55
Project TCB18 Individual Benchmarking Report GTS - 209 GAS TSO 2019-07-25 CONFIDENTIAL Document type Version V1.0 - NRA release only This version is available at https://sumicsid.worksmart.net Citation details SUMICSID-CEER (2019) Transmission System Cost Efficiency Benchmarking, Final Report. Terms of use Strictly confidential.

Project TCB18 Individual Benchmarking Report GTS - 209...PROJECT CEER-TCB18 Pan-European cost -efficiency benchmark for gas transmission system operators APPENDIX 2019-06-19 X0.9 Project

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

  • PROJECT CEER-TCB18

    Pan-European cost-efficiency benchmark for gas transmission system operators APPENDIX

    2019-06-19 X0.9

    Project TCB18Individual Benchmarking ReportGTS - 209

    GAS TSO2019-07-25

    CONFIDENTIAL

    Document typeVersion V1.0 - NRA release only

    This version is available athttps://sumicsid.worksmart.net

    Citation detailsSUMICSID-CEER (2019) Transmission System Cost Efficiency Benchmarking, Final Report.

    Terms of useStrictly confidential.

    https://sumicsid.worksmart.net

  • Contents

    Contents 1

    1 Results 3

    2 Data 52.1 Capex-break . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72.2 Capex-old . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72.3 Model input and output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

    3 Regression analysis 8

    4 Sensitivity analysis 94.1 Scale efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94.2 Partial Opex-capex efficiency analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124.3 Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184.4 Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254.5 Age . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254.6 Cost analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

    5 Second-stage analysis 33

    6 Cost development 35

    7 Parameters and index 50

    1

  • Acronyms

    Table 0.1: Acronyms in the report.

    Acronym Definition

    AE Allocatively EfficientCAPEX CAPital EXpenditureCRS Constant Returns to ScaleDEA Data Envelopment Analysisfte full time equivalentsI Indirect support services (activity)IRS Increasing Returns to ScaleL LNG terminal services (activity)M Maintenance services (activity)NDRS Non-Decreasing Returns to ScaleO Other (out-of-scope) services (activity)OPEX OPerating EXpenditureP Planning services (activity)S System operations (activity)SC Staff intensity (scaled)SE Scale EfficiencySF Energy storage services (activity)SI Staff intensity per NormGrid unitT Transport services (activity)TCB18 (CEER) Transmission Cost Benchmarking project 2018TO Offshore transport services (activity)TOTEX TOTal EXpenditureTSO Transmission System OperatorUC Unit cost (cost per NormGrid unit)VRS Variable Returns to ScaleX Market facilitation services (activity)

    2

  • Chapter 1

    Results

    The following material is a summary of results, descriptive data and sensitivity analyses for GTS with codenumber 209 in the TCB18 benchmarking based on data processed 15.04.2019. This release is exclusivelymade to the authorized NRA and the information contained in this release is not reproduced as such in anyother project report for TCB18. All underlying information in this release is subject to the confidentialityagreement of TCB18. This report with associated data files is part of the final deliverables for the TCB18project. The contents of this report are strictly confidential.

    The benchmarking model of the TCB18 project uses a total expenditure measure as input and the costsdrivers listed in Table 2.6 below. In addition, it is a Data Envelopment Analysis (DEA) model which meansthat it determines the best practice among the TSOs and uses this as the standard for evaluating each of thefirms in the sample.

    DEA constructs a best practice frontier by departing from the actual observations and by imposing aminimal set of additional assumptions.

    One assumption is that of free disposability which means that one can always provide the same servicesand use more costs and that one can always provide less services at given cost levels. In the base model, thisis an entirely safe assumption, but it does allow us to identify more comparators for any given TSO.

    Another assumption is that of convexity. It basically means that one can make weighted averages of theperformance profiles of two or more TSOs. This is a more technical assumption widely used in economics.

    The third assumption is that of non-decreasing returns to scale or as it is sometimes called, (weakly)increasing returns to scale. It means that if we increase the costs of any given TSO with some percent, weshould also be able to increase the service output, the costs drivers, with at least the same percent. We canalso formulate this as an assumption that it can be a disadvantage to be small, but not to be large. It isimportant that this assumption is not just imposed ex ante. The statistical analysis of alternative returns toscale models suggests that it actually is a reasonable assumption to make in the sample of gas transmissionoperators in this study.

    The best practice DEA model and the theory behind it are further explained in the main report and itsaccompanying appendices.

    Using the base model, we have estimated the efficiency level of GTS to be

    73.2 %

    The interpretation is that using best practice, the benchmarking model estimates that GTS is able toprovide the same services, i.e. keep the present levels of the cost drivers, at 73.2 % of the present totalexpenditure level. In other words, the model suggests a saving potential of 26.8 % or in absolute terms, asavings in total comparable expenditure of

    159 MEUR

    3

  • SUMICSID-CEER/TCB18 - GTS 4(54)

    ● ●

    ● ●

    ● ●

    ● ●●

    ● ●●

    ●●

    ● ● ● ● ● ● ● ● ● ●

    0 5 10 15 20 25 30

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    FINAL GAS MODEL

    SUMICSID/Agrell&Bogetoft/TCB18/CONFIDENTIAL/190720_010723/TSO sorted

    DE

    A(T

    OTE

    X,N

    DR

    S,e

    x.ou

    t)

    ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ●

    TSO 209PeerNon−peerOutlier

    0.793

    0.732

    209

    Figure 1.1: Final DEA cost efficiency results for gas TSO in TCB18 .

    The model considers both investment efficiency and operating efficiency under a given set of environmentalconditions. The material in this report may provide elements to explore other differences than those explicitlyincluded in the model, to understand the scores and the operating practice of the gas transmission operatorsin Europe in 2017.

    To evaluate the estimated efficiency of GTS, it is always relevant to compare to the efficiencies of theother TSOs in the TCB18 project, see Figure 1.1. Structural comparability is assured by stringent activitydecomposition, standardization of cost and asset reporting, harmonized capital costs and depreciations,elimination of country-specific costs related to taxes, land, buildings, and out-of-scope activities, correction forsalary cost differences and national inflation as well as currency differences.

    Table 1.1: Efficiency scores year 2017

    Mean eff #outliersAll TSO 0.793 6GTS 0.732 0

    CONFIDENTIAL - FINAL

  • Chapter 2

    Data

    The data collected in the TCB18 project is extremely rich and cannot be fully represented in a short summary.Hence, the reporting for each individual operator includes the following documents in addition to this report:

    1. Asset sheet with Normgrid values.

    2. Cost data sheet (Capex and Opex).

    Below in Table 2.1, we provide an overview of the model data used and some descriptive statistics for theunits.

    Table 2.1: Detailed asset summary (usage share included) 2017

    Code Units 2017 Units

  • SUMICSID-CEER/TCB18 - GTS 6(54)

    Table 2.4: Detailed asset summary (usage share included) 2014

    Code Units 2014 Units

  • SUMICSID-CEER/TCB18 - GTS 7(54)

    2.1 Capex-break

    In the gas benchmarking, one operator was subject to the capex-break method described in the main report.However, the application was not made to prevent an infeasible target, but to avoid an absurd datapoint. Inthe particular case, using the official inflation metric for the entire investment stream would lead to a Capexvalue that exceeds the sum of all Capex in the sector, or 10,000 times higher than the actual regulatory assetbase (RAB) for the operator! Obviously, the early inflation values in this country do not correspond to arealistic assessment of the network capital valuation. By using capex-break, a new value relatively close to theactual comparable value was calculated.

    In the electricity benchmarking, no operator was subject to capex-break.

    2.2 Capex-old

    The assets prior to 1973 still operating at the reference year provide output in terms of NormGrid, but theinvestment stream is not reported. To compensate for this, the CapexBreak methodology above has beenapplied to calculate a corrective term with equal unit cost to the period 1973-2017. This means that theadded Capex does not change the investment efficiency for the evaluated operator, it merely assures equalconsideration of prior investments for operators with longer or shorter investment streams.

    In the case of GTS the CapexOld value is calculated to 228,198,967 EUR. The correction is capped to119,438,707 EUR corresponding to the reported pre-1973 investment.

