31
Will Chueh Materials Science & Engineering Precourt Institute of Energy Stanford University SIMES, SLAC National Accelerator Laboratory chuehlab.stanford.edu Pushing the Efficiency Limits of Energy Conversion and Storage Through Rational Materials Design

Pushing the Efficiency Limits of and Storage - Energy...Pushing the Efficiency Limits of Energy Conversion and Storage Through Rational Materials Design. ALS ChuehLab.stanford.edu

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Pushing the Efficiency Limits of and Storage - Energy...Pushing the Efficiency Limits of Energy Conversion and Storage Through Rational Materials Design. ALS ChuehLab.stanford.edu

Will ChuehMaterials Science & Engineering ∙ Precourt Institute of Energy

Stanford UniversitySIMES, SLAC National Accelerator Laboratory

chuehlab.stanford.edu

Pushing the Efficiency Limits of Energy Conversion and Storage 

Through Rational Materials Design

Page 2: Pushing the Efficiency Limits of and Storage - Energy...Pushing the Efficiency Limits of Energy Conversion and Storage Through Rational Materials Design. ALS ChuehLab.stanford.edu

ALS

ChuehLab.stanford.edu 2

D. Diliff

R. Laddish

C.‐Y. Yu

London

Toyko

Chicago

Page 3: Pushing the Efficiency Limits of and Storage - Energy...Pushing the Efficiency Limits of Energy Conversion and Storage Through Rational Materials Design. ALS ChuehLab.stanford.edu

W.C. Chueh

Solar conversion

H2O

H2Capture

Storage

Delivery

Utilization

HydrogenStorage

Carbon‐free Source

HydrocarbonBatteries

e‐

Fuel cell

e‐

, CO2

H2O , CO2

Vision: Energy when & where it’s needed

3Courtesy S. Haile

Page 4: Pushing the Efficiency Limits of and Storage - Energy...Pushing the Efficiency Limits of Energy Conversion and Storage Through Rational Materials Design. ALS ChuehLab.stanford.edu

ALS

ChuehLab.stanford.edu

Theme: Material optimization & discovery guided by fundamental insights

Model Systems High Performance Devices

200 µm1 µm

4

5 nm

Page 5: Pushing the Efficiency Limits of and Storage - Energy...Pushing the Efficiency Limits of Energy Conversion and Storage Through Rational Materials Design. ALS ChuehLab.stanford.edu

ALS

ChuehLab.stanford.edu 5

ALSSSRL SNC

Sensitivity Spatial ResolutionTimescale 

Theme: Material optimization & discovery guided by fundamental insights

ppb ps ‐ fs Å

As Electrochemistry Takes Place

Page 6: Pushing the Efficiency Limits of and Storage - Energy...Pushing the Efficiency Limits of Energy Conversion and Storage Through Rational Materials Design. ALS ChuehLab.stanford.edu

W.C. Chueh

Solar conversion

H2O

H2Capture

Storage

Delivery

Utilization

HydrogenStorage

Carbon‐free Source

HydrocarbonBatteries

e‐

Fuel cell

e‐

, CO2

H2O , CO2

Vision: Energy when & where it’s needed

6

Page 7: Pushing the Efficiency Limits of and Storage - Energy...Pushing the Efficiency Limits of Energy Conversion and Storage Through Rational Materials Design. ALS ChuehLab.stanford.edu

W.C. Chueh 7

Understanding battery charging & dischargingYiyang Li, Johanna Nelson

Page 8: Pushing the Efficiency Limits of and Storage - Energy...Pushing the Efficiency Limits of Energy Conversion and Storage Through Rational Materials Design. ALS ChuehLab.stanford.edu

W.C. Chueh

Understanding battery charging & discharging

A123

DelithiatedLithiated

8

500 nm

Page 9: Pushing the Efficiency Limits of and Storage - Energy...Pushing the Efficiency Limits of Energy Conversion and Storage Through Rational Materials Design. ALS ChuehLab.stanford.edu

W.C. Chueh

Can we see lithium move inside a battery?

705 710 715

Abso

rban

ce /

arb

Photon Energy / eV

LiFePO4

FePO4

500 nm

Lithium MapX‐ray Absorption

Photon Energy = 708 eV

J. Vila‐Comamala et al. Optics Express 22 (2011) 21333‐21344.

9

Page 10: Pushing the Efficiency Limits of and Storage - Energy...Pushing the Efficiency Limits of Energy Conversion and Storage Through Rational Materials Design. ALS ChuehLab.stanford.edu

W.C. Chueh 10

Snapshots of battery charging

Chueh et al. Nano Lett. (2013). Accepted.

0 20 40 60 80 1000

20

40

60

80

100

169

nm

171

nm

151

nm

165

nm

106

nm

Frac

tion

/ %

Percentile in Particle Size

Li-rich Li-poor

133

nm

214

nm

248

nm

321

nm

191

nm

Page 11: Pushing the Efficiency Limits of and Storage - Energy...Pushing the Efficiency Limits of Energy Conversion and Storage Through Rational Materials Design. ALS ChuehLab.stanford.edu

W.C. Chueh 11

Snapshots of battery charging

Chueh et al. Nano Lett. (2013). Accepted.

