−− Γσφ−σ

−σΓσ

−σφ

−=

→−=

pr

pr

D

Rn

KLKJN

KL

SnS

0N

uu φφ

Page 26: R-Estimation for Allpass Time Series Modelsrdavis/lectures/Wollongong_03.pdf · R-Estimation for Allpass Time Series Models ... 0 1020 3040 Lag ACF 0.0 0.2 0.4 0.6 0.8 1.0 (b) ACF,

28

Order Selection:

Partial ACF From the previous result, if true model is of order r and fitted model is of order p > r, then

where is the pth element of .

Procedure:

1. Fit high order (P-th order), obtain residuals and estimate the scalar,

by empirical moments of residuals and density estimates.

))~~(2

~~,0(ˆ

22

22

,2/1

KLKJNn Rp −σ

−σ→φ

Rp,φ Rφ

22

222

)~~(2

~~

KLKJ

−σ−σ

Page 27: R-Estimation for Allpass Time Series Modelsrdavis/lectures/Wollongong_03.pdf · R-Estimation for Allpass Time Series Models ... 0 1020 3040 Lag ACF 0.0 0.2 0.4 0.6 0.8 1.0 (b) ACF,

29

2. Fit AP models of order p=1,2, . . . , P via LAD and obtain p-th

coefficient for each.

3. Choose model order r as the smallest order beyond which the

estimated coefficients are statistically insignificant.

pp,φ

Page 28: R-Estimation for Allpass Time Series Modelsrdavis/lectures/Wollongong_03.pdf · R-Estimation for Allpass Time Series Models ... 0 1020 3040 Lag ACF 0.0 0.2 0.4 0.6 0.8 1.0 (b) ACF,

31

Sample realization of all-pass of order 2

t

X(t)

0 100 200 300 400 500

-40

-20

020

(a) Data From Allpass Model

Lag

AC

F

0 10 20 30 40

0.0

0.2

0.4

0.6

0.8

1.0

(b) ACF of Allpass Data

Lag

AC

F

0 10 20 30 40

0.0

0.2

0.4

0.6

0.8

1.0

(c) ACF of Squares

Lag

AC

F

0 10 20 30 40

0.0

0.2

0.4

0.6

0.8

1.0

(d) ACF of Absolute Values

Page 29: R-Estimation for Allpass Time Series Modelsrdavis/lectures/Wollongong_03.pdf · R-Estimation for Allpass Time Series Models ... 0 1020 3040 Lag ACF 0.0 0.2 0.4 0.6 0.8 1.0 (b) ACF,

32

Simulation results:

• 1000 replicates of all-pass models

• model order parameter value 1 φ1 =.52 φ1=.3, φ2=.4

• noise distribution is t with 3 d.f.

• sample sizes n=500, 5000

• estimation method is LAD

Page 30: R-Estimation for Allpass Time Series Modelsrdavis/lectures/Wollongong_03.pdf · R-Estimation for Allpass Time Series Models ... 0 1020 3040 Lag ACF 0.0 0.2 0.4 0.6 0.8 1.0 (b) ACF,

33

To guard against being trapped in local minima, we adopted the following strategy.

• 250 random starting values were chosen at random. For model of order p, k-th starting value was computed recursively as follows:

1. Draw iid uniform (-1,1).2. For j=2, …, p, compute

• Select top 10 based on minimum function evaluation.

• Run Hooke and Jeeves with each of the 10 starting values and choose best optimized value.

)()(22

)(11 ,...,, k

ppkk φφφ

⎥⎥⎥

⎢⎢⎢

φ

φφ−

⎥⎥⎥

⎢⎢⎢

φ

φ=

⎥⎥⎥

⎢⎢⎢

φ

φ

−−

−−

−)(

1,1

)(1,1

)(

)(1,1

)(1,1

)(1,

)(1

kj

kjj

kjj

kjj

kj

kjj

kj

MMM

Page 31: R-Estimation for Allpass Time Series Modelsrdavis/lectures/Wollongong_03.pdf · R-Estimation for Allpass Time Series Models ... 0 1020 3040 Lag ACF 0.0 0.2 0.4 0.6 0.8 1.0 (b) ACF,

34

Asymptotic EmpiricalN mean std dev mean std dev %coverage rel eff*500 φ1=.5 .0332 .4979 .0397 94.2 11.85000 φ1=.5 .0105 .4998 .0109 95.4 9.3

Asymptotic EmpiricalN mean std dev mean std dev %coverage500 φ1=.3 .0351 .2990 .0456 92.5