    2.3 Model input and output

    The single input (Totex) and the relevant outputs for the benchmarking model for GTS are listed in Table 2.6below. The exact calculation of the inputs and outputs is documented in the separate confidential spreadsheetsprovided for each TSO on the project platform.

    Table 2.6: Model data year 2017

    Type Name Value Mean TSO/meanInput dTotex.cb.hicpog plici 592,292,922 141,190,318 4.19Output yNG zSlope 361,893,618 99,144,917 3.65Output yCompressors.power tot 798,688 200,308 3.99Output yConnectionpoints tot 1,243 258 4.82Output yPipes Landhumidity 12,752 2,710 4.71

    CONFIDENTIAL - FINAL

  • Chapter 3

    Regression analysis

    The robust regression results for the final model are presented below. The dependent variable is as beforedTotex.cb.hicpog plici. Regression results for alternative models and variants were presented at projectworkshops W4 and W5.

    Table 3.1:

    Dependent variable:

    refmod[[rfm]]

    yNG zSlope 1.841∗∗∗

    (0.093)

    yCompressors.power tot −178.510∗∗∗(19.783)

    yConnectionpoints tot 207,935.700∗∗∗

    (15,257.100)

    yPipes Landhumidity −14,286.860∗∗∗(1,741.543)

    Observations 70R2 0.997Adjusted R2 0.997Residual Std. Error 12,471,493.000 (df = 66)

    Note: ∗p

  • Chapter 4

    Sensitivity analysis

    4.1 Scale efficiency

    The productive efficiency depends on a multitude of factors, including the scale of operations. In DEA, themodel can easily calculate these effects through the concept of different assumptions of returns to scale. InFigure 4.1 a reference set of four points is analyzed. Using constant returns to scale (CRS), only operator Bis deemed cost efficient, located at the most productive scale (MPS). Thus DEACRS(B) = 1. The smalleroperator A has a lower cost-efficiency than B, operating at an inefficient scale, DEACRS(A) < 1. However, asdiscussed above, a smaller scale may be imposed by a national border and/or a concession area, beyond thecontrol of the operator. Thus, the frontier assumption of increasing returns to scale (IRS) or non-decreasingreturns to scale (NDRS) illustrated by the red curve in 4.1 renders A fully efficient; DEAIRS(A) = 1. Finally,an operator such as C that is CRS-inefficient but above optimal scale is also inefficient under IRS, but efficientunder variable returns to scale (VRS), i.e. DEACRS(C) = DEAIRS(C) < 1 and DEAV RS(C) = 1. VRS isthe weakest assumption available, it assumes both diseconomies of scale for small and large units. In networkoperations the diseconomies of size (e.g. congestion), are not considered relevant. However, the results allowthe calculation of the economy of scale effect through the formula:

    DEASE(k) =DEACRS(k)DEAV RS(k)

    (4.1)

    The actual scale efficiency results for the gas transmission system operators in TCB18 are given in Table4.1 and in Figure 4.2 below.

    Table 4.1: Scale efficiency DEA(SE)

    Mean eff #scale-efficientAll TSO 0.863 9GTS 0.732 0

    9

  • SUMICSID-CEER/TCB18 - GTS 10(54)

    Totex

    Output

    yk

    yBC

    O

    B

    Constant, CRS

    Increasing, IRS

    Variable, VRS

    C

    A

    k

    Most productive scaleMPS

    Figure 4.1: DEA frontiers CRS, IRS and VRS and scale efficiency (SE).

    CONFIDENTIAL - FINAL

  • SUMICSID-CEER/TCB18 - GTS 11(54)

    ●●

    ●●

    ●●

    ●●

    ●●

    ●●

    ●●

    ●●

    ●●

    ●●

    ●●

    05

    1015

    2025

    30

    0.00.20.40.60.81.0

    Sca

    le e

    ffic

    ienc

    y TC

    B18

    gas

    SU

    MIC

    SID

    /Agr

    ell&

    Bog

    etof

    t/TC

    B18

    /CO

    NFI

    DE

    NTI

    AL/

    1907

    20_0

    1072

    3/TS

    O T

    CB

    18, s

    orte

    d

    DEA(SE)

    ● ●

    TSO

    209

    Sca

    le−e

    ffici

    ent (

    SE

    )N

    on−S

    E

    0.86

    3

    0.73

    2

    Figure 4.2: Scale efficiency, DEASE(k).

    CONFIDENTIAL - FINAL

  • SUMICSID-CEER/TCB18 - GTS 12(54)

    On Partial Efficiency

    1. Introduction

    In regulatory benchmarking, it is common to focus on Totex efficiency. The questionis if TSOs can produce the same services with less Totex. To evaluate this, one needs amodel with one input, Totex, and the usual cost drivers as outputs.

    Now, Totex is the sum of Opex and Capex,

    Totex = Opex+Capex

    and one may therefore ask how much the TSOs could save on Opex (with fixed Capex)or on Capex (with fixed Opex). This is what we call Opex and Capex efficiency. Toevaluate this one needs a model with two inputs (Opex and Capex) and the usual costdrivers.

    Figure 1 illustrate the idea of Opex Efficiency.

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .....................

    ..............

    ......................................................................................................................................................................................................................................................................................................................................................................................................................................................... ..............

    xOpex

    xCapex

    0

    .....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

    Isoquant

    ••

    xx⇤

    xAE

    ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ..........

    .......

    ......

    .......

    ......

    .......

    ......

    .......

    ......

    .......

    ......

    .......

    ......

    .......

    ......

    .......

    ......

    .......

    ......

    .......

    ......

    .......

    ......

    .......

    ......

    .......

    ......

    .......

    ......

    .......

    ......

    .......

    ......

    .......

    ......

    .......

    ......

    xOpexEOpexxOpex

    Figure 1: Opex efficiency EOpex with fixed Capex

    Capex efficiency is similar except that we project the observed Opex-Capex combi-nation x = (Opex,Capex) in the vertical direction.

    It follows from these definitions that all points on the input isoquant will be fullyefficient from a partial Opex as well as a partial Capex perspective. This does not mean

    Preprint submitted to Springer Volume July 10, 2019

    Figure 4.3: Opex efficiency EOpex with fixed Capex.

    4.2 Partial Opex-capex efficiency analyses

    In regulatory benchmarking, it is common to focus on Totex efficiency. The question is whether TSOs canprovide the same level of services with less Totex. To evaluate this, one needs a model with one input, Totex,and the usual cost drivers as outputs.

    Now, Totex is the sum of Opex and Capex,

    Totex = Opex+ Capex

    and one may therefore ask how much the TSOs could save on Opex (with fixed Capex) or on Capex (withfixed Opex). This is what we call Opex and Capex efficiency. To evaluate this, we need a model with twoinputs (Opex and Capex) and the usual cost drivers.

    Figure 4.3 illustrates the idea of Opex Efficiency where we project horizontally (on Opex) for a fixed levelof Capex (vertical axis).

    Capex efficiency is similar except that we project the observed Opex-Capex combination x = (Opex,Capex)in the vertical direction for a fixed Opex level.

    It follows from these definitions that all points on the input isoquant will be fully efficient from a partialOpex as well as a partial Capex perspective. This does not mean that all the points are fully Totex efficienthowever. In the illustration, the sum of Opex and Capex is only minimal at one point on the isoquant, namelyxAE .

    In our analysis, we do not know the location of the isoquant. Instead we estimate the location using DataEnvelopment Analysis. This means that the isoquant becomes piecewise linear like in Figure 4.4 below withcorresponding values in Table 4.2.

    It also means that there will typically be quite a large number of TSOs on the estimated frontier and inconsequence a large number of TSOs that cannot save Opex given Capex and vice versa. However, this doesnot necessarily mean that they are all Totex efficient. Note in the numerical example that only TSO C isTotex efficient, as can easily be seen also from the table. Notwithstanding, TSOs A, B, C, and D are all fullyOpex and Capex efficient.

    To sum up, TSOs that are Opex- and Capex-efficient cannot save Opex for fixed Capex, nor Capex forfixed Opex. However, this does not imply that they cannot save on Totex. The reason is that the mix betweenOpex and Capex may not be optimal. A TSO like D in the numerical example can save a lot of Opex, but itrequires a small increase in Capex.

