143
PROJECT MANAGER TREVOR JAHN THURSDAY LAB 3/4/2016 Semester Schedule and Expectations

PROJECT MANAGER TREVOR JAHN - engineering.purdue.edu · (2.16.2016) Three Copies of 1 Page Resume in lecture (2.16.2016) First Peer Evaluation (2.18.2016) Action items are assigned

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

  • PROJECT MANAGER TREVOR JAHN THURSDAY LAB 3/4/2016

    Semester Schedule and Expectations

  • PDR SLIDES NEW PRESENTATION FORMAT

    *Mike and I will be making a full edited draft by next week Introduction • Mars mission summary Organized by Mission Architecture (broad information) • Washington Series (2018-2020) • Adams Series (2021-2024) • Jefferson Series (2024-2028) • Madison Series (2028-2036) • Monroe Series (2036+) APENDIX (supporting information) • All specific information • A lot like your backup slides

  • DUE DATES THIS WEEKEND Saturday 3.5.2016 10 pages total (first 5 from before with an additional new 5 pages) for the final report 10:00 pm to PM • 12 point font • Times New Roman • Double Spaced • PUT YOUR NAME ON IT • 1 in margins • Code is acceptable but can not count for more than 3

    pages Sunday 3.6.2016 Edits to PDR slides by 10:00 pm to PM • Notes on Share Drive • Slides with only broad relevant data • Appendix slides with specific information

  • SEMESTER TIMELINE Project Legacy – Semester Schedule Subject to Change

    Week: 6 Feb 14 –

    20

    (2.16.2016) Three Copies of 1 Page Resume in lecture

    (2.16.2016) First Peer Evaluation

    (2.18.2016) Action items are assigned in lecture

    (2.20.2016) 10:00 pm first five pages are due for the final report DRAFT

    to PM via email

    Week: 7 Feb 21 –

    27

    (2.23.2016) Three copies of 1 Page Resume in lecture

    (2.25.2016) Action items from week 6 are resolved

    (2.25.2016) After lecture Design Freeze is in effect

    Week: 8 Feb 28 –

    March 5

    (2.29.2016) Preliminary Design Review (PDR)

    (3.1.2016) Action items assigned as a result of PDR

    (3.1.2016) Three copies of Long Resume due on Tuesday

    (3.5.2016) 10:00 pm second five pages of the Final Report

    DRAFT to PM via email (ten pages total) with the first five

    pages and any revisions included

    (3.6.2016) 10:00 pm updated PDR slides to PM via email Week: 9 March 6

    – 12 (3.8.2016) 3 Copies of Long Resume due on Tuesday

    (3.10.2016) Action items resolved and presented in lab

    (3.10.2016) After lecture Design Freeze in effect

    (3.11.2016) 10:00 pm third set of five pages of the Final Report

    DRAFT to PM via email (fifteen pages total) with the first ten

    pages and any revisions included

  • SEMESTER TIMELINE Week:

    10

    March 13

    – 19 Spring Break

    Week:

    11

    March 20

    – 26 (3.22/24.2016) Report writing exercises in class

    (3.22.2016) Second Peer Evaluation

    (3.25.2016) Critical Design Review (CDR) Week:

    12

    March 27

    – April 2 (3.31.2016) PM and APM present to AAE Industrial Advisory Council

    (Tentatively 9:30 am)

    (3.31.2016) Report groups are assigned to finish up report topics Week:

    13

    April 3 –

    9 (4.4.2016) Final report due to PM via email for assembly into near final

    draft

    (4.5.2016) Go over near final draft of the final report for review

    (4.7.2016) Final report due to Professor Longuski and Professor Minton

    (4.7.2016) Mike Griffin visit (lunch and afternoon class visit) Week:

    14

    April 10 –

    16 (4.14.2016) PM and APM give dry run of final presentation 8:30 am –

    11:20 am Week:

    15

    April 17 –

    23 (4.19.2016) Website and video are due

    ^more info on this in the coming weeks (as of 2.16.2016)

