74
Quality of water 20 Μαρτίου 2014 Following the quality of the water through the cycle Professor (e) T.D. Lekkas

Quality of water · Decrease in turbidity of the stored water in Mornos reservoir (U niv. Aegean-EYDAP) ΘΟΛΕΡΟΤΗΤΑ-1-0,5 0 0,5 1 1,5 2 2,5 3 Ιαν-97 Φεβ-97 Μαρ-97

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

  • Quality of water

    20 Μαρτίου 2014

    Following the quality of the water throughthe cycle

    Professor (e) T.D. Lekkas

  • We follow the change of quality of water as it flows fromreservoirs through channels to treatment plants, to pipenetwork and consumption, to sewerage and final waste

    treatment plant and discharge to see.

    • Quality of stored water• Quality of raw water –inflow to Treatment

    Plants• Quality of Treated/Tap Water• Quality of waste water to Athens Sewage

    Treatment Plants• Quality of Treated Water Discharged to see• Quality of Dried Sludge

  • Water sources and storage

  • • The quality of the water used for domesticsupply is affected by :

    • Catchment areas activities• Storage• Transport• Disinfection method• Treatment method• Practices of the supply network

  • • Effect of storage in quality

  • Change of Quality during storage

    • In water reservoirs we have Physical,Chemical, Biological processes

    • The water level fluctuation influences theseprocesses

    • Generally we expect Turbidity decrease, NO3increase, pH increase, COD increase

    • Rarely Harmful Algal Bloom

  • Mornos reservoirSchematic representation of the water system with indications of the

    sampling points.

    TURBIDITY

    -1

    -0,5

    0

    0,5

    1

    1,5

    2

    2,5

    3

    January-97

    March-97

    May-97

    July-97

    September-97

    November-97

    January-98

    March-98

    May-98

    July-98

    September-98

    November-98

    January-99

    March-99

    May-99

    July-99

    DATE

    LOG(

    TURB

    IDIT

    Y) N

    TU

    MORNOS

    KOKKINOS/EVINOS

    LAKE'SCENTRE

    WATERCONSUMINGTOWER

    TURBIDITY

    -1

    -0,5

    0

    0,5

    1

    1,5

    2

    2,5

    3

    January-97

    March-97

    May-97

    July-97

    September-97

    November-97

    January-98

    March-98

    May-98

    July-98

    September-98

    November-98

    January-99

    March-99

    May-99

    July-99

    DATE

    LOG(

    TURB

    IDIT

    Y) N

    TU

    MORNOS

    KOKKINOS/EVINOS

    LAKE'SCENTRE

    WATERCONSUMINGTOWER

  • Decrease in turbidity of the stored water in Mornos reservoir(Univ. Aegean-EYDAP)

    ΘΟΛΕΡΟΤΗΤΑ

    -1

    -0,5

    0

    0,5

    1

    1,5

    2

    2,5

    3

    Ιαν-

    97

    Φεβ

    -97

    Μαρ

    -97

    Απ

    ρ-97

    Μαϊ

    -97

    Ιουν

    -97

    Ιουλ

    -97

    Αυγ

    -97

    Σεπ

    -97

    Οκτ

    -97

    Νοε

    -97

    Δεκ

    -97

    Ιαν-

    98

    Φεβ

    -98

    Μαρ

    -98

    Απ

    ρ-98

    Μαϊ

    -98

    Ιουν

    -98

    Ιουλ

    -98

    Αυγ

    -98

    Σεπ

    -98

    Οκτ

    -98

    Νοε

    -98

    Δεκ

    -98

    Ιαν-

    99

    Φεβ

    -99

    Μαρ

    -99

    Απ

    ρ-99

    Μαϊ

    -99

    Ιουν

    -99

    Ιουλ

    -99

    Αυγ

    -99

    ΜΗΝΕΣ

    ΛΟΓΑ

    ΡΙΘ

    ΜΟ

    Ι ΤΙΜ

    ΩΝ

    (NTU

    )