    Note that in Fig. 4.5-4.7 a single point in the graph may represent multiple operators with the same value,the graphs contain all participating operators.

    CONFIDENTIAL - FINAL

  • SUMICSID-CEER/TCB18 - GTS 13(54)

    that all the points are fully Totex efficient however. In the illustration, the sum of Opexand Capex is only minimal on at one point on the isoquant, namely xAE .

    In our analysis, we do not know the location of the isoquant. Instead we estimatethe location using Data Envelopment Analysis. This means that the isoquant becomespiecewise linear like in Figure 2 below with corresponding values in Table 1.

    It also means that there will typically be quite a large number of TSOs on the esti-mated frontier and therefore quite a large number of TSOs that cannot save Opex givenCapex and vise versa. This does not mean however that they are necessarily Totex effi-cient. In the numerical example only TSO C is Totex efficient as can easily be seen alsofrom the table. TSOs A, B, C, and D are all fully Opex and Capex efficient however.

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    ....................

    ..............

    ................................................................................................................................................................................................................................................................................................................................................................................................ ..............

    x1

    x2

    0

    ••

    •A

    B

    CD

    E

    F.........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

    ..........................

    ..........................

    ..........................

    ..........................

    ..........................

    ..........................

    ..........................

    ..........................

    ...

    Figure 2: Numerical example

    TSO Opex Capex Output TotexA 2 12 1 14B 2 9 1 11C 5 5 1 10D 10 4 1 14E 10 6 1 16F 3 12 1 15

    Table 1: Numerical example

    To sum up, TSOs that are Opex and Capex efficient cannot save Opex for fixedCapex nor Capex for fixed Opex. This does not mean however that they cannot saveTotex. The reason is that the balance may not be optimal between Opex and Capex.A TSO like D in the numerical example can save a lot of Opex, but it requires a smallincrease in Capex.

    3

    Figure 4.4: Partial Opex- and Capex-efficiency: numerical example.

    Table 4.2: Partial opex-capex efficiency: numerical example.

    TSO Opex Capex Output TotexA 2 12 1 14B 2 9 1 11C 5 5 1 10D 10 4 1 14E 10 6 1 16F 3 12 1 15

    Table 4.3: Partial DEA scores year 2017

    DEA(Opex) DEA(Capex)All TSO 0.816 0.761GTS 0.718 0.628

    CONFIDENTIAL - FINAL

  • SUMICSID-CEER/TCB18 - GTS 14(54)

    ●●

    ●●●●●●

    ●●

    ●●

    ● ●

    ●●

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    0.00.20.40.60.81.0

    Par

    tial O

    PE

    X v

    s C

    AP

    EX

    eff

    icie

    ncy

    DE

    A(O

    PE

    X)

    DEA(CAPEX)

    209

    TSO

    GTS

    Oth

    er T

    SO

    Figure 4.5: Partial OPEX and CAPEX efficiency in TCB18 (red dash=mean level).

    CONFIDENTIAL - FINAL

  • SUMICSID-CEER/TCB18 - GTS 15(54)

    ●●

    ●● ●●●●

    ● ●

    ● ●

    ●●

    ●●

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    0.00.20.40.60.81.0

    Par

    tial O

    PE

    X v

    s TO

    TEX

    eff

    icie

    ncy

    DE

    A(O

    PE

    X)

    DEA(TOTEX)

    209

    TSO

    GTS

    TCB

    18

    Figure 4.6: Partial OPEX vs TOTEX efficiency in TCB18 (red dashed line=mean).

    CONFIDENTIAL - FINAL

  • SUMICSID-CEER/TCB18 - GTS 16(54)

    ●●

    ●● ●●●●

    ● ●

    ●●

    ●●

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    0.00.20.40.60.81.0

    Par

    tial C

    AP

    EX

    vs

    TOTE

    X e

    ffic

    ienc

    y

    DE

    A(C

    AP

    EX

    )

    DEA(TOTEX)

    TSO

    GTS

    TCB

    18

    209

    Figure 4.7: Partial CAPEX vs TOTEX efficiency in TCB18 (red dashed line=mean).

    CONFIDENTIAL - FINAL

  • SUMICSID-CEER/TCB18 - GTS 17(54)

    ●●

    ●●

    ●●

    ●●

    ●●

    ●●

    0.5

    1.0

    1.5

    2.0

    012345

    TCB

    18 U

    nit c

    ost g

    as

    SU

    MIC

    SID

    /Agr

    ell&

    Bog

    etof

    t/TC

    B18

    /CO

    NFI

    DE

    NTI

    AL/

    1907

    25_1

    1503

    2/U

    C (C

    apex

    )

    UC (Opex)

    209

    ● ●

    TCB

    18 g

    as 2

    017

    GTS

    Figure 4.8: Unit cost UC(Opex) vs UC(Capex).

    CONFIDENTIAL - FINAL

  • SUMICSID-CEER/TCB18 - GTS 18(54)

    4.3 Sensitivity analysis

    The calculated cost functions are proportional to a number of parameters, e.g. the NormGrid weights. However,since a frontier benchmarking is an investigation into relative, not absolute, changes, the scales of the inputsand outputs are not important. The relevant evaluation in this context is whether a change in a technicalparameter would lead to changes in the relative ranking or level of the benchmarked units. To investigate thisaspect, the following model parameters have been varied and the resulting changes in the efficiency score forGTS are illustrated in the following graphs

    Tested parameters

    1. Interest rate, Fig. 4.9

    2. Normgrid weights: calibration between Opex and Capex parts, Fig. 4.10

    3. Normgrid weights: calibration for transport assets, Fig. 4.11

    4. Normgrid weights: calibration for compressor/transformer assets, Fig. 4.12

    5. Age assumptions for standardized life time, Fig. 4.13

    6. Salary corrections for capitalized labor in investments, Fig. 4.14

    For the analyses 1-4, a specific parameter w is varied using a factor k from 20% (-80%) to 200% (+100%)multiplied with the base value for the parameter, w0. All other parameters remain at their base value, usedfor the final run. The graph then shows the efficiency score DEA(kw0) and the mean efficiency in the dataset.

    Analysis 5 in Fig. 4.13 looks at the impact on the score of the assumptions regarding the standardized lifetime per asset. For simplicity, we have reduced the simulation to two alternative cases, Agelow and Agehigh,respectively with correspondingly about 10 years shorter and longer lifetimes. The exact parameters arereproduced in Table 4.4 below.

    Table 4.4: Standard age variants (years)

    Age-Low Base case Age-HighPipelines 50 60 70Regulators 20 30 40Compressors 20 30 40Connection points 20 30 40Metering stations 20 30 40Control centers 20 20 30

    Analysis 6 in Fig. 4.14 concerns the possible adjustment for local labor costs in the investment stream.Here, we simulate a part a of the total gross investment stream to be constituted of labor costs corrected usingthe PLICI index used in the study. The labor part ranges from 0% (base case) to 25% of the full investmentvalue.

    CONFIDENTIAL - FINAL

  • SUMICSID-CEER/TCB18 - GTS 19(54)

    ●●

    ●●

    ●●

    ●●

    ●●

    0.00.20.40.60.81.0

    rate

    SU

    MIC

    SID

    /Agr

    ell&

    Bog

    etof

    t/TC

    B18

    /CO

    NFI

    DE

    NTI

    AL/

    1907

    25_1

    1493

    0/ra

    te

    DEA(SA)

    0.77

    40.

    778

    0.78

    10.

    785

    0.78

    80.

    793

    0.79

    70.

    801

    0.80

    30.

    806

    0.04

    50.

    042

    0.03

    90.

    036

    0.03

    30.

    030.

    027

    0.02

    40.

    021

    0.01

    8

    ●TC

    B18

    mea

    n sc

    ore

    GTS

    0.65

    10.

    665

    0.68

    0.69

    60.

    714

    0.73

    20.

    751

    0.77

    10.

    793

    0.81

    4

    Figure 4.9: Average and operator-specific DEA-score as function of interest rate.