Page 12: Pushing the Efficiency Limits of and Storage - Energy...Pushing the Efficiency Limits of Energy Conversion and Storage Through Rational Materials Design. ALS ChuehLab.stanford.edu

W.C. Chueh 12

What’s next?

Live imaging of battery charging in 3D

Improving rate capabilities of LiFePO4

Propagation Limited Initiation Limited

Polyester Film

Polymer Separator

Cathode

Current collector

Anode

X-rays

Page 13: Pushing the Efficiency Limits of and Storage - Energy...Pushing the Efficiency Limits of Energy Conversion and Storage Through Rational Materials Design. ALS ChuehLab.stanford.edu

W.C. Chueh

Solar conversion

H2O

H2Capture

Storage

Delivery

Utilization

HydrogenStorage

Carbon‐free Source

HydrocarbonBatteries

e‐

Fuel cell

e‐

, CO2

H2O , CO2

Vision: Energy when & where it’s needed

13

Page 14: Pushing the Efficiency Limits of and Storage - Energy...Pushing the Efficiency Limits of Energy Conversion and Storage Through Rational Materials Design. ALS ChuehLab.stanford.edu

ALS

ChuehLab.stanford.edu

1 gram of  platinum for every kiloton of sand

93% of platinum is imported, 80% of world reserves in South Africa

Just enough platinum in the world to convert all American cars to fuel cells

Reduce the use of precious materials

U.S. Geological Survey, Fact Sheet 087‐02 14

Page 15: Pushing the Efficiency Limits of and Storage - Energy...Pushing the Efficiency Limits of Energy Conversion and Storage Through Rational Materials Design. ALS ChuehLab.stanford.edu

ALS

ChuehLab.stanford.edu 15

Electrolyte

Air E

lectrode

Fuel Electrode

Fuel cells

GM Bloom Energy

Page 16: Pushing the Efficiency Limits of and Storage - Energy...Pushing the Efficiency Limits of Energy Conversion and Storage Through Rational Materials Design. ALS ChuehLab.stanford.edu

ALS

ChuehLab.stanford.edu

Operating Temperature~ 400 to 600 °C

• Inexpensive system components (steel)

• Reliability

• Fast start‐up time

• Fast reaction rates

• No precious catalysts required

“Best of Both Worlds”

< 100 °C > 800 °C

Fast Oxygen Ion Conducting 

Oxides

Not too cold, not too hot

Low Temp

High Temp

16

Page 17: Pushing the Efficiency Limits of and Storage - Energy...Pushing the Efficiency Limits of Energy Conversion and Storage Through Rational Materials Design. ALS ChuehLab.stanford.edu

ALS

ChuehLab.stanford.edu 17

Ceria

YSZ

Ceria

YSZ

Ceria

YSZ

17

200 µm

1 µm

W. C. Chueh et al. Nature Mater. 11, 155‐161 (2012)

Eliminating metal altogether

Pt

Page 18: Pushing the Efficiency Limits of and Storage - Energy...Pushing the Efficiency Limits of Energy Conversion and Storage Through Rational Materials Design. ALS ChuehLab.stanford.edu

ALS

ChuehLab.stanford.edu

Rxn. Coord

Energy

25 to 400 °C 109 increase in rate

1 eVSolid Electrolyte

e‐

Gas

O2‐

O2‐ O2‐ O2‐ O2‐e‐ e‐ e‐ e‐

SurfaceSub‐Surface

Bulk

?

Visualizing electrochemical reactions in fuel cells

18

Albert Feng, Mike Machala, David Mueller, Yezhou Shi

Page 19: Pushing the Efficiency Limits of and Storage - Energy...Pushing the Efficiency Limits of Energy Conversion and Storage Through Rational Materials Design. ALS ChuehLab.stanford.edu

ALS

ChuehLab.stanford.edu

Bulk properties;Surface properties measured ex‐situ

Surface properties measured in‐situ

Electro‐catalytic

 Activ

ity

19

Electro‐catalytic

 Activ

ity

Page 20: Pushing the Efficiency Limits of and Storage - Energy...Pushing the Efficiency Limits of Energy Conversion and Storage Through Rational Materials Design. ALS ChuehLab.stanford.edu

ALS

ChuehLab.stanford.edu

Ambient PressureX‐ray Spectroscopy

Surface X‐ray Scattering

X‐ray O

M

z

Environmental Transmission Electron Microscopy

20

Electrostatic Lenses

X‐ray Source

Sample~ 10 Torr

Page 21: Pushing the Efficiency Limits of and Storage - Energy...Pushing the Efficiency Limits of Energy Conversion and Storage Through Rational Materials Design. ALS ChuehLab.stanford.edu

ALS

ChuehLab.stanford.edu

Going to a simpler, model system

500 µm

Bloom Energy

50 cm500 μm

21

Page 22: Pushing the Efficiency Limits of and Storage - Energy...Pushing the Efficiency Limits of Energy Conversion and Storage Through Rational Materials Design. ALS ChuehLab.stanford.edu

ALS

ChuehLab.stanford.edu 22

How is charge transferred in a fuel cell electrode? 