    ΜΟΡΝΟΣΚΟΚΚΙΝΟΣΚ.ΛΙΜΝΗΣΠΥΡ.ΥΔΡ/ΨΙΑΣ

    MornosKokkinosCen. LakeWat. intake

    month

    Loga

    rith

    NTU

    Turbidity

  • pH of the stored water increase in Mornos reservoir(Univ. Aegean-EYDAP)

    pH

    7,20

    7,40

    7,60

    7,80

    8,00

    8,20

    8,40

    8,60

    8,80

    9,00

    9,20

    Ιαν-

    97

    Φεβ

    -97

    Μαρ

    -97

    Απ

    ρ-97

    Μαϊ

    -97

    Ιουν

    -97

    Ιουλ

    -97

    Αυγ

    -97

    Σεπ

    -97

    Οκτ

    -97

    Νοε

    -97

    Δεκ

    -97

    Ιαν-

    98

    Φεβ

    -98

    Μαρ

    -98

    Απ

    ρ-98

    Μαϊ

    -98

    Ιουν

    -98

    Ιουλ

    -98

    Αυγ

    -98

    Σεπ

    -98

    Οκτ

    -98

    Νοε

    -98

    Δεκ

    -98

    Ιαν-

    99

    Φεβ

    -99

    Μαρ

    -99

    Απ

    ρ-99

    Μαϊ

    -99

    Ιουν

    -99

    Ιουλ

    -99

    Αυγ

    -99

    ΜΗΝΕΣ

    ΤΙΜ

    ΕΣ

    ΜΟΡΝΟΣΚΟΚΚΙΝΟΣΚ.ΛΙΜΝΗΣΠΥΡ.ΥΔΡ/ΨΙΑΣ

    month

    MornosKokkinosCen. LakeWat. intake

    pH

  • NO3 increase of the stored water in Mornos reservoir(Univ. Aegean-EYDAP)

    ΝΙΤΡΙΚΑ, NO3-

    0,0

    1,0

    2,0

    3,0

    4,0

    5,0

    6,0

    7,0

    8,0

    9,0

    Ιαν-

    97

    Φεβ

    -97

    Μαρ

    -97

    Απ

    ρ-97

    Μαϊ

    -97

    Ιουν

    -97

    Ιουλ

    -97

    Αυγ

    -97

    Σεπ

    -97

    Οκτ

    -97

    Νοε

    -97

    Δεκ

    -97

    Ιαν-

    98

    Φεβ

    -98

    Μαρ

    -98

    Απ

    ρ-98

    Μαϊ

    -98

    Ιουν

    -98

    Ιουλ

    -98

    Αυγ

    -98

    Σεπ

    -98

    Οκτ

    -98

    Νοε

    -98

    Δεκ

    -98

    Ιαν-

    99

    Φεβ

    -99

    Μαρ

    -99

    Απ

    ρ-99

    Μαϊ

    -99

    Ιουν

    -99

    Ιουλ

    -99

    Αυγ

    -99

    ΜΗΝΕΣ

    mg/

    l

    ΜΟΡΝΟΣΚΟΚΚΙΝΟΣΚ.ΛΙΜΝΗΣΠΥΡ.ΥΔΡ/ΨΙΑΣ

    month

    Nitrates, NO3

    MornosKokkinosCen. LakeWat. intake

    mg/

    l

  • COD increase of the stored water in Mornos reservoir(Univ. Aegean-EYDAP)

    ΧΗΜΙΚΑ ΑΠΑΙΤΟΥΜΕΝΟ ΟΞΥΓΟΝΟ (COD)

    0,0

    0,5

    1,0

    1,5

    2,0

    2,5

    3,0

    3,5

    Ιαν-

    97

    Φεβ

    -97

    Μαρ

    -97

    Απ

    ρ-97

    Μαϊ

    -97

    Ιουν

    -97

    Ιουλ

    -97

    Αυγ

    -97

    Σεπ

    -97

    Οκτ

    -97

    Νοε

    -97

    Δεκ

    -97

    Ιαν-

    98

    Φεβ

    -98

    Μαρ

    -98

    Απ

    ρ-98

    Μαϊ

    -98

    Ιουν

    -98

    Ιουλ

    -98

    Αυγ

    -98

    Σεπ

    -98

    Οκτ

    -98

    Νοε

    -98

    Δεκ

    -98

    Ιαν-

    99

    Φεβ

    -99

    Μαρ

    -99

    Απ

    ρ-99

    Μαϊ

    -99

    Ιουν

    -99

    Ιουλ

    -99

    Αυγ

    -99

    ΜΗΝΕΣ

    mg/

    l O2

    ΜΟΡΝΟΣΚΟΚΚΙΝΟΣΚ.ΛΙΜΝΗΣΠΥΡ.ΥΔΡ/ΨΙΑΣ

    MornosKokkinosCen. LakeWat. intake

    COD

    month

    mg/

    l

  • • Effect of Transport in Quality

  • • Effect of Treatment in Quality

  • Legal requirements for water quality

    • Council Directive 98/83 ECOn the quality of water intended for human consumption(adopted by KYA Y2/2600/01)