    (4.21.2016) Final Formal Presentation is given by PM and APM –

    Stewart Room 206 from 8:00 am – 12:30 pm

    (4.21.2016) CLASS ENDS FOR THE SEMESTER

  • SCIENCE GROUP CALEB ENGLE

    3 March 2016

    Properties of Lunar Regolith for Digging, Power

    Requirements of ISRU, Fuel Depot Location Map

  • REGOLITH PROPERTIES Objective: Describe properties of lunar regolith pertaining to digging

    Reasoning: We have to dig up what we will use for ISRU

    • Depth of regolith is estimated to be about 6 – 8 meters

    • As previously mentioned, regolith sticks to almost everything

    • Porosity ~50%, similar to sand with some larger pieces mixed in

    • Dry regolith on surface fairly easy to scoop up and move around

    • Regolith and ice mixture will be hard and need special equipment to break apart,

    such as a conical rotating bit

    Bart, G. D., et. Al. Icarus Gertsch, L., et Al. Scholar’s Mine

  • POSSIBLE SOLUTION

    Mass: 0.0021Mg for one bit

    Power:

    Volume: .000261m3 for one bit

    Recommendation: Put rotating conical bits on end of rover scoop attachment

    10cm

    5cm

  • POWER FOR ISRU For furnace pressure of 1atm and regolith starting temperature of

    -243.15°C

    Volume of furnace needed = 68m3

    Volatile Amount Needed Per Day (Mg)

    Amount Regolith Needed (Mg)

    Power Required (kWh)

    H2O 0.0071 0.250 0.012825

    CO2 0.0087 14 0.485

    CH4 0.02 102 2.4

    Total = 3kWh

  • POWER CALCULATIONS

    Heat energy = specific heat * mass * delta T

    Specific Heat = 0.76 for lunar regolith

    H2O: 3% of regolith

    Need 0.0071Mg = 7.1kg

    (250kg) * (0.03) = 7.5kg

    delta T = 0 – (-243) = 243

    () * (0.76) * (243) = 46.170 Joules = 12.825Wh

    CH4: 0.65% relative to H2O

    Need 0.02Mg = 20kg

    (102,000kg) * (0.03) * (0.0065) = 20kg

    delta T = -148 – (-243) = 95

    (102,000) * (0.76) * (95) = 8,664,000 Joules = 2,406Wh

  • POWER CALCULATIONS

    CO2: 2.17% relative to H2O

    Need 0.0087 = 8.7kg

    (14,000) * (.03) * (.0217) = 9kg

    delta T = -79 - (-243) = 164

    (14,000) * (0.76) * (164) = 1,746,000 Joules = 485Wh

  • FUEL DEPOT, ISRU, LAUNCH PAD, BASE

  • STRUCTURES AUSTIN BLACK

    L-REx: Lunar Rover Excavator

  • L-REX ARCHITECTURE

    Objective: Clear lose regolith from crater blasted holes to allow habs to be oriented.

    Reasoning: Several tons of regolith need to be excavated after impact process, with shovel being remotely operated from XM.

    Hydraulic power was determined not to be applicable in the harsh lunar temperature cycle.

    Want to minimize storage space for when shovel is not in use.

    Use “pallet” base designed by Amit Soni of structures group.

    Shovel CAD by: Austin Black Rover CAD by: Ariel Dimston

    Austin Black

  • SOLUTION: L-REX NEEDS TO BE ABLE TO EXCAVATE HEAVY LOADS, AND ACHIEVE SPECIFIC REACH

    Mass: 1.987 Mg

    Power: 1230.24 kWh (total)

    Volume: 0.66 m3 (material)

    Actuators allow hydraulic style of movement without hydraulic fluid.

    Fully outstretched orientation achieves reach required for excavating hab hole.

    Rover can excavate hole using loose regolith as ramp, and then clear ramp to complete rectangular hole.