φ2=.4 .0351 .3965 .0447 92.15000 φ1=.3 .0111 .3003 .0118 95.5

φ2=.4 .0111 .3990 .0117 94.7

*Efficiency relative to maximum absolute residual kurtosis:2

12

1t

4

2/12

))()((1 , 3)(1φφ

φ zzpn

vvz

pn t

pn

t

pnt −

−=−⎟⎟

⎞⎜⎜⎝

⎛− ∑∑

=

=

Page 32: R-Estimation for Allpass Time Series Modelsrdavis/lectures/Wollongong_03.pdf · R-Estimation for Allpass Time Series Models ... 0 1020 3040 Lag ACF 0.0 0.2 0.4 0.6 0.8 1.0 (b) ACF,

35

Asymptotic EmpiricalN mean std dev mean std dev %coverage 500 φ1=.5 .0274 .4971 .0315 93.0

ν=3.0 .4480 3.112 .5008 95.8 5000 φ1=.5 .0087 .4997 .0091 93.4

ν=3.0 .1417 3.008 .1533 94.0

Asymptotic EmpiricalN mean std dev mean std dev %coverage500 φ1=.3 .0290 .2993 .0345 90.6

φ2=.4 .0290 .3964 .0350 90.1ν=3.0 .4480 3.079 .4722 94.8

5000 φ1=.3 .0092 .2999 .0095 94.0φ2=.4 .0092 .3999 .0094 94.6ν=3.0 .1417 3.008 .1458 95.2

MLE Simulations Results using t-distr(3.0)

Page 33: R-Estimation for Allpass Time Series Modelsrdavis/lectures/Wollongong_03.pdf · R-Estimation for Allpass Time Series Models ... 0 1020 3040 Lag ACF 0.0 0.2 0.4 0.6 0.8 1.0 (b) ACF,

36

Empirical Empirical LADN mean std dev mean std dev500 φ1=.5 .4978 .0315 .4979 .03975000 φ1=.5 .4997 .0094 .4998 .0109500 φ1=.3 .2988 .0374 .2990 .0456

φ2=.4 .3957 .0360 .3965 .04475000 φ1=.3 .3007 .0101 .3003 .0118

φ2=.4 .3993 .0104 .3990 .0117

R-Estimation: Minimize the objective fcn

where {z(t)(φ)} are the ordered {zt(φ)}.

)(21

1( )(

1tφφ) t

pn

zpntS ∑

=⎟⎟⎠

⎞⎜⎜⎝

⎛−

+−=

Page 34: R-Estimation for Allpass Time Series Modelsrdavis/lectures/Wollongong_03.pdf · R-Estimation for Allpass Time Series Models ... 0 1020 3040 Lag ACF 0.0 0.2 0.4 0.6 0.8 1.0 (b) ACF,

37

Noninvertible MA models with heavy tailed noise

Xt = Zt + θ1 Zt-1 + + θq Zt-q ,

a. {Zt} ~ IID(α) with Pareto tails

b. θ(z) = 1 + θ1 z + + θq zq

No zeros inside the unit circle invertibleSome zero(s) inside the unit circle noninvertible

. . .

. . .

⇒⇒

Page 35: R-Estimation for Allpass Time Series Modelsrdavis/lectures/Wollongong_03.pdf · R-Estimation for Allpass Time Series Models ... 0 1020 3040 Lag ACF 0.0 0.2 0.4 0.6 0.8 1.0 (b) ACF,

38

Realizations of an invertible and noninvertible MA(2) processesModel: Xt = θ∗(B) Zt , {Zt} ~ IID(α = 1), whereθi(B) = (1 +1/2B)(1 + 1/3B) and θni(B) = (1 + 2B)(1 + 3B)

0 10 20 30 40

-40

-20

020

0 10 20 30 40

-300

-100

010

0

Lag

0 2 4 6 8 10

-0.2

0.2

0.6

1.0

ACF

Lag

0 2 4 6 8 10

-0.2

0.2

0.6

1.0

ACF

Page 36: R-Estimation for Allpass Time Series Modelsrdavis/lectures/Wollongong_03.pdf · R-Estimation for Allpass Time Series Models ... 0 1020 3040 Lag ACF 0.0 0.2 0.4 0.6 0.8 1.0 (b) ACF,

39

Application of all-pass to noninvertible MA model fitting

Suppose {Xt} follows the noninvertible MA model

Xt= θi(B) θni(B) Zt , {Zt} ~ IID.