    • Directive 2008/105/EUOn environmental quality standards in the field of waterquality (amending Directive 2000/60 EU)

  • Mean annual values for indicative raw water qualityparameters (2009) (EYDAP)

    Unit Mornos Yliki Marathon Limits46399/1986

    Conductivity

    μS/cm 304 434 386 1000

    Turbidity NTU 4.0 6.8 1.7Hardness mg CaCO3/L 145 196 169DOC mg/L DOC 1.4 3.7 2.5Cl- mg/L Cl- 3.2 16.3 15.5 200NO3- mg/L NO3- 0.54 0.73 0.46 50NH4+ mg/L NH4+ 0.01 0.07 0.04 1.5PO4-3 mg/L PO4--- 0.003 0 0.001 0.7 (mg

    P2O7/L)

  • Parameter Raw Water (μg/L) Treated Water (μg/L)1 Pesticides - Organochlorine Alachlor ≤ 0,0012 Pesticides - Triazines Simazine ≤ 0,003

    Atrazine ≤ 0,004Simazine ≤ 0,001Atrazine ≤ 0,001

    3 Pesticides - Organophosphate Chlorpyrifos ≤ 0,004Chlorfenvinphos ≤ 0,001

    Chlorpyrifos ≤ 0,001Chlorfenvinphos ≤ 0,001

    4 Pesticides - Phenylureas Isoproturon ≤ 0,0455 PAHs ND ND6 VOCs ND Only in contamination

    incidents (usually domesticnetwork)

    7 Trihalomethanes8 Haloacetic acids9 PCBs ND ND10

    Phenols ND ND

    11

    Surfactants Only in contaminationincidents (usually domestic

    network)12

    Oils and grease Only in contaminationincidents (usually domestic

    network)

    13

    Cyanotoxins - Microcystins MC-LR ≤ 12MC-RR ≤ 20MC-YR ≤ 22

    (All grab samples -Marathonas)

    ND

    14

    Cyanotoxins - Nodularin ND ND

    15

    Cyanotoxins - Cylindrpoepermopsin Currently investigated Currently investigated

    16

    Cyanotoxins – Anatoxin -a Currently investigated Currently investigated

    17

    Cyanotoxins - BMAA Currently investigated Currently investigated

    18

    Off-odour compounds (geosmin and2-methylisoborneol)

    Currently investigated Currently investigated

    Organic compoundsof interest.First column for rawwater.Second column fortap water.

    Results (2009-2011)(research byEYDAP)

  • Raw Water Quality

    • Raw water meets all the requirement of Dir.98/83 EC. Following groups of compounds werenot detected:

    • Pesticides• PAHs• VOCs• PCBs• Surfactants• Oil and Grease

  • Compound (Emerging Pollutants ) not listed inDirective 98/83 but of important for water

    quality should be investigated in raw water:

    • Endocrine Disrupting Compounds,• Pharmaceuticals and Personal Care Products,• Cyanobacterial Toxins,• Treatment Byproducts,• Chemicals migrating from materials in contact

    with water etc.

  • • We start the water treatment withan excellent quality

  • EYDAP

    The four Water Treatment Plants arethe following:

    Galatsi WTP (1931)600.000 m3/dMenidi WTP (1978/1992)850.000 m3/dPolydendri WTP(1986)200.000 m3/dAspropyrgos WTP(1995)220.000 m3/d

    TOTAL CAPACITY1.970.000 m3/d

  • SCREEN

    Mixing withcoagulant/

    FLOCCULATION

    Coagulantchlorine

    SEDIMEDATION /

    SEPERATION

    FILTER

    POST- CHLORINATION

    Conventional treatment method

    Raw water arriving at the WTP contains Suspended Solids, Dissolved

    Solids (Natural Organic Matter and Inorganic Matter) and

    Microorganisms. It is practically free from Agrochemicals, VOCs, PAHs,

    Phenols, Surfactants and Cyanotoxins.