    Linear Actuators

    Aluminum Supports

    Pallet Base

    Steel Shovel

    CAD model from Austin Black

    Austin Black

  • REFERENCE Part Material Mass (Mg) Volume (m3)

    Actuator 2090 Al 0.013 0.0015

    Motor Casing Sigmatex 0.0034 0.002

    A-Frame 2090 Al 0.036 0.02

    Middle U-Beam 2090 Al 0.016 0.01

    End U-Beam 2090 Al 0.0095 0.0032

    Bracket 2090 Al 0.00009 0.000032

    Actuator Pin 2090 Al 0.00001 0.000009

    U-Beam Rod 2090 Al 0.00041 0.00014

    Scoop Steel 0.082 0.5 (interior)

    Pallet 2090 Al 1.735 0.6

    % Bolt or Pin In Double Shear Equation Calculator % Amit Soni % AAE 450 - Structures %% Defintion of Variables F = 680.547; % Applied Force [N] d = [1:.001:30]; % Bolt/Pin Diameter [mm] t1 = 20; % Large Plate Thickness [mm] t = 150; % Small Plate Thickness [mm] FS = 1.35 % Factor of Safety Sigma_Yield = 655.00194; % Yield Strength of A286 Steel [MPa] Sigma_Allow = Sigma_Yield/FS; %% Shear Stress - Single Shear Sigma_shear = (4*F)./(2.*pi.*d.^2); % Shear stress average [MPa] %% Bearing Stress

    B_t = F./(2.*t.*d); % Bearing Area Stress for small plate [N/mm^2] B_t1 = F./(t1.*d); % Bearing Area Stress for large plate and Bolt/Pin figure(1) plot(d,Sigma_shear,[0,d(end)],[Sigma_Allow,Sigma_Allow]) title('Double Shear Calculation for Bolt') xlabel('Bolt Diameter [mm]') ylabel('Average Shear Stress [Mpa]') grid on %%% Maximum Load Before Shear F = [0:1:25000] dML = 10; Sigma_shearML = (4*F)./(2.*pi.*dML.^2); B_tML = F./(2.*t.*dML); B_t1ML = F./(t1.*dML);

    Austin Black

  • REFERENCE

    16°

    24 m

    3 m

    10.46 m

    1.2 m

    4.5 m

    Gap between shovel pallet and ground level

    Fully extended configuration

    3 m

    Side view of habitat rectangular “hole”

    Austin Black

  • REFERENCE

    Linear Actuator Cutaway sketch by Austin Black

    Scoop actuator load: 416.25 kg (full regolith load) A-frame actuator load: 944.53 kg (full regolith load)

    U-beams modeled as simple beams with overhang, and max overhang at end of beam determined.

    Max overhang for center U-beam, subject to greatest bending moments in structure. Lower U-Beam

    and Actuator Coupled Force

    P

    Actuator A-frame

    Austin Black

  • REFERENCE

    Austin Black

  • STRUCTURES AMIT SONI

    JVA-01: Rover Attachment/Detachment Vehicle

  • JVA-01 DESIGN Objective: Design mechanism to attach and remove rover attachments

    Reasoning: Shirt-sleeve pressurized environment and radiation exposure prevents astronauts from attaching and detaching the rover attachments

    • Miniaturization and redesign of

    ATHLETE (1/4th scale)

    • Universal pallet design for ease of

    addition and removal

    • Pallet will attach to rover

    • Slides on rail

    • Universal pallet design for ease of

    addition and removal

    Detailed design for JVA bed:

    * CAD design and concept art by Amit Soni

    Amit Soni 2

    Universal Pallets

    Part Material Mass (Mg) Volume (m3)

    Slide Bar (x2) Al 2090 0.1023 3.542*10-2

    Slant Torsion Bar (x2)

    Al 2090 0.01872 3.542*10-2

    Torsion Bar Al 2090 0.008320 2.879*10-3

    Pallet Al 2090 0.4483 0.1551

    Total ---- 0.5776 0.2289

    JVA Bed

  • FEA ANALYSIS ON JVA BED

    Overall Vehicle:

    Mass: 1.2 Mg (with legs)

    Power: 390 W per use

    Volume: 14 m3

    • FEA of Bed and Pallet

    • Load applied on Pallet: 8,500N

    • (2Mg load +30% uncertainty)*FS=2.00

    •Fixture locations for legs (6x)

    •Max Stress: 18.05 MPa

    •Yield Stress: 50.5 MPa

    •Bed and Pallet can withstand load of attachments

    •To CAD and analyze loads on legs next.