    CONFIDENTIAL - FINAL

  • SUMICSID-CEER/TCB18 - GTS 20(54)

    ●●

    ●●

    ●●

    ●●

    ●●

    0.00.20.40.60.81.0

    ng_o

    pex−

    cape

    x

    SU

    MIC

    SID

    /Agr

    ell&

    Bog

    etof

    t/TC

    B18

    /CO

    NFI

    DE

    NTI

    AL/

    1907

    25_1

    1493

    0/ng

    _ope

    x−ca

    pex

    DEA(SA)

    0.79

    20.

    792

    0.79

    20.

    792

    0.79

    20.

    793

    0.79

    30.

    793

    0.79

    40.

    794

    21.

    81.

    61.

    41.

    21

    0.8

    0.6

    0.4

    0.2

    ●TC

    B18

    mea

    n sc

    ore

    GTS

    0.73

    20.

    732

    0.73

    20.

    732

    0.73

    20.

    732

    0.73

    20.

    732

    0.73

    20.

    732

    Figure 4.10: Average and operator-specific DEA-score as function of calibration NormGrid opex vs capex(-80pct, + 100pct)

    CONFIDENTIAL - FINAL

  • SUMICSID-CEER/TCB18 - GTS 21(54)

    ●●

    ●●

    ●●

    ●●

    ●●

    0.00.20.40.60.81.0

    ng_p

    ipel

    ines

    SU

    MIC

    SID

    /Agr

    ell&

    Bog

    etof

    t/TC

    B18

    /CO

    NFI

    DE

    NTI

    AL/

    1907

    25_1

    1493

    0/ng

    _pip

    elin

    es

    DEA(SA)

    0.79

    40.

    793

    0.79

    30.

    793

    0.79

    30.

    793

    0.79

    20.

    793

    0.79

    30.

    793

    21.

    81.

    61.

    41.

    21

    0.8

    0.6

    0.4

    0.2

    ●TC

    B18

    mea

    n sc

    ore

    GTS

    0.73

    20.

    732

    0.73

    20.

    732

    0.73

    20.

    732

    0.73

    20.

    732

    0.73

    20.

    732

    Figure 4.11: Average and operator-specific DEA-score as function of calibration NormGrid for pipelines(-80pct, + 100pct)

    CONFIDENTIAL - FINAL

  • SUMICSID-CEER/TCB18 - GTS 22(54)

    ●●

    ●●

    ●●

    ●●

    ●●

    0.00.20.40.60.81.0

    ng_c

    ompr

    esso

    rs

    SU

    MIC

    SID

    /Agr

    ell&

    Bog

    etof

    t/TC

    B18

    /CO

    NFI

    DE

    NTI

    AL/

    1907

    25_1

    1493

    0/ng

    _com

    pres

    sors

    DEA(SA)

    0.79

    30.

    792

    0.79

    20.

    792

    0.79

    20.

    793

    0.79

    30.

    794

    0.79

    50.

    797

    21.

    81.

    61.

    41.

    21

    0.8

    0.6

    0.4

    0.2

    ●TC

    B18

    mea

    n sc

    ore

    GTS

    0.73

    20.

    732

    0.73

    20.

    732

    0.73

    20.

    732

    0.73

    20.

    732

    0.73

    20.

    732

    Figure 4.12: Average and operator-specific DEA-score as function of calibration NormGrid for compressors(-80pct, + 100pct)

    CONFIDENTIAL - FINAL

  • SUMICSID-CEER/TCB18 - GTS 23(54)

    ●●

    0.00.20.40.60.81.0

    age

    SU

    MIC

    SID

    /Agr

    ell&

    Bog

    etof

    t/TC

    B18

    /CO

    NFI

    DE

    NTI

    AL/

    1907

    25_1

    1493

    1/ag

    e

    DEA(SA)

    0.78

    80.

    793

    0.79

    age−

    low

    age−

    base

    age−

    high

    ●A

    vera

    ge s

    core

    GTS

    0.72

    50.

    732

    0.72

    4

    Figure 4.13: Average and operator-specific DEA-score as function of standard lifetimes (age-low = shorterlives, age-base = base case, age-high = longer lives)

    CONFIDENTIAL - FINAL

  • SUMICSID-CEER/TCB18 - GTS 24(54)

    ●●

    ●●

    ●●

    ●●

    ●●

    0.00.20.40.60.81.0

    capl

    abor

    SU

    MIC

    SID

    /Agr

    ell&

    Bog

    etof

    t/TC

    B18

    /CO

    NFI

    DE

    NTI

    AL/

    1907

    25_1

    1493

    1/ca

    plab

    or

    DEA(SA)

    0.79

    10.

    791

    0.79

    20.

    792

    0.79

    20.

    792

    0.79

    20.

    792

    0.79

    20.

    792

    0.79

    3

    0.25

    0.22

    50.

    20.

    175

    0.15

    0.12

    50.

    10.

    075

    0.05

    0.02

    50

    ●TC

    B18

    mea

    n sc

    ore

    GTS

    0.73

    70.

    737

    0.73

    60.

    735

    0.73

    50.

    734

    0.73

    40.

    733

    0.73

    30.

    732

    0.73

    2

    Figure 4.14: Average and operator-specific DEA-score as function of share of investments adjusted for locallabor costs (0pct = base case to 25pct).

    CONFIDENTIAL - FINAL

  • SUMICSID-CEER/TCB18 - GTS 25(54)

    4.4 Profile

    The specific profile of GTS compared to the other operators in TCB18 is illustrated in Figures 4.15 and 4.16:

    • The relative gridsize in Fig. 4.15 depicts the NormGrid sizes of the reference set, scaled such that themean is set to 100. This analysis gives an impression of the scale differences in the benchmarking.

    • The output profile in Fig. 4.16 gives a graphical image of the magnitude of the inputs and outputs forGTS in red compared to the range of those in TCB18. A value of 100 here corresponds to the highest inthe sample, a value of 0 is the smallest, respectively. The median values are indicated in blue.

    4.5 Age

    The age profile of the European operators in comparison to GTS is illustrated in the Figures 4.17 and 4.18 below.

    In Figure 4.17 the ages for all assets in the gas dataset have been processed as a confidence interval, theyellow box marks the mean in bold black, the box edges are 25% and 75% quartiles and the outer whiskers arelimits for one standard deviation up or down, respectively. The mean ages for the assets per type for GTS areindicated with a red triangle and a (rounded) number. A circle to the left or right of the confidence intervalbox indicates an outlier.

    In Figure 4.18 we investigate the prevalence of very old (pre-1973) assets that are still used in 2017.The average share of capital for different asset types (symbols) is graphed on the horizontal axis. Theshare of capital for pre-1973 assets is given on the vertical axis. The respective asset ages for GTSaredepicted using red symbols, the blue symbols depict the mean age and shares, respectively, in the TCB18project. If the red symbols are located north-east on the corresponding blue symbol, it means that your assetsare both relatively older and also that the asset type represents a higher importance than for the mean operator.

    4.6 Cost analysis

    In this section we analyze the staff profile, the functional costs and the overhead allocation share for GTScompared to the gas operators in TCB18. The cost analysis is purely informative and does not intervene assuch in the benchmarking. In Fig.4.19 the mean staff intensity SIf for all operators is presented using theNormGrid per activity f :

    SIf = meank{Stafffk

    NormGridk} (4.2)

    where Stafffk is the staff count (fte) for activity f for operator k and NormGridk is the sum of the NormGridfor operator k in the corresponding year. This intensity is then used to obtain a size-adjusted comparator forthe mean staff in the sample, SCfk, scaled to the size of GTS, i.e. k = 209 here:

    SCf,209 = SIfNormGrid209 (4.3)

    In Fig 4.20 the allocation key for indirect expenditure (I) is based on total expenditure per activityexcluding energy and depreciation, i.e. the graph can also be interpreted as the relative shares of expenditureby function. In Fig 4.21 we graph the actual allocation of indirect expenditure to the benchmarked activitiesT,M,P per operator, along with the mean allocation in the sample.