  • WATER TREATMENT PLANTS

    GalatsiGalatsiWater Treatment PlantWater Treatment Plant (1931)(1931)

    AcharnesAcharnesWater Treatment PlantWater Treatment Plant (1978)(1978)

    Average Treatment Capacity:

    550.000 m3 per day

    After the completion of works in 2006 thedesigned maximum capacity is 800.000m3 perday but it is depended on network incapacity

    Average Treatment Capacity:

    600.000 m3 per day

  • WATER TREATMENT PLANTS

    PolydendriPolydendriWater Treatment PlantWater Treatment Plant (1986)(1986)

    AspropyrgosAspropyrgosWater Treatment PlantWater Treatment Plant (1996)(1996)

    Average Treatment Capacity:

    200.000 m3 per day

    Average Treatment Capacity:

    200.000 m3 per day

  • Mean annual values of raw and treated water main parameters inAcharnai WTP (2009) (EYDAP)

    Parameter Unit Raw water Treated water Limits /Y2

    2600/2001Min

    .Mean Max. Min. Mean Max.

    Temperature o C 8 14 18 9 14 18Color mg/L Pt 0 2 4 0 0 2pH 7.9 8.26 8.4 7.50 7.75 7.90 6.5-9.5Turbidity NTU 1.9 4.00 80 0.05 0.13 0.5 1Electr.conduct μS/cm 262 295.1 344 281 304.7 417 2500Total diss. Sol. mg/L 140 156 160 146 159 163

    Aluminum μg/L Al 45 79.1 143 200Bromide μg/L Br- 2 6 10 0 0 0Free resid. Cl2 mg/L 0 0 0 0.5 0.69 0.85Nitrate mg/L NO3- 0 0.45 1.31 0.13 0.47 1.28 50Nitrite mg/L NO2- 0 0 0.017 0.0 0.0 0.0 0.1Ammonium mg/L NH4+ 0 0.02 0.05 0.0 0.003 0.08 0.5Chloride mg/L Cl- 3.1 3.4 4.1 4.6 5.2 6.0 250Fluoride mg/L F- 0.06 0.07 0.09 1.5Sulfate mg/L SO4-- 18.

    520.2 21.4 12 25.6 27.5 250

    Phosphate mg/L PO4--- 0.000 0.001 0.007Sodium mg/L Na 4.2 4.6 5.1 4.3 4.6 5.1 200Potassium mg/L K 0.7 0.8 1.2 0.7 0.9 1.2 12DOC mg/L DOC 1.0 1.5 2.7 1.0 1.2 2.3

    )

  • • Raw water , turbidity 4 NTU, Al 0 μg/l,• Treated water 0.13 NTU, Al 79.1 μg/l,

  • Mean annual values for metals of raw and treated water inAcharnai WTP (2009) (EYDAP)

    Parameter Unit Raw water Treated waterMin. Mean Max. Limits

    46399/

    1986

    Min. Mean Max. Limits

    Y2 2600/

    2001Lead μg/L Pb 0.0 0.34 2.2 50 0 0.23 1.6 10

    Mercury μg/L Hg 0 0.018 0.054 0.5/1 0 0.024 0.084 1

    Antimony μg/L Sb 0 0.14 1.0 0 0.12 0.63 5

    Cadmium μg/L Cd 0 0.027 0.14 1/5 0 0.014 0.066 5

    Total Cr μg/L Cr 0 0.20 0.55 50 0 0.18 0.44 50

    Silver μg/L Ag 0 0.014 0.070 0 0.14 0.44 10

    Arsenic μg/L As 0 0.18 1.5 50 0 0.16 0.92 10

    Copper μg/L Cu 0 1.1 5.6 50 0 1 6.3 2000

    Zinc μg/L Zn 0 12 102 1000

    /5000

    0 2 22

  • Mean annual values for bacteria concentrations of raw andtreated water in Acharnai WTP (2009) (EYDAP)

    Parameter Unit Raw water Treated water

    Min. Mean Max. Limits

    46399/

    1986

    Min. Mean Max. Limits

    Y2 2600/

    2001

    Totalcoliforms

    CFU/100mL

    10 950 2000+ 5000 0 0 0 0

    Esch. coli CFU/100mL

    10 46.4 320 2000 0 0 0 0

    Enterococci CFU/100mL

    0 12.6 36 1000 0 0 0 0

  • Mean annual values for THMs concentrations of raw and treatedwater in Acharnai WTP (2009) (EYDAP)

    Parameter Unit Raw water Treated water

    Min. Mean Max. Limits

    46399/

    1986

    Min. Mean Max. Limits

    Y2 2600/

    2001

    TCM μg/L 0 0 0 9.6 13.27 18

    BDCM μg/L 0 0 0 4.2 6.71 8.7

    DBCM μg/L 0 0 0 0.6 1.18 2.4

    TBM μg/L 0 0 0 0.0 0.18 0.5

    TTHMs μg/L 0 0 0 14.9 21.05 26.9 100

  • Mean values for HAAs concentrations of raw and treated water inPolydendri WTP (2011) (EYDAP)

