27
1 Prospects of Next Generation Safety Analysis Code and Experience of high performance computing 2013. 10. 26 Presented for SNA+MC2013 Workshop in Paris, France Bub Dong Chung 1) 1) Korea Atomic Energy Research Institute, Korea [email protected]

Prospects of Next Generation Safety Analysis Code and … ·  · 2014-06-181 Prospects of Next Generation Safety Analysis Code and Experience of high performance computing 2013

  • Upload
    hathien

  • View
    218

  • Download
    2

Embed Size (px)

Citation preview

1

Prospects of Next Generation Safety Analysis

Code and Experience of high performance

computing

2013. 10. 26

Presented for SNA+MC2013 Workshop in Paris, France

Bub Dong Chung1)

1) Korea Atomic Energy Research Institute, Korea

[email protected]

2

Contents

Current safety analysis code in KAERI

Prospects of next generation safety analysis code

Experience of high performance computing (or demands)

LOFT L2-5 LBLOCA Uncertainty quantification by Monte-Carlo

method

Whole core physic analysis using transport code linked with CFD

Concluding remarks

3

Current Safety Analysis Code in KAERI

Design Analysis Codes

Nuclear design codes (from Monte-Carlo to Diffusion scale)

Core TH codes (from RANS to Subchannel scale)

Fuel analysis codes (from FEM to in-house 1D scale)

Safety analysis code

One of key design code for safety system as well as integral system performance

Current Utilization of Safety Analysis Code

Westinghouse Design (PWR) Code (since 1980s)

CEFLASH, WFLASH, WCOBRA/TRAC

AECL (CANDU) Design code (since 1990s)

SOPHT, CATHENA etc

Best Estimate Code utilized by Regulatory Body (since 1980s)

RELAP5/MOD3, TRACE, COBRA-TF, MARS-KS

GEN-IV system TH analysis

MARS-LWR(SFR), GAMMA(VHTR)

4

Current Safety Analysis Code in KAERI

“MOSAIQUE” is a fully automated software to support the uncertainty

and sensitivity analysis of thermal-hydraulic calculations.

Sampling uncertainty parameters

Generating the input files for TH system code with uncertainty parameters

Running a TH code with cluster

Analyzing the results

Client 1 Client 2 Client n

Master

Intra Net

At present, MOSAIQUE supports many system TH codes. Use Client PCs in the Intranet for TH calculations Automatically assigns the TH

calculations to client PCs

Independent parallel calculations in client PCs.

When a client PC completes a TH calculation, it return results to the master PC.

5

Current Safety Analysis Code System in KAERI

CONTAINMENT

CONTAIN2.0

(DLL)

CONTEMPT4

(DLL)

SYSTEM

System Analysis Code

(RELAP5, MARS, MARS-SFR)

CORE 3D Kinetics

(MASTER)

Subchannel analysis code

(MATRA,COBRA-TF)

FUEL Performace

(FRAP, COSMOS)

Uncertainty Analysis Tool

MOSAIQUE

• Master-client Computing

•Parallel computing

6

Prospects of Next Generation Safety Analysis Code

Current Safety Analysis Code System

Validated with huge experimental data base (LWR) during last few decades

Contributing to solve the operating licensing issue for 3D kinetics coupled

problem(CANDU LBLOCA) and 3D TH behavior (UPI PWR)

Utilizing for GEN-IV design analysis with some modifications

Advanced Simulation versus Next Generation Code

By the definition of GIF task force, advanced model is mechanistic modeling

for fundamental phenomena. It is also called “first principle solution”.

Example

Full core simulation with Monte-Carlo method

TH Simulation with DNS (at least LES level)

Fuel, material behavior with Molecular Dynamics (at least microstructure

level)

The depletion calculation with advanced simulation may be possible with

supercomputing power, however transient simulation within next few

decades is doubtful

Focus next generation codes for advanced safety analysis

7

Prospects of Next Generation Safety Analysis Code

Next Generation Safety Analysis

May be categorized according to the objectives of the analysis

In licensing analyses

the objective is to provide a high-confidence measure of the safety

margins and demonstrate the defense-in-depth design. Uncertainties in

the analysis must be quantified to a degree that satisfies a level of

confidence set by the regulator.