    CONFIDENTIAL - FINAL

  • SUMICSID-CEER/TCB18 - GTS 26(54)

    TSO

    sor

    ted

    Mean NormGrid = 100

    12

    34

    56

    78

    910

    1112

    1314

    1516

    1718

    1920

    2122

    2324

    2526

    2728

    29

    0100200300400

    3.2

    4.6

    7.6

    14.5

    16.2

    16.6

    21.1

    22.8

    25.9

    26.5

    27.9

    32

    32.6

    42.7

    42.7

    46.8

    47.3

    67.2

    73.4

    93.1

    105.7

    110.7

    128.9

    150.8

    156.3

    321.3

    390.7

    410

    461

    TCB

    18 m

    ean

    Rel

    ativ

    e gr

    id s

    ize

    (Nor

    mG

    rid)

    for

    gas

    : GTS

    SU

    MIC

    SID

    /Agr

    ell&

    Bog

    etof

    t/TC

    B18

    /CO

    NFI

    DE

    NTI

    AL/

    1907

    25_1

    1493

    9/

    Figure 4.15: Relative gridsize in TCB18, (100=mean level in 2017).

    CONFIDENTIAL - FINAL

  • SUMICSID-CEER/TCB18 - GTS 27(54)

    Range of value

    dTot

    ex.c

    byN

    G_z

    Slo

    peyC

    ompr

    esso

    rs.p

    ower

    _tot

    yCon

    nect

    ionp

    oint

    s_to

    tyP

    ipes

    _Lan

    dhum

    idity

    00.20.40.60.81R

    ange

    TS

    O 2

    09R

    ange

    med

    ian

    TCB

    18

    Out

    put p

    rofil

    e G

    TS 2

    017

    SU

    MIC

    SID

    /Agr

    ell&

    Bog

    etof

    t/TC

    B18

    /CO

    NFI

    DE

    NTI

    AL/

    1907

    25_1

    1493

    8/

    0.85

    0.8

    0.61

    11

    0.85

    0.8

    0.61

    11

    0.07

    0.09

    0.02

    0.07

    0.09

    Figure 4.16: Inputs and outputs compared to median range in TCB18 (0.0 = minimum, 1.0 = maximum).

    CONFIDENTIAL - FINAL

  • SUMICSID-CEER/TCB18 - GTS 28(54)

    010

    2030

    4050

    SU

    MIC

    SID

    /Agr

    ell&

    Bog

    etof

    t/TC

    B18

    /CO

    NFI

    DE

    NTI

    AL/

    1907

    25_1

    1494

    9/A

    vera

    ge a

    ge (t

    runc

    ., ye

    ars)

    Pip

    elin

    es

    Reg

    ulat

    ors

    Com

    pres

    sors

    Con

    nect

    ions

    Met

    ers

    Con

    trolro

    om

    48

    43

    35

    41

    27

    Ass

    et a

    ge p

    er a

    sset

    gro

    up T

    CB

    18 v

    s G

    TS

    Figure 4.17: Asset ages (confidence interval) for all TCB18 and mean age for a specific operator.

    CONFIDENTIAL - FINAL

  • SUMICSID-CEER/TCB18 - GTS 29(54)

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    0.00.20.40.60.81.0

    Sha

    re o

    f NG

    cap

    ex fo

    r pre

    −197

    3 as

    set

    Share of NG capex per asset category

    0.15

    0.08

    0.06

    0.05

    0.13

    ●0.

    52

    0.56

    0.33

    0.22

    0.15

    ●P

    ipel

    ines

    Reg

    ulat

    ors

    Com

    pres

    sors

    Con

    nect

    ions

    Met

    ers

    Con

    trolro

    om

    ● ●

    GTS

    Mea

    n TC

    B18

    Figure 4.18: Share of total capital and share for old assets per asset category.

    CONFIDENTIAL - FINAL

  • SUMICSID-CEER/TCB18 - GTS 30(54)

    Year

    Staff (fte)

    2013

    2014

    2015

    2016

    2017

    0500100015002000S

    taff

    GTS

    Med

    ian

    staf

    f (si

    ze−a

    dj)

    2052

    1930

    1918

    1960

    2054

    1507

    1405

    1461

    1469

    1478

    SU

    MIC

    SID

    /Agr

    ell&

    Bog

    etof

    t/TC

    B18

    /CO

    NFI

    DE

    NTI

    AL/

    1907

    25_1

    1493

    5/

    Figure 4.19: Actual staff (fte) compared to size-adjusted level for a median operator in TCB18.

    CONFIDENTIAL - FINAL

  • SUMICSID-CEER/TCB18 - GTS 31(54)

    Mean allocation of I (%)

    TM

    PS

    XTO

    O

    00.10.20.30.40.50.6

    Allo

    catio

    n of

    indi

    rect

    sup

    port

    by

    activ

    ity G

    TS

    SU

    MIC

    SID

    /Agr

    ell&

    Bog

    etof

    t/TC

    B18

    /CO

    NFI

    DE

    NTI

    AL/

    1907

    25_1

    1495

    0/

    0.22

    0.27

    0.12

    0.14

    0.02

    0.05

    0.18

    0.57

    0.28

    0.02

    0.03

    0.02

    0

    0.07

    GTS

    Mea

    n al

    loca

    tion

    TCB

    18

    Figure 4.20: Allocation of overhead by function, mean and by operator, 2017.

    CONFIDENTIAL - FINAL

  • SUMICSID-CEER/TCB18 - GTS 32(54)

    ●●

    ●●

    ●●

    ●●

    ●●

    ●●

    ●●

    ●●

    ●●

    ●●

    05

    1015

    2025

    30

    0.20.40.60.81.0

    SU

    MIC

    SID

    /Agr

    ell&

    Bog

    etof

    t/TC

    B18

    /CO

    NFI

    DE

    NTI

    AL/

    1907

    25_1

    1495

    0/

    TSO

    sor

    ted

    Allocation of I to TMP (%)

    Mea

    n al

    loca

    tion

    = 0

    .88

    209

    0.60

    Figure 4.21: Overhead allocation (per cent) to TMP activities in TCB18.

    CONFIDENTIAL - FINAL

  • Chapter 5

    Second-stage analysis

    In order to investigate whether some potentially relevant variables have been omitted in the final modelspecification, a so-called second stage analysis has been performed. The idea of the second stage analysis isto investigate if some of the remaining variation in performance can be explained by any of the unused costdrivers. This is routinely done by regressing the efficiency scores on these variables in turn. The second-stageregression is concretely regressing an omitted factor, ψ against the DEA-score, i.e.

    DEANDRS = β0 + β1ψ + � (5.1)

    The result of such an exercise is given in Table 5.1 below. A small value of the p-statistics or equivalent ahigh t-value would indicate that the parameter ψ is interesting. maxImpact indicates the coefficient value β1multiplied with the maximum range for the variable concerned, max(ψ)−min(ψ).

    As seen from Table 5.1, no parameter is significant at the 5% or 1% levels, indicating that the dimensionsherein are considered in the model and do not merit specific post-run corrections.

    33

  • SUMICSID-CEER/TCB18 - GTS 34(54)

    Table 5.1: Second-stage analysis, final model gas

    Parameter t-value p-value maxImpact Sign-5% Sign-1%yNG -0.805 0.428 -0.124yNG yArea -0.890 0.381 -0.134yNG zLandhumidity -0.801 0.430 -0.123yNG zGravel -0.828 0.415 -0.130yNG yAreaShare.forest lmrob corr -0.827 0.415 -0.126yNG yShare.area.wetland.tot lmrob corr -0.919 0.366 -0.132yNG yShare.area.urban.tot lmrob corr -0.929 0.361 -0.141yNG yShare.area.infrastructure.tot lmrob corr -0.775 0.445 -0.124yNG yShare.area.cropland.tot lmrob corr -0.803 0.429 -0.123yNG yShare.area.woodland.tot lmrob corr -0.819 0.420 -0.126yNG yShare.area.grassland.tot lmrob corr -0.803 0.429 -0.124yNG yShare.area.shrubland.tot lmrob corr -0.819 0.420 -0.127yNG yShare.area.wasteland.tot lmrob corr -0.765 0.451 -0.117yNG zHumidity.wwpi lmrob corr -0.809 0.426 -0.125yNG zRugged lmrob corr -0.788 0.437 -0.121yNG zGravel S mean lmrob corr -0.836 0.411 -0.131yNG zGravel T mean lmrob corr -0.803 0.429 -0.124yNG yClimate.icing lmrob corr -0.703 0.488 -0.112yNG yClimate.heat lmrob corr -0.805 0.428 -0.124yNG zDensity.railways lmrob corr -1.038 0.308 -0.152yPipes tot -0.697 0.492 -0.116yInjection.tot.vol -1.228 0.230 -0.227yPipes Slope -0.697 0.492 -0.104yPipes Area -0.762 0.453 -0.125yPipes Gravel -0.731 0.471 -0.121age1y -0.254 0.801 -0.059age meany -0.384 0.704 -0.087dist coast -0.343 0.734 -0.052near coast 0.194 0.848 0.028