    Parameter Unit Raw water Treated water

    Min. Mean Max. Limits Min. Mean Max. Limits

    WHO2004 /

    USEPA1998

    MCA μg/L 0 0 0 0.8 1.6 3.9 20

    DCA μg/L 0 0 0 5.7 7.8 13.1 50

    TCA μg/L 0 0 0 4.0 5.5 8.1 200

    MBA μg/L 0 0 0 0 0 0.1

    DBA μg/L 0 0 0 0 0 0.1

    HAA5 μg/L 0 0 0 11.3 15 25 60

  • In order to remove Suspended Solids we add sulphates

  • THMs and HAAs formation in the WTPs of EYDAP

    y = 11,926x2,1146

    R2 = 0,8097

    0

    20

    40

    60

    80

    100

    120

    140

    160

    0 0,5 1 1,5 2 2,5 3 3,5

    DOC (mg/l)

    TTH

    Ms+

    THA

    As

    (μg/

    l)

    ΤΤΗΜs+ΤΗΑΑs as a function of DOC. 2001- 2002 Galatsi. Samples were taken after theSedimentation Tank just before the sand filter and the GAC filter . (Univ. Aegean)

  • THMs and HAAs formation in the WTPs of EYDAP

    y = 33,131e0,3999x

    R2 = 0,78030

    50

    100

    150

    200

    250

    300

    350

    0 1 2 3 4 5 6

    DOC (mg/l)

    TTH

    Ms

    + TH

    AA

    s (μ

    g/l)

    ΤΤΗΜs+ΤΗΑΑs as a function of DOC. 2003- 2005 Galatsi. Samples were taken after the Sedimentation Tank just before the sand filter and the GAC filter . (Univ. Aegean)

  • Effect of conventional treatment on the quality of thewater supply

    • Treatment removes suspended solid but addsaluminum and sulphate

    • Chlorination kills microorganisms but forms DBP’s

    • Dissolved chemicals get through the treatment plant

    • Water supply should be free from pathogens but alsofree from undesirable chemical compounds

  • We need a new approach in the water supplytreatment methods

    • Water treatment processes should be modified withthe aim to:

    • Remove organic substrate (TOC) before disinfection ofany kind-not only chlorination

    • Remove chemicals i.e. emerging chemicals, especiallyin places where water is taking from rivers whichreceive used water

    • Remove Disinfection By Products at whatever stage itis possible and this removal should be compoundspecific

  • Strategies for removing organic matter, DBPsand emerging pollutants

    • Protection of catchment area• Removal of organic substrate before

    disinfection• Modification of the treatment methods e.g.

    adsorption processes like Activated Carbonor strong oxidation processes such ascatalytic oxidation especially when we reusetreated waste water

  • GAC pilot plant : a rapid gravity GAC filter- adsorber operated at GalatsiTreatment Works in parallel with the sand filter for one year and in series

    with the sand filter for two years (research by Univ. Aegean)

    • GAC filter column: constructedof plexiglass and stainlesssteel.

    • Equipped with a total-flowmeter before the inlet.

    • Equipped for backwashing• Ports located at different

    depths on the GAC column,connected with siliconsampling tubes andpolypropylene tubes for headloss measurement

    • Equipped with a peristalticpump for sampling at isokineticconditions.

  • TTHMs removal profile by GAC filter-adsorber(Univ. Aegean )

    0

    20

    40

    60

    80

    100

    120

    0 50 100 150 200 250

    D a ys o f o p e ra tio n

    TTHMs

    (μg/L)

    in fluen tw a ter

    G A Ceffluen tw a ter

    s andeffluen tw a ter

  • THAAs removal profile by GAC filter-adsorber(Univ. Aegean)

    0

    20

    40

    60

    80

    100

    120

    0 50 100 150 200 250

    Da ys o f o p e ra tio n

    THAA

    s (μg

    /L)

    in fluentwater

    G A Ceffluentwater

    s andeffluentwater

  • 0

    1

    2

    3

    4

    0 50 100 150 200 250

    Days of operation

    DOC

    (mg/

    L)

    influentwater

    GACeffluentwater

    sandeffluentwater

    DOC removal by GAC(Univ. Aegean)