In research and development analysis

the objective is to gain better understanding of physical phenomena and

their interactions relevant to materials and equipment for advanced

reactor concepts, expecting the replacement of expensive large

validation experiment

At this moment, the best approach for future safety analysis code may be

dual-path programs in KAERI

An integrated safety analysis with statistical & PSA tool, aiming

uncertainty reduction

Code coupling with next generation analysis codes (i.e. Multi-physics),

aiming more realistic core behavior and accuracy enhancement,

In both areas, high performance computing are needed

8

Experience of high performance computing

LOFT L2-5 LBLOCA Uncertainty quantification by Monte-Carlo

method

Performed by OECD/NEA BEMUSE Program (2007)

Code :

MARS System analysis code (similar to RELAP5)

2 fluid, multi-dimensional system TH

Point kinetics & Simple Fuel model

Whole core physic analysis using transport code linked with CFD

Performed by US-ROK collaborative DOE I-NERI project

Code System

Core Physics: DeCART (3D full core transport) McCARD (MC)

Core TH: Start-CD (RANS CFD)

Fuel : NEPTUNE (FEM)

Coupling technique : Data transfer with TCP/IP protocol

9

World-wide Uncertainty Propagation Method for LOCA

USNRC methods : CSAU method

Response surface construction using sensitivity analysis

Monte-carlo calculation with response surface( > 50,000), Find pdf

GRS, IPSN, K-REM(KEPCO), ASTRUM(W) methods:

identify and combine input uncertainties, using subjective pdfs.

Monte-Carlo calculation with direct calculation

Find 95%/95% tolerance limit value or curve (by limited number of

calculation according to non-parametric statistics; Wilks’ formula)

Number of code calculations can be determined by Wilks’

formula

Number of code runs n

upper statistical tolerance limit (one-sided): 1 - an > b

a is desired probability percentile,

b is confidence level

One sided 95% probability, 95% confidence limit require 59

calculations (non-parametric statistics)

If Wilks’ formula at the second order, 93 sample set is needed

10

LOFT L2.5 EXPERIMENT

400

500

600

700

800

900

1000

1100

1200

0 20 40 60 80 100

time (s)

tem

pe

ratu

re (

K)

EXPMAXMIN2nd MAX2nd MIN

95%/95% Tolerance limit of PCT

11

Full Monte-Carlo Calculation

Motivation to compare with the results from full Monte-Carlo

method

Approach based on Wilks’ formula is an ad-hoc approach with a

limited computing power

Need to find the statistical fluctuation of small sampling (~ 100 runs)

effects for non-parametric statistical method

Full Monte-Carlo approach, more than 10,000 runs are needed

12

Full Monte-Carlo Calculation

UQM2.exe

MakeBatch.exe

Param list

(*.lst)

Input files

(*.i)

Batch files

(*.bat)

AnalysePCT.exe

Calc Matrix

(*.matrix)

MakeInput.exe

CLUSTER PC

(10)

Random

Sampling

Input

Generati

on

Batch

Generati

on

Results

Analysis

This semi-auto process has been now replaced with “MOSAIQUE”, which is a fully

automated software

13

Full Monte-Carlo Calculation

CPU times

3.0 GHZ CPU with Window XP

Estimated computing time for scheduled 10,000 runs

100 days on single core

10 days on 10 nodes PC cluster

When 4,000 calculations were obtained, terminate calculations

intentionally

Selection of results

Failure rate ~ 7%

Calculation failures were not systematic, but random.

May be from code deficiencies at low P and flow condition, after the

completion of core quench

Discard the failure cases

3,500 success runs were used for statistical treatments

14

Full Monte-Carlo Calculation

95% Blowdown PCT

1150

1155

1160

1165

1170

1175

1180

1185

1190

1195

1200

0 500 1000 1500 2000 2500 3000 3500

Number of Monte Carlo Histories

Blo

wdow

n P

CT

(K

)

95% Blowdown PCT

Mean PCT

1030

1035

1040

1045

1050

1055

1060

1065

1070

1075

1080

0 500 1000 1500 2000 2500 3000 3500

Number of Monte Carlo Histories

Blo

wdow

n P

CT

(K

)

Mean PCT

95% Reflood PCT

1150

1155

1160

1165

1170

1175

1180

0 500 1000 1500 2000 2500 3000 3500

Number of Monte Carlo Histories

Reflood P

CT

(K

)

95% Reflood PCT

Mean PCT

1010

1015

1020

1025

1030

1035

1040

0 500 1000 1500 2000 2500 3000 3500

Number of Monte Carlo Histories

Reflood

PC

T (

K)