    CONFIDENTIAL - FINAL

  • Chapter 6

    Cost development

    In this chapter the dynamic cost development for GTS compared to that for the gas operators in TCB18 isanalyzed, first by activity, then by cost type for the benchmarked activities T,M,P. The graph for the generaldevelopment, both in terms of grid growth (NormGrid) and in terms of expenditure, are drawn with dashedlines. The line for GTS is drawn as a solid line if the costs are reported for several years, otherwise the graphsare only providing mean information.In the activity cost graphs, a solid green line is indicating the base line of one (no change in expenditure). Allcost data are adjusted for inflation using 2017 as base year, the analysis thus concerns real cost development.

    This information is useful to consider specific sources of efficiency and in-efficiency compared to thecomparators, considering the earlier analyses for profile, age and sensitivity.

    35

  • SUMICSID-CEER/TCB18 - GTS 36(54)

    1.001.051.101.151.201.251.30

    Year

    s

    Index

    2013

    /201

    420

    14/2

    015

    2015

    /201

    620

    16/2

    017

    1.01

    1.02

    11

    1.01

    1.00

    1.00

    1.00

    ●●

    1.03

    1.02

    11.

    01

    ●●

    1.11

    51.

    120

    0.97

    6

    0.99

    3

    Dev

    elop

    men

    t of T

    otex

    for

    GTS

    SU

    MIC

    SID

    /Agr

    ell&

    Bog

    etof

    t/TC

    B18

    /CO

    NFI

    DE

    NTI

    AL/

    1907

    25_1

    1543

    9/

    GTS

    TCB

    18

    Nor

    mal

    ized

    grid

    siz

    eTo

    tex

    Figure 6.1: Totex development (TMP)

    CONFIDENTIAL - FINAL

  • SUMICSID-CEER/TCB18 - GTS 37(54)

    1.01.21.41.6

    Year

    s

    Index

    2013

    /201

    420

    14/2

    015

    2015

    /201

    620

    16/2

    017

    1.01

    1.02

    11

    1.01

    1.00

    1.00

    1.00

    ●●

    1.01

    0.99

    80.

    973

    0.99

    2

    1.36

    1

    1.44

    0

    0.87

    2

    0.92

    3

    Dev

    elop

    men

    t of O

    pex

    for

    GTS

    SU

    MIC

    SID

    /Agr

    ell&

    Bog

    etof

    t/TC

    B18

    /CO

    NFI

    DE

    NTI

    AL/

    1907

    25_1

    1543

    9/

    GTS

    TCB

    18

    Nor

    mal

    ized

    grid

    siz

    eO

    pex

    Figure 6.2: Opex development (TMP)

    CONFIDENTIAL - FINAL

  • SUMICSID-CEER/TCB18 - GTS 38(54)

    1.001.051.101.151.20

    Year

    s

    Index

    2013

    /201

    420

    14/2

    015

    2015

    /201

    620

    16/2

    017

    1.01

    1.02

    11

    1.01

    1.00

    1.00

    1.00

    ●●

    1.04

    1.03

    1.02

    1.02

    ●●

    1.06

    1.02

    1.02

    1.02

    Dev

    elop

    men

    t of C

    apex

    for

    GTS

    SU

    MIC

    SID

    /Agr

    ell&

    Bog

    etof

    t/TC

    B18

    /CO

    NFI

    DE

    NTI

    AL/

    1907

    25_1

    1543

    9/

    GTS

    TCB

    18

    Nor

    mal

    ized

    grid

    siz

    eC

    apex

    Figure 6.3: Capex development

    CONFIDENTIAL - FINAL

  • SUMICSID-CEER/TCB18 - GTS 39(54)

    1.01.52.02.53.0

    Year

    s

    Index

    2013

    /201

    420

    14/2

    015

    2015

    /201

    620

    16/2

    017

    1.01

    1.02

    11

    1.01

    1.00

    1.00

    1.00

    ●●

    0.96

    3

    1.23

    10.

    976

    ●●

    0.94

    3

    3.20

    4

    0.76

    50.

    753

    Dev

    elop

    men

    t of c

    ost f

    or T

    rans

    port

    (T) f

    or G

    TS

    SU

    MIC

    SID

    /Agr

    ell&

    Bog

    etof

    t/TC

    B18

    /CO

    NFI

    DE

    NTI

    AL/

    1907

    25_1

    1543

    5/

    GTS

    TCB

    18

    Nor

    mal

    ized

    grid

    siz

    eO

    pera

    ting

    cost

    s

    Figure 6.4: Cost development transport (T) vs grid growth.

    CONFIDENTIAL - FINAL

  • SUMICSID-CEER/TCB18 - GTS 40(54)

    0.951.001.051.10

    Year

    s

    Index

    2013

    /201

    420

    14/2

    015

    2015

    /201

    620

    16/2

    017

    1.01

    1.02

    11

    1.01

    1.00

    1.00

    1.00

    0.94

    9

    1

    0.95

    4

    0.98

    6

    1.05

    0

    1.10

    1

    0.93

    7

    0.97

    8

    Dev

    elop

    men

    t of c

    ost f

    or M

    aint

    enan

    ce (M

    ) for

    GTS

    SU

    MIC

    SID

    /Agr

    ell&

    Bog

    etof

    t/TC

    B18

    /CO

    NFI

    DE

    NTI

    AL/

    1907

    25_1

    1543

    5/

    GTS

    TCB

    18

    Nor

    mal

    ized

    grid

    siz

    eO

    pera

    ting

    cost

    s

    Figure 6.5: Cost development maintenance (M) vs grid growth.

    CONFIDENTIAL - FINAL

  • SUMICSID-CEER/TCB18 - GTS 41(54)

    0.900.951.001.05

    Year

    s

    Index

    2013

    /201

    420

    14/2

    015

    2015

    /201

    620

    16/2

    017

    1.01

    1.02

    11

    1.01

    1.00

    1.00

    1.00

    0.98

    5

    0.90

    5

    0.92

    9

    0.97

    1

    1.04

    1.05

    1.01

    1.09

    Dev

    elop

    men

    t of c

    ost f

    or P

    lann

    ing

    (P) f

    or G

    TS

    SU

    MIC

    SID

    /Agr

    ell&

    Bog

    etof

    t/TC

    B18

    /CO

    NFI

    DE

    NTI

    AL/

    1907

    25_1

    1543

    5/

    GTS

    TCB

    18

    Nor

    mal

    ized

    grid

    siz

    eO

    pera

    ting

    cost

    s

    Figure 6.6: Cost development planning (P) vs grid growth.

    CONFIDENTIAL - FINAL

  • SUMICSID-CEER/TCB18 - GTS 42(54)

    0.81.01.21.4

    Year

    s

    Index

    2013

    /201

    420

    14/2

    015

    2015

    /201

    620

    16/2

    017

    1.01

    1.02

    11

    1.01

    1.00

    1.00

    1.00

    1.21

    1.12

    1.09

    0.84

    5

    1.53

    6

    1.23

    0

    1.31

    7

    0.72

    6

    Dev

    elop

    men

    t of c

    ost f

    or S

    yste

    m O

    pera

    tions

    (S) f

    or G

    TS

    SU

    MIC

    SID

    /Agr

    ell&

    Bog

    etof

    t/TC

    B18

    /CO

    NFI

    DE

    NTI

    AL/

    1907

    25_1

    1543

    5/

    GTS

    TCB

    18

    Nor

    mal

    ized

    grid

    siz

    eO

    pera

    ting

    cost

    s

    Figure 6.7: Cost development system operations (S) vs grid growth.