  • 0

    1

    2

    0 50 100 150 200 250

    Da ys of ope ra tion

    TTHM

    s an

    d TH

    AAs

    rem

    oval

    (mg

    /g G

    AC)

    TTHM s

    THA A s

    Cumulative DBPs mass removal(Univ. Aegean)

  • Desorption from GAC of THMs( Univ. Aegean )

    Cumulative mass of ΤΤΗΜs of THAAs absorbed or disorbed by GAC

    Συν ολικό φ ορτίο Τ Τ ΗΜ s και T HAAs αν ά μον άδαμάζας άν θρακα κατά τον κύκλο προσρόφ ησης από

    G AC μετά τη διήθηση

    -1

    0

    1

    2

    3

    4

    5

    0 200 400 600 800

    Ημέρες λ ειτουργ ίας

    mg

    ουσί

    ας /

    g GA

    C

    TTHM sTHA A s

    Days

    mg

    of D

    BPs/

    g GA

    C

  • 0

    50

    100

    150

    200

    250

    0 100 200 300 400 500 600 700

    Days of operation

    DOC

    rem

    oval

    (mg

    / g G

    AC)

    DOC

    GAC continues to remove DOC(Univ. Aegean)

  • 0

    5

    10

    15

    20

    25

    30

    0 100 200 300 400 500 600 700

    Days of operation

    μg/

    L

    TCMinfluent

    TCMeffluent

    TCM is absorbed for 200 days then desorbed

  • 0

    10

    20

    30

    40

    50

    60

    70

    80

    0 100 200 300 400 500 600 700

    Days of operation

    μg/L

    BDCMinfluent

    BDCMeffluent

    BDCM is absorbed for 200 days then desorbed(Univ. Aegean)

  • The use of activated carbon shouldbe operationally checked for:

    “ performance on specificcompounds and not only by

    measuring the reduction of DOC ortotal chlorinated compounds”

  • CONSUMPTIONCONSUMPTION

    DOMESTIC USE63 %

    NON-DOMESTIC USE(LARGE CONSUMERS)

    28%

    OTHER USES9% INDUSTRIAL &

    COMMERCIAL USE7%

    MUNICIPALITIES21%

  • The water supply network does not haveany significant effect on quality.

    However• An increase in DBP’ is measured in

    remote areas•Accidental quality problems might occur

  • • Waste water

  • PsyttaliaIsland

    Mainland InstallationsAkrokeramos Piraeus Port

  • Akrokeramos - Wastewater Pretreatment FacilitiesInlet Pumping stationDebris RemovalScreeningGrit RemovalOdor Control

    Psyttalia Wastewater Treatment Facilities• Primary Sedimentation Tanks• Biological Reactor Tanks• Final Sedimentation Tanks• Filtration - U.V. Disinfection

    Psyttalia Sludge Treatment Facilities• Thickening Tanks and Belt presses• Digester Tanks• Dewatering centrifuges• Thermal Drying Plant

  • DESIGN PARAMETERS• Population equivalent : 5 400 000• Design flow-rate (mean): 1.100.000 m3/d

    (max) : 1.120.000 m3/d• Peak flow-rate : 27m3/s

    16 m3/s (to biological treatment)

    POLLUTANS LOAD (max kg/d)• Biological Oxygen Demand BOD5 : 233.000• Chemical Oxygen Demand COD : 445.000• Suspended Solids SS : 290.000• Total Nitrogen TN : 49.000

    • Mixed Liquor Suspended Solids MLSS : 3.500 mg/l

  • Psyttalia WWTP Flow - diagram

    BIOGAS THERMAL ENERGY

    NATURAL GAS

    ELECTRIC ENERGY THERMAL ENERGY

    SLUDGEMECHANICALTHICKENING (BELTS)

    EFFLUENT FINAL SETTLING TANKS BIOREACTORS

    DEWATERING

    PUMPING

    COGENERATION(NATURAL GAS) DRYING

    DRIED SLUDGE UTILIZATION

    WASTEWATER INFLOW PUMPING SCREENINGGRIT REMOVALPRIMARY

    SEDIMENTATION

    COGENERATION (BIOGAS) ELECTRIC ENERGY

    GRAVITY THICKENING(TANKS) DIGESTION

    535353

  • Screening

    Inlet pumpingstation

    Grit removal

    Debrisremoval

    Odor controlplant

    Twin invertedsiphon

  • Final Settling

    Biological Reactor Tanks

    Primary SedimentationTanks

    Filtration

    Pretreated wastewaterfrom Salamis Island2 pipes on sea bed

    Future transport of disinfectedwater from Psyttalia to Salamis

    for possible irrigation use1 pipe on sea bed

    2 Main outfall pipes1 emergency pipe

  • Primary Sludge ThickeningTanks

    Digester Gas StorageTanks

    Sludge Digester Tanks

    Digester Gas CHPPlants

    Sludge Thermal Drying Plant

    Natural Gas TurbineCHP Pl

    Sludge Dewatering

  • • Effect of Sewage Treatment onWater Quality

  • PSYTTALIA WWTP JAN.-JUL. 2011Input/Output of WWTP (data by eydap)