Ce CeO

CeO

CeO

H2 H2OH+

Ce Ce-O

Ce-O

CeO

H+

H2(g) + O2‐ H2O(g) + 2e‐

Solid Electrolyte

e‐

O2‐

O2‐ O2‐ O2‐ O2‐e‐ e‐ e‐ e‐

H2OH2

CeO2

Absence of surface oxygen

Surface electrons

Page 23: Pushing the Efficiency Limits of and Storage - Energy...Pushing the Efficiency Limits of Energy Conversion and Storage Through Rational Materials Design. ALS ChuehLab.stanford.edu

W.C. Chueh

Solar conversion

H2O

H2Capture

Storage

Delivery

Utilization

HydrogenStorage

Carbon‐free Source

HydrocarbonBatteries

e‐

Fuel cell

e‐

, CO2

H2O , CO2

Vision: Energy when & where it’s needed

23

Page 24: Pushing the Efficiency Limits of and Storage - Energy...Pushing the Efficiency Limits of Energy Conversion and Storage Through Rational Materials Design. ALS ChuehLab.stanford.edu

ALS

ChuehLab.stanford.edu 24

Re‐thinking the optimal temperature for water splitting

System cost

Reaction rates

Free energy for H2O dissociation

Temperature25°C > 1,000°C

Temperature

Dark Current

Traditional PEC

Ligh

t Abs

orbe

r

Water

sunlight

H2O(l) H2(g) + O2(g)

Is room temperature the best temperature?

Xiaofei Ye, Madhur Boloor

Page 25: Pushing the Efficiency Limits of and Storage - Energy...Pushing the Efficiency Limits of Energy Conversion and Storage Through Rational Materials Design. ALS ChuehLab.stanford.edu

ALS

ChuehLab.stanford.edu 25

Ligh

t Abs

orbe

r

WaterSolid

Electrolyte “Shell”

Ligh

t Abs

orbe

r

A new class of elevated‐temperature photo‐electrochemical cell

• All solid, no liquid

• Reduced corrosion

• Potentially more efficient

Page 26: Pushing the Efficiency Limits of and Storage - Energy...Pushing the Efficiency Limits of Energy Conversion and Storage Through Rational Materials Design. ALS ChuehLab.stanford.edu

ALS

ChuehLab.stanford.edu

H2O

H2

O2‐

O2

e‐

h+

O2‐ ½O2(g) + 2e‐

H2O(g) + 2e‐ H2(g) + O2‐

26

A new class of elevated‐temperature photo‐electrochemical cell

Solid Electrolyte

“Shell”

Ligh

t Abs

orbe

r

Page 27: Pushing the Efficiency Limits of and Storage - Energy...Pushing the Efficiency Limits of Energy Conversion and Storage Through Rational Materials Design. ALS ChuehLab.stanford.edu

ALS

ChuehLab.stanford.edu 27

A new class of elevated‐temperature photo‐electrochemical cell

10%

Efficiency

Page 28: Pushing the Efficiency Limits of and Storage - Energy...Pushing the Efficiency Limits of Energy Conversion and Storage Through Rational Materials Design. ALS ChuehLab.stanford.edu

ALS

ChuehLab.stanford.edu 28

A new class of elevated‐temperature photo‐electrochemical cell

2.0 eV light absorber bandgap

Van

Mac

kele

nber

gh

Page 29: Pushing the Efficiency Limits of and Storage - Energy...Pushing the Efficiency Limits of Energy Conversion and Storage Through Rational Materials Design. ALS ChuehLab.stanford.edu

ALS

ChuehLab.stanford.edu 29

• Finding materials with the right properties

• Stability at high temperatures

• Proof‐of‐concept device underway

What’s next?

Page 30: Pushing the Efficiency Limits of and Storage - Energy...Pushing the Efficiency Limits of Energy Conversion and Storage Through Rational Materials Design. ALS ChuehLab.stanford.edu

ALS

ChuehLab.stanford.edu 30

Take home message

Fundamental insights enabled by new experimental techniques are challenging the current materials design and 

optimization paradigms in energy conversion

These insights are leading to unexpected ways to improve performance and efficiency of batteries, fuel cells, and solar 

fuels membranes 

Page 31: Pushing the Efficiency Limits of and Storage - Energy...Pushing the Efficiency Limits of Energy Conversion and Storage Through Rational Materials Design. ALS ChuehLab.stanford.edu

ALS

ChuehLab.stanford.edu

Johanna Nelson, Yezhou Shi (not shown)

Nick Melosh, ZX Shen, Mike Toney, Hirohito Ogasawara, Anders Nilsson 

31

David Mueller

Yiyang Li

Xiaofei Ye

Michael Machala

Albert FengMe