    CONFIDENTIAL - FINAL

  • SUMICSID-CEER/TCB18 - GTS 43(54)

    0.81.01.21.41.6

    Year

    s

    Index

    2013

    /201

    420

    14/2

    015

    2015

    /201

    620

    16/2

    017

    1.01

    1.02

    11

    1.01

    1.00

    1.00

    1.00

    1.63

    1.49

    0.83

    1

    1.05

    1.06

    1.10

    1.35

    1.01

    Dev

    elop

    men

    t of c

    ost f

    or M

    arke

    t Fac

    ilita

    tion

    (X) f

    or G

    TS

    SU

    MIC

    SID

    /Agr

    ell&

    Bog

    etof

    t/TC

    B18

    /CO

    NFI

    DE

    NTI

    AL/

    1907

    25_1

    1543

    5/

    GTS

    TCB

    18

    Nor

    mal

    ized

    grid

    siz

    eO

    pera

    ting

    cost

    s

    Figure 6.8: Cost development market facilitation (X) vs grid growth.

    CONFIDENTIAL - FINAL

  • SUMICSID-CEER/TCB18 - GTS 44(54)

    1.01.21.41.61.8

    Year

    s

    Index

    2013

    /201

    420

    14/2

    015

    2015

    /201

    620

    16/2

    017

    1.01

    1.02

    11

    1.01

    1.00

    1.00

    1.00

    1.8

    0.86

    8

    1.12

    1.04

    1.66

    0

    1.34

    5

    0.87

    9

    1.04

    9

    Dev

    elop

    men

    t of c

    ost f

    or T

    rans

    port

    Off

    shor

    e (T

    O) f

    or G

    TS

    SU

    MIC

    SID

    /Agr

    ell&

    Bog

    etof

    t/TC

    B18

    /CO

    NFI

    DE

    NTI

    AL/

    1907

    25_1

    1543

    5/

    GTS

    TCB

    18

    Nor

    mal

    ized

    grid

    siz

    eO

    pera

    ting

    cost

    s

    Figure 6.9: Cost development offshore transport (TO) vs grid growth.

    CONFIDENTIAL - FINAL

  • SUMICSID-CEER/TCB18 - GTS 45(54)

    051015

    Year

    s

    Index

    2013

    /201

    420

    14/2

    015

    2015

    /201

    620

    16/2

    017

    1.01

    1.02

    11

    1.01

    1.00

    1.00

    1.00

    ●●

    ●●

    1.29

    1.18

    0.90

    91.

    04

    ●●

    0.3

    45

    1.0

    16 1

    .132

    16.3

    52

    Dev

    elop

    men

    t of c

    ost f

    or E

    nerg

    y S

    tora

    ge (S

    F) fo

    r G

    TS

    SU

    MIC

    SID

    /Agr

    ell&

    Bog

    etof

    t/TC

    B18

    /CO

    NFI

    DE

    NTI

    AL/

    1907

    25_1

    1543

    5/

    GTS

    TCB

    18

    Nor

    mal

    ized

    grid

    siz

    eO

    pera

    ting

    cost

    s

    Figure 6.10: Cost development energy storage (SF) vs grid growth.

    CONFIDENTIAL - FINAL

  • SUMICSID-CEER/TCB18 - GTS 46(54)

    0.981.001.021.041.061.08

    Year

    s

    Index

    2013

    /201

    420

    14/2

    015

    2015

    /201

    620

    16/2

    017

    1.01

    1.02

    11

    1.01

    1.00

    1.00

    1.00

    0.96

    7

    0.98

    2

    1.08

    0.99

    6

    Dev

    elop

    men

    t of c

    ost f

    or L

    NG

    Ter

    min

    als

    (L) f

    or G

    TS

    SU

    MIC

    SID

    /Agr

    ell&

    Bog

    etof

    t/TC

    B18

    /CO

    NFI

    DE

    NTI

    AL/

    1907

    25_1

    1543

    5/

    GTS

    TCB

    18

    Nor

    mal

    ized

    grid

    siz

    eO

    pera

    ting

    cost

    s

    Figure 6.11: Cost development LNG terminals (L) vs grid growth.

    CONFIDENTIAL - FINAL

  • SUMICSID-CEER/TCB18 - GTS 47(54)

    −4−2024

    Year

    s

    Index

    2013

    /201

    420

    14/2

    015

    2015

    /201

    620

    16/2

    017

    1.01

    1.02

    11

    1.01

    1.00

    1.00

    1.00

    ●●

    0.97

    2

    1.6

    1.26

    1.17

    −0.2

    71

    4.8

    92

    −0.5

    03

    −5.2

    10

    Dev

    elop

    men

    t of c

    ost f

    or O

    ther

    act

    iviti

    es (O

    ) for

    GTS

    SU

    MIC

    SID

    /Agr

    ell&

    Bog

    etof

    t/TC

    B18

    /CO

    NFI

    DE

    NTI

    AL/

    1907

    25_1

    1543

    5/

    GTS

    TCB

    18

    Nor

    mal

    ized

    grid

    siz

    eO

    pera

    ting

    cost

    s

    Figure 6.12: Cost development out-of-scope (O) vs grid growth.

    CONFIDENTIAL - FINAL

  • SUMICSID-CEER/TCB18 - GTS 48(54)

    1.01.52.02.53.03.54.04.5

    Year

    s

    Index

    2013

    /201

    420

    14/2

    015

    2015

    /201

    620

    16/2

    017

    1.01

    1.02

    11

    1.01

    1.00

    1.00

    1.00

    ●●

    1.3

    0.97

    20.

    985

    1.01

    ●●

    4.43

    2

    1.11

    5

    0.97

    20.

    972

    Dev

    elop

    men

    t of c

    ost f

    or In

    dire

    ct E

    xpen

    ses

    (I) f

    or G

    TS

    SU

    MIC

    SID

    /Agr

    ell&

    Bog

    etof

    t/TC

    B18

    /CO

    NFI

    DE

    NTI

    AL/

    1907

    25_1

    1543

    5/

    GTS

    TCB

    18

    Nor

    mal

    ized

    grid

    siz

    eO

    pera

    ting

    cost

    s

    Figure 6.13: Cost development indirect support (I) vs grid growth.

    CONFIDENTIAL - FINAL

  • SUMICSID-CEER/TCB18 - GTS 49(54)

    1.001.051.101.151.20

    Year

    s

    Index (inflation adj expenditure)

    1.01

    1.00

    1.00

    1.00

    1.05

    1.07

    1.05

    1.02

    Dev

    elop

    men

    t of D

    irec

    t man

    pow

    er c

    ost f

    or G

    TS

    SU

    MIC

    SID

    /Agr

    ell&

    Bog

    etof

    t/TC

    B18

    /CO

    NFI

    DE

    NTI

    AL/

    1907

    25_1

    1544

    4/

    GTS

    TCB

    18

    Nor

    mG

    ridO

    pera

    ting

    expe

    nditu

    re

    2013

    /201

    420

    14/2

    015

    2015

    /201

    620

    16/2

    017

    1.01

    1.02

    11

    0.97

    40.

    983

    0.99

    1

    1.05

    Figure 6.14: Cost development personnel expenditure (TMP)

    CONFIDENTIAL - FINAL

  • Chapter 7

    Parameters and index

    The technical parameters in Table 7.1 and the indexes in Figures 7.1 and 7.2 are used in the calculations forthe efficiency. The choice of these parameters is discussed further in the final report.