    PARAMETERmg/l

    INPUTmg/l

    OUTPUTmg/l

    %REDUCTION

    CODt 704 40,3 94,2CODd 205 25,8 87,4BOD5 306 10,0 96,7

    TSS 321 12,5 96,1SVS 262 9,4 96,4

    N-NH3 37,5 O,3 99,2TKN 57,4 3,7 93,6TP 8,9 2 77,5TC 284,5 62,2 78,1IC 81,2 48,2 40,6

    TOC 303,3 13,8 95,4

  • PSYTTALIA WWTP JAN.-JUL. 2011Input/Output of WWTP

    PARAMETERμg/l

    INPUTμg/l

    OUTPUTμg/l

    % REDUCTION

    Cr 139 33,0 76,2

    Ni 74,1 29,4 60,3

    Cu 84,9 15,0 82,3

    Cd 0,4 0,1 75,0

    Pb 26,0 4,8 81,5

    Zn 247,2 140,8 43,0

    As 4,9 3,8 22,4

    Hg 0,6 0,5 16,7

  • Metals are removed with the Sludge

    PSYTTALIA WWTP-JAN-JUL. 2011Dried Sludge

    Metal Mg/KgTS 92,9%VS 61,6%

    Cr 209,5Ni 64,3Cu 338,6Cd 1,9Pd 136,0Zn 743,2As 8,4Hg 3,5

  • PSYTTALIA WWTP JAN.-JUL. 2011Input/Output of WWTP

    PARAMETERmg/l

    INPUTmg/l

    OUTPUTmg/l

    %REDUCTION

    %INCREASE

    Cl 140,8 170,2 20,9NO2 1,2 0,4 66,7

    Br 0,4 0,4 0NO3 2,8 22,5 357,1PO4 9,3 2,5 73,9SO4 74,7 84 12,4Na 115,7 128 10,6

    NH4 48 1,0 97,9K 36 34,2 5,0

    Mg 19,8 19,5 1,5Ca 86 78,4 8,8

  • PSYTTALIA WWTP JUL. 2011Input/Output of WWTP

    Emerging Pollutants: Removals (Univ. Athens )Pollutants(# of compounds)

    N# ofcompoundsdetected at

    inlet

    Removed >80%

    Removed 20-80%

    NotRemoved

    (

  • Biological Treatment performs satisfactorily for theconventional parameters i.e.BOD, COD, SS, Ammonia, Phosphorus, Metalsbutout of 143 compounds detected at the input ofPsyttalia (emerging pollutants)76 were less than 20% removed,36 were half removed and only21 were satisfactorily removed.The non removed compounds belong to the categoriesof pharmaceuticals,drugs of abuse and psychotropic drugs,benzotriazoles and perfluorinated compounds.(Univ. Athens)

  • Consumption of Drugs of Abuse (Environmental Forensics) inthe area covered by EYDAPs sewerage system. Daily

    consumption estimates are based on concentrations atPsyttalia inlet. (Univ. Athens)

    COCΑΙΝΕ

    0

    100

    200

    300

    400

    500

    600

    700

    (03/4) (04/4) (05/4) (06/4) (07/4) (08/4) (09/4) (10/4)

    g/d

    Ecstasy

    0

    5

    10

    15

    20

    25

    (03/4) (04/4) (05/4) (06/4) (07/4) (08/4) (09/4) (10/4)

    g/d

    We observe higher consumption during weekends

  • THC-cannabis

    0

    500

    1000

    1500

    2000

    2500

    3000

    (05/12) (06/12) (07/12) (08/12) (09/12) (10/12) (11/12)

    g/da

    y

    Heroin

    0

    200

    400

    600

    800

    1000

    1200

    (05/12) (06/12) (07/12) (08/12) (09/12) (10/12) (11/12)g/

    day

    Constant consumption of Cannabis and Heroin throughout theweek

    Consumption of Drugs of Abuse (Environmental Forensics) in thearea covered by EYDAPs sewerage system. Daily consumptionestimates are based on concentrations at Psyttalia inlet (Univ.