Step 1: Let {Ut} be the residuals obtained by fitting a purely invertible MA model, i.e.,

So

Step 2: Fit a purely causal AP model to {Ut}

Z(B)~(B)U

). of version invertible theis ~( ,(B)U~(B)

(B)UˆX

tni

nit

ninitnii

tt

θθ

θθθθ≈

θ=

.(B)Z(B)U~tnitni θ=θ .(B)Z(B)U~

tnitni θ=θ

Z(B)~(B)U

). of version invertible theis ~( ,(B)U~(B)

(B)UˆX

tni

nit

ninitnii

tt

θθ

θθθθ≈

θ=

Page 37: R-Estimation for Allpass Time Series Modelsrdavis/lectures/Wollongong_03.pdf · R-Estimation for Allpass Time Series Models ... 0 1020 3040 Lag ACF 0.0 0.2 0.4 0.6 0.8 1.0 (b) ACF,

40

t

X(t)

0 200 400 600

2*10

56*

105

106

Volumes of Microsoft (MSFT) stock traded over 755 transaction days (6/3/96 to 5/28/99)

Page 38: R-Estimation for Allpass Time Series Modelsrdavis/lectures/Wollongong_03.pdf · R-Estimation for Allpass Time Series Models ... 0 1020 3040 Lag ACF 0.0 0.2 0.4 0.6 0.8 1.0 (b) ACF,

41

Analysis of MSFT:

Step 1: Log(volume) follows MA(4).

Xt =(1+.513B+.277B2+.270B3+.202B4) Ut (invertible MA(4))

Step 2: All-pass model of order 4 fitted to {Ut} using MLE (t-dist):

(Model using R-estimation is nearly the same.)

Conclude that {Xt} follows a noninvertible MA(4) which after refitting has the form:

Xt =(1+1.34B+1.374B2+2.54B3+4.96B4) Zt , {Zt}~IID t(6.3)

6.26)ˆ( .)ZB960.43.116B1.135BB649.1(

)U02B2..131BB229..628B1(

t432

t432

=ν−++−=

−+−+−

6.26)ˆ( .)ZB960.43.116B1.135BB649.1(

)U02B2..131BB229..628B1(

t432

t432

=ν−++−=

−+−+−

Page 39: R-Estimation for Allpass Time Series Modelsrdavis/lectures/Wollongong_03.pdf · R-Estimation for Allpass Time Series Models ... 0 1020 3040 Lag ACF 0.0 0.2 0.4 0.6 0.8 1.0 (b) ACF,

42

Lag

AC

F

0 10 20 30 40

0.0

0.4

0.8

(a) ACF of Squares of Ut

Lag

AC

F

0 10 20 30 40

0.0

0.4

0.8

(b) ACF of Absolute Values of Ut

Lag

AC

F

0 10 20 30 40

0.0

0.4

0.8

(c) ACF of Squares of Zt

Lag

AC

F

0 10 20 30 40

0.0

0.4

0.8

(d) ACF of Absolute Values of Zt

Page 40: R-Estimation for Allpass Time Series Modelsrdavis/lectures/Wollongong_03.pdf · R-Estimation for Allpass Time Series Models ... 0 1020 3040 Lag ACF 0.0 0.2 0.4 0.6 0.8 1.0 (b) ACF,

43

Summary: Microsoft Trading VolumeTwo-step fit of noninvertible MA(4):

• invertible MA(4): residuals not iid• causal AP(4); residuals iid

Direct fit of purely noninvertible MA(4):(1+1.34B+1.374B2+2.54B3+4.96B4)

For MCHP, invertible MA(4) fits.

Page 41: R-Estimation for Allpass Time Series Modelsrdavis/lectures/Wollongong_03.pdf · R-Estimation for Allpass Time Series Models ... 0 1020 3040 Lag ACF 0.0 0.2 0.4 0.6 0.8 1.0 (b) ACF,

44

SummaryAll-pass models and their properties

• linear time series with “nonlinear” behaviorEstimation

• likelihood approximation• MLE, LAD, R-estimation• order selection

Emprirical results• simulation study

Noninvertible moving average processes• two-step estimation procedure using all-pass• noninvertible MA(4) for Microsoft trading volume

Page 42: R-Estimation for Allpass Time Series Modelsrdavis/lectures/Wollongong_03.pdf · R-Estimation for Allpass Time Series Models ... 0 1020 3040 Lag ACF 0.0 0.2 0.4 0.6 0.8 1.0 (b) ACF,

45

Further WorkLeast absolute deviations

• further simulations• order selection• heavy-tailed case• other smooth objective functions (e.g., min dispersion)

Maximum likelihood• Gaussian mixtures• simulation studies• applications

Noninvertible moving average modeling• initial estimates from two-step all-pass procedure• adaptive procedures