    Table 7.1: Key parameters.

    parameter.names parameter.valuesTemplate version May 2018Real interest rate 0.03Exchange rate EUR 2017 1Inflation index name: hicpog cpiwLabor cost index name: pliciLabor cost index 2017 1.07Labor cost index 2016 1.086Labor cost index 2015 1.03Labor cost index 2014 1.057Labor cost index 2013 0.961

    Overhead allocation T 0.216Overhead allocation M 0.272Overhead allocation P 0.115Overhead allocation S 0.14Overhead allocation X 0.024Overhead allocation TO 0.051Overhead allocation SF 0Overhead allocation L 0Overhead allocation O 0.181

    Investment life pipes 60Investment life regulators 30Investment life compressors 30Investment life cp 30Investment life ms 30Investment life cc 20Investment life equip 10

    50

  • SUMICSID-CEER/TCB18 - GTS 51(54)

    Table 7.2: Environmental variables.

    parameter datafiledist coast tcb18 env rugged 10.csvnear coast tcb18 env rugged 10.csvrugged tcb18 env rugged 10.csvrugged lsd tcb18 env rugged 10.csvrugged pc tcb18 env rugged 10.csvrugged popw tcb18 env rugged 10.csvrugged slope tcb18 env rugged 10.csvwSubRegion tcb18 env area3 10.csvyArea.arable tcb18 env area 10.csvyArea.artifical tcb18 env area2 10.csvyArea.bareland tcb18 env area2 10.csvyArea.builtup tcb18 env area2 10.csvyArea.coastalwetlands tcb18 env area2 10.csvyArea.cropland tcb18 env area2 10.csvyArea.forest tcb18 env area 10.csvyArea.grassland tcb18 env area2 10.csvyArea.greenhouses tcb18 env area2 10.csvyArea.inlandwetlands tcb18 env area2 10.csvyArea.land.tot tcb18 env area 10.csvyArea.meadows tcb18 env area 10.csvyArea.other tcb18 env area 10.csvyArea.service tcb18 env areaservice 10.csvyArea.shrubland tcb18 env area2 10.csvyArea.tot tcb18 env area 10.csvyArea.water tcb18 env area2 10.csvyArea.wetland tcb18 env area2 10.csvyArea.woodland tcb18 env area2 10.csvyAreaShare.arable tcb18 env area 10.csvyAreaShare.forest tcb18 env area 10.csvyAreaShare.grass tcb18 env vegetation 10.csvyAreaShare.meadows tcb18 env area 10.csvyAreaShare.other tcb18 env area 10.csvyAreaShare.shrubs tcb18 env vegetation 10.csvyAreaShare.woods tcb18 env vegetation 10.csvyClimate.heat tcb18 env climate 10.csvyClimate.icing tcb18 env climate 10.csvyLanduse.agriculture tcb18 env landuse 10.csvyLanduse.industry tcb18 env landuse 10.csvyLanduse.nonproductive tcb18 env landuse 10.csvyLanduse.urban tcb18 env landuse 10.csvyShare.area.agriculture 1 tcb18 env area3 10.csvyShare.area.agriculture 2 tcb18 env area3 10.csvyShare.area.agriculture 3 tcb18 env area3 10.csvyShare.area.agriculture 4 tcb18 env area3 10.csvyShare.area.cropland.tot tcb18 env area3 10.csvyShare.area.forest 1 tcb18 env area3 10.csvyShare.area.forest 2 tcb18 env area3 10.csvyShare.area.forest 3 tcb18 env area3 10.csvyShare.area.grassland 1 tcb18 env area3 10.csvyShare.area.grassland 2 tcb18 env area3 10.csvyShare.area.grassland 3 tcb18 env area3 10.csvyShare.area.grassland.tot tcb18 env area3 10.csvyShare.area.infrastructure airport tcb18 env area3 10.csvyShare.area.infrastructure port tcb18 env area3 10.csvyShare.area.infrastructure roadrail tcb18 env area3 10.csv

    CONFIDENTIAL - FINAL

  • SUMICSID-CEER/TCB18 - GTS 52(54)

    yShare.area.infrastructure.tot tcb18 env area3 10.csvyShare.area.noaccess 1 tcb18 env area3 10.csvyShare.area.noaccess 2 tcb18 env area3 10.csvyShare.area.otherw.tot tcb18 env area3 10.csvyShare.area.shrubland.tot tcb18 env area3 10.csvyShare.area.urban 1 tcb18 env area3 10.csvyShare.area.urban 2 tcb18 env area3 10.csvyShare.area.urban ind tcb18 env area3 10.csvyShare.area.urban.tot tcb18 env area3 10.csvyShare.area.wasteland 1 tcb18 env area3 10.csvyShare.area.wasteland 2 tcb18 env area3 10.csvyShare.area.wasteland 3 tcb18 env area3 10.csvyShare.area.wasteland.tot tcb18 env area3 10.csvyShare.area.water 1 tcb18 env area3 10.csvyShare.area.water 2 tcb18 env area3 10.csvyShare.area.water 3 tcb18 env area3 10.csvyShare.area.water 4 tcb18 env area3 10.csvyShare.area.water 5 tcb18 env area3 10.csvyShare.area.wetland 1 tcb18 env area3 10.csvyShare.area.wetland 2 tcb18 env area3 10.csvyShare.area.wetland 3 tcb18 env area3 10.csvyShare.area.wetland 4 tcb18 env area3 10.csvyShare.area.wetland 5 tcb18 env area3 10.csvyShare.area.wetland.tot tcb18 env area3 10.csvyShare.area.woodland.tot tcb18 env area3 10.csvyShare.motorways tcb18 env roads 10.csvyShare.other tcb18 env area3 10.csvyShare.urbanroads tcb18 env roads 10.csvzDensity.railways tcb18 env roads 10.csvzDensity.roads tcb18 env roads 10.csvzGravel S mean tcb18 env subsoil 10.csvzGravel S00 tcb18 env subsoil 10.csvzGravel S05 tcb18 env subsoil 10.csvzGravel S15 tcb18 env subsoil 10.csvzGravel S40 tcb18 env subsoil 10.csvzGravel S41 tcb18 env subsoil 10.csvzGravel T mean tcb18 env subsoil 10.csvzGravel T00 tcb18 env subsoil 10.csvzGravel T05 tcb18 env subsoil 10.csvzGravel T15 tcb18 env subsoil 10.csvzGravel T40 tcb18 env subsoil 10.csvzGravel T41 tcb18 env subsoil 10.csvzHumidity.wwpi tcb18 env wetness 10.csvzLandhumidity.dry tcb18 env wetness 10.csvzLandhumidity.water.perm tcb18 env wetness 10.csvzLandhumidity.water.temp tcb18 env wetness 10.csvzLandhumidity.wet.perm tcb18 env wetness 10.csvzLandhumidity.wet.temp tcb18 env wetness 10.csvzSlope.flat tcb18 env slope 10.csvzSlope.hilly tcb18 env slope 10.csvzSlope.mountain tcb18 env slope 10.csvzSlope.undulating tcb18 env slope 10.csvzSoil.dr D tcb18 env subsoil 10.csvzSoil.dr M tcb18 env subsoil 10.csvzSoil.dr S tcb18 env subsoil 10.csvzSoil.dr V tcb18 env subsoil 10.csv

    CONFIDENTIAL - FINAL

  • SUMICSID-CEER/TCB18 - GTS 53(54)

    Country

    Inde

    x E

    U=1

    00

    PTLV

    GRES

    EELT

    SIBE

    NLUK

    ATDE

    DKSE

    NOFI

    050

    100

    150

    58.4

    71.8

    73.7

    79.5

    86.3

    86.5

    93.1

    103.

    8

    107

    107

    114.

    8

    132.

    2

    136.

    3

    149.

    1

    150.

    8

    165.

    4

    EU27 average

    Index: PI civil works (EU) year 2017

    Figure 7.1: Labour cost index PLICI (EU civil engineering) by country 2017.

    CONFIDENTIAL - FINAL

  • SUMICSID-CEER/TCB18 - GTS 54(54)

    Country

    Inde

    x E

    U=1

    00

    LTLV

    EEPT

    GRSI

    ESUK

    FIDE

    ATNL

    SEBE

    DKNO

    050

    100

    150

    29.9

    30.2

    43.7

    52.6

    54.1

    63.4

    79.1

    95.9

    122

    127.

    2

    127.

    2

    129.

    9

    142.

    9

    147.

    8

    158.

    6

    190.

    3

    EU27 average

    Index: LCI (EU) year 2017

    Figure 7.2: Labour cost index LCIS (EU general) by country 2017.

    CONFIDENTIAL - FINAL

    ContentsResultsDataCapex-breakCapex-oldModel input and output

    Regression analysisSensitivity analysisScale efficiencyPartial Opex-capex efficiency analysesSensitivity analysisProfileAgeCost analysis

    Second-stage analysisCost developmentParameters and index