Mean PCT

15

Blowdown PCT Distribution

(3500 runs)

0

50

100

150

200

250

630

670

710

750

790

830

870

910

950

990

1030

1070

1110

1150

1190

1230

1270

1310

1350

1390

Blowdown PCT (K)

Num

ber

of

Fre

quency

Reflood PCT Distribution

(3500 runs)

0

50

100

150

200

250

540

580

620

660

700

740

780

820

860

900

940

980

1020

1060

1100

1140

1180

1220

1260

1300

1340

1380

Reflood PCT (K)

Num

ber

of

Fre

quency

Full Monte-Carlo Calculation (PCT Distributions)

Histogram

Use success 3,500 PCT data

Blowdown PCT

Two peaks

Blowdown CHF bifurcation

Reflood PCT

Two peak

Rewet bifurcation just after

blowdown

Bifucation phenomena is difficult to capture using response surface method and others

16

Comparison with Tolerance Limits based on Wilks’ Formula

1000

1050

1100

1150

1200

1250

1300

1350

1400

1450

0 1 2 3 4 5

W ilks' O rder

Blowdown PCT (K)

95/95 Tolerance Lim it95% U pper Value

M ean Value

1000

1050

1100

1150

1200

1250

1300

1350

1400

0 1 2 3 4 5

W ilks' O rder

Reflood PCT (K)

95/95 Tolerance Lim it

95% U pper Value

M ean Value

Tolerance limit value is higher than the 95% limit value by 95%

confidence level, it means there is a risk of 5% under-prediction

Statistical variance can reduce significantly with increasing Wilks’

order, but still too high to quantify the safety margin (license margin)

17

Lessons

Results

The uncertainty method using non-parametric statistics , i.e. Wilks’ formula, is an ad-hoc approach with a limited computing power

It may be useful for auditing evaluation of existing design

However, full Monte-Carlo method is needed to quantify the design safety (license) margin

Need of High Performance Computer

1 week computing time was required for LOFT LBLOCA (50 sec transients) using 10 core machine

For practical BEPU LOCA application to PWR full scale

< 1 day calculation speed may be necessary to get LOCA full spectrum analysis

numbers of core ~ 10core x10(500sec)x10(1day)=1,000 core

For SBLOCA, longer time is needed ( > 3000 sec)

~ 10,000 core is needed

To support risk informed regulation

Huge numbers of scenarios according PSA event tree

18

Experience of US-ROK collaborative DOE I-NERI project

• Whole core physic analysis using transport code linked with CFD

McCARD

DeCART: Deterministic Core Analysis based on Ray Tracing

DeCART

Star-CD NEPTUNE

TCP/IP

protocol

McCARD: Monte-Carlo Code for Advanced Reactor Design and Analysis

19

Experience of US-ROK collaborative DOE I-NERI project

Whole core calculations have been performed successfully for a small

PWR.

The neutronic model included nearly 5 million neutronic zones, while

the CFD RANS model included 73 million cells.

Calculations were performed on the Jazz LINUX Cluster at ANL, using 57

of the available 350 processors.

Results were obtained in several hours, demonstrating the feasibility of

running whole core calculations on currently available parallel computer

systems.

20

Lessons

Need of HPC

Transient Application of Coupled System

Core : 3D Transport – CFD RANS(+ Subchannel) – Fuel (1D/3D)

System : Conventional System Code (RELAP5, MARS, etc)

Considering a typical core have 50,000 fuel rods and 50,000

subchannels. May need >10,000 core

Expected improvement area of safety analysis

AOO : More accurate DNB margin calculation based on full core

pin-power and subchannel behavior

RIA : More detailed pin-wise power coupled with TH and fuel

behavior, direct evaluation of fuel failure rate

SLB : More detailed thermal mixing and re-critical evaluation

Radiological Consequences : Accurate source term with pin-

wise evaluation

Uncertainty quantification of high fidelity model for engineering

purpose

Brute force MC method may be not possible

Combination of perturbation and MC method

21

Concluding remarks

At this moment

dual-path programs for future safety analysis code system are

considering in KAERI

Integrated safety analysis with uncertainty quantification tools

Demonstrate the defense-in-depth design and reduce uncertainty

Utilizing HPC

Enable full spectrum analysis of DBA with UQ

Support risk informed regulation

– Safety margin quantification for licensing analysis require

huge number of calculations

Code coupling with next generation analysis tools (i.e. Multi-

physics)