    Athens)

  • Consumption of drugs of abuse and psychotropicdrugs

    (Environmental Forensics)

    Illicit Drug

    1st sampling (Dec 2010) 2nd sampling (Apr 2011)

    Weeklyconsumption in

    kg

    Percentage (%) ofpopulation that areconsumers drugs

    Weeklyconsumption in kg

    Percentage (%) ofpopulation that are

    consumers ofdrugs

    Cocaine (COC) 3,31 0,12 4,04 0,13

    Heroin (HER) 5,9 * 0,70 * 8,1 * 0.85 *

    Amphetamine 3,00 0,35 1,59 0,17

    Methamphetamine 0,14 0,017 0,16 0,017

    MDMA (ecstasy) 0,039 0,0014 0,066 0,0021

    THC (cannabis) - - 192,3 5,5

    Methadone 0,142 - 0,27 -

    Codeine 1,03 - 1,41 -

    * Corrected for therapeutic morphine (10%)

  • 0

    20

    40

    60

    80

    100

    NP

    NP1

    EO

    NP2

    EO

    TC

    S

    BPA IB

    F

    NPX

    DC

    F

    KFN BT

    ri

    TT

    ri

    OH

    BT

    MT

    BT

    ΒΤ

    PFPe

    A

    Target Compounds

    Fat

    e du

    ring

    was

    tew

    ater

    trea

    tmen

    t

    Loss Primary Sludge Secondary s ludge Effluents

    NSAIDs BTrs BTs PFCsEDCs

    Fate of the target compounds during wastewater treatment

  • 0

    20

    40

    60

    80

    100

    120

    IBF

    DC

    F

    NP

    X

    KF

    N

    TC

    S

    BP

    A

    NP

    NP

    1E

    O

    NP

    2E

    O

    OH

    BT

    ri

    BT

    ri

    TT

    ri

    5,6

    DM

    Tri

    OH

    BT

    MT

    BT

    BT

    AB

    T

    PF

    PeA

    PF

    Hp

    A

    PF

    OA

    PF

    NA

    PF

    DA

    PF

    Ud

    A

    PF

    Hx

    S

    PF

    OS

    PF

    OS

    A

    Target Compounds

    Dis

    trib

    utio

    n of

    targ

    et c

    ompo

    unds

    in w

    aste

    wat

    er(%

    dis

    /tota

    l)

    Distribution of target compounds between dissolved and particulate phase in influent wastewater.

  • -40

    -20

    0

    20

    40

    60

    80

    100

    IBF

    TC

    S

    BPA

    KFN

    NP2

    EO

    OH

    BT

    R

    MT

    BT

    NP1

    EO ΒΤ

    PFO

    SA TT

    ri

    BT

    ri

    PFPe

    A

    NP

    NPX

    OH

    BT

    DC

    F

    PFN

    A

    5,6

    DM

    Tri

    PFH

    pA

    PFH

    xA

    AB

    T

    PFO

    S

    PFD

    A

    PFO

    A

    PFH

    xS

    PFuD

    A

    Target Compounds

    Rem

    oval

    eff

    icie

    ncy

    in S

    TP

    (%)

    Effluents

    Sludge

    Loss

    Removal

    > 70% 30 - 69%

  • 17%

    50%

    33%

    treatment with PAC

    Απομάκρυνση >80%

    Απομάκρυνση 20-80%

    Απομάκρυνση 80%

    Απομάκρυνση 20-80%

    Απομάκρυνση 10% removed.

  • Waste Water Treatment methods should bemodified to provide removal of organic

    compounds

    Oxidation (chemical and not biological) downto inorganic products is environmentally the

    preferable approach

    We have to integrate

  • Scientists and Laboratories contributing to thispresentation:

    Researchers: N. Thomaides (Univ. Athens), A.Stasinakis, D.F. Lekkas, K.Babi, A.Nikolaou, (Univ.Aegean), F. Miskaki, T. Kaloudis, C. Dimitrou, H.Farmaki, A. Kagiara, D. Koronakis, S. Samios, E.Tarnara, N.C. Thanasoulias, A Tsakou, D. Tsorova, G.Vassilantonopoulou, G. Villiotis (EYDAP S.A.)Laboratories : Lab. of analytical chemistry, Univ.Athens, Lab. of water and air quality , Univ. Aegean,Four Labs of EYDAP.