More realistic full core behavior and accuracy enhancement based

on high fidelity models which is now available

3D transport neutronics code (few million nodes)

RANS scale TH or subchannel code (few million nodes)

3D FEM or in-house 1D fuel performance code (few million nodes)

Conventional system TH code ( few hundred nodes)

22

APPENDIX

Examples of Calculation Result

23

Application for CANDU (PHWR) LBLOCA

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0

1G

2G

3G

4G

5G

Reacto

r P

ow

er

(W)

Time (sec)

SCAN/RELAP FDM

TPOWER

INTACT

BROKEN

SCAN/RELAP NEM

TPOWER

INTACT

BROKEN

RFSP/CATHENA FDM

TPOWER

INTACT

BROKEN

Safety issue during licensing for Wolsong #1 reoperation

Power peak during LBLOCA due to positive moderator coefficient

Coupled analysis with 3D kinetics is utilizing for auditing calculation

24

Kori Unit 1 UPI LBLOCA Audit Calculation

Safety issue during licensing for Kori #1

Life extension

Multidimensional behaviour during

LBLOCA reflood phase

Full 3D analysis show the non-

conservatism of 1D calculation

BE+Uncertainty still below safety limit

25

Application for Detailed Core TH Behavior

25 Finger Control Element Assemble Drop Accident

• CUPID-MASTER(3D Kinetics) Coupled Calculation

노심출구 온도분포

1 2 3 4 5 6 7 8 9 10 11 12 13 14

15 16 17 18 19 20 21 22 23 24 25 26 27 28

29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72

73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98

99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124

125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154

155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184

185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214

215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244

245246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278

279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312

313314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346

347348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380

381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414

415416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448

449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482

483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516

517518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550

551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584

585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618

619620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652

653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686

687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720

721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750

751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780

781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810

811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840

841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866

867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892

893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914

915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936

937 938 939 940 941 942 943 944 945 946 947 948 949 950

951 952 953 954 955 956 957 958 959 960 961 962 963 964

178 179 180 181 182 183 184

185 186 187 1 2 3 4 5 188 189 190

191 192 6 7 8 9 10 11 12 13 14 193 194

195 196 15 16 17 18 19 20 21 22 23 24 25 197 198

199 26 27 28 29 30 31 32 33 34 35 36 37 38 200

201 202 39 40 41 42 43 44 45 46 47 48 49 50 51 203 204

205 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 206

207 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 208

209 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 210

211 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 212

213 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 214

215 216 127 128 129 130 131 132 133 134 135 136 137 138 139 217 218

219 140 141 142 143 144 145 146 147 148 149 150 151 152 220

221 222 153 154 155 156 157 158 159 160 161 162 163 223 224

225 226 164 165 166 167 168 169 170 171 172 227 228

229 230 231 173 174 175 176 177 232 233 234

235 236 237 238 239 240 241

Steady State After 25 Finger CEA Drop

Distribution

core exit

temperature

Distribution

of Exit Core

Void Fraction

MASTER mesh, 962x26

CUPID mesh, 241x16

26

Software

Project Thermal Hydraulics Neutronics

System Macro Meso

(DNS)

Commercial

CFD Diffusion Transport

Monte

Carlo

MARS

(SPACE)

MATRA

CUPID

(Developi

ng)

- TBD

(Start-CD) MASTER DeCART

McCARD

(SNU)

Software

Project

Fuel

Performance

Structural

Mechanics Chemistry

Uncertainty

Quantification

Multi-physics

Multi-mesh

Integrator

COSMOS

(developing)

TBD

(NEPTUNE) - MOSAIQUE -

Possible Software for the Multi-Scale Multi-Physics Analysis

27

Establish Base tech and coupling tech.

AMS with personal Supercomp cluster

Application NPP Utilize New Design

Long term prospect (KAERI)

Integrated Analysis Platform

• Coupling Tech.

• Nuclear & Mat. DB

• Core Physics

• Core TH

• Fuel Performance

• Water-chemistry

Realization of Advance M&S

• Structure Coupling

• Material Science

• Base DB Extension

• Parallel Compute

• Utilize personal GPU supercomp.

Application of VR

• Uncertainty Quant

• App. for Design

• App. for SA

• Utilize world-class supercomp.

Short term Mid-term Long term

These pictures were taken from the presentation material of EU-NURESIM, US-CASL Project