    *SolidWorks FEA model by Amit Soni

    Amit Soni 3

  • JVA BED DIMENSIONS *All dimensions in meters

    Amit Soni 4

    *Concept art and dimension drawing by Amit Soni

  • FEA BACKUP

    Static Strain Deformation Scale:1 Max Strain: 1.218e-4

    Static Deformation Deformation Scale:1 Max Deformation: 8.1mm

    *SolidWorks FEA models by Amit Soni Amit Soni 5

  • SAMPLE ATTACHMENT

    Benjamin Mishler 6

    1

    2

    3

  • REFERENCES

    1 Wilcox, B., Litwin, T., Biesiadecki, J., Matthews, J., Heverly, M., Morrison, J., Townsend,

    J., Ahmad, N., Sirota, A., and Cooper, B., "Athlete: A cargo handling and manipulation

    robot for the moon", Journal of Field Robotics, vol. 24, 2007, pp. 421-434.

    Amit Soni 7

  • POWER AND THERMAL TYLER MURRAY

    Base Construction Reasoning

    Base Construction Timeline

  • BASE CONSTRUCTION REASONING Objective: Determine how to dig out lunar base

    Reasoning: Effectively bury habs

    • Looked at case involving 6 impactors

    • After impactors: 1480 m3, 2219 Mg excavated

    • To create base layout below, additional

    1326.08 m3, 1989.12 Mg need to be excavated

    • 16 degree ramp necessary to allow easy access for construction rover

    16°

    24 m

    3 m

    10.46 m

    Model created by Jake Elliott

    Tyler Murray

  • BASE CONSTRUCTION TIMELINE

    Mass (excavated): 1989.12 Mg

    Power: 1230.24 kWh (over 271 days)

    Volume (excavated): 1326.08 m3

    Recommendation: Dig

    • Scoop capable of extracting 0.5 m3 (0.75 Mg) of regolith at a time

    • Knowing electromotive characteristics (voltage & amps) of actuator, able to determine

    power to operate

    • Each scoop requires 480 W, total of 2653 scoops yields a total of 1230.24 kWh

    • By moving 15 Mg of regolith a day, base digging would be completed in 271 days,

    completion soon after Jefferson series begins (1 year prior to 1st astronauts arrive)

    • The construction rover would require 10 kW a day and need 28.8 hours to fully re-charge

    Tyler Murray

  • BACK UP SLIDES

    Updated Power distribution prior to 3/3/2016 Lab Max power = 185.825 kW

    Tyler Murray

  • BACK UP SLIDES %Tyler Murray

    %Volume and mass needed to dig base

    Th = 253.15; % Temperature of habitat [K]

    Tm_d = 220; % Temperature outside day [K]

    Tm_n = 170; % Temperature outside night [K]

    Tm = linspace(Tm_n,Tm_d,12);

    day1_m = (1:12); %hours

    day1_n = (12:23); %hours

    day2_m = (23:34); %hours

    day2_n = (34:45); %hours

    T_diff = zeros(1,12);

    T_diff(1) = Th - Tm(1);

    for i = 2:12

    T_diff(i) = Tm(i) - Tm(i-1);

    end

    T_des = Th - Tm(1); % Temperature

    difference

    v_hab = 330; % volume of habitat [m^3]

    d_air = 1.3; % density of air [kg/m^3]

    m_air = d_air * v_hab; % mass of air in hab

    [kg]

    cp_air = 1.005; % specific heat of air

    [kJ/(kg.K)]

    Tyler Murray

    h = 9.45; % [m]

    r = 3.334; % [m]

    A_surf = (2 * pi * r * h) + (2 * pi * r^2); %

    Surface Area [m^2]

    Th = 253.15; % Temperature of habitat [K]

    Tm_d = 220; % Temperature outside day [K]

    Tm_n = 170; % Temperature outside night [K]

    Tm = linspace(Tm_n,Tm_d,12);

    day1_m = (1:12); %hours

    day1_n = (12:23); %hours

    day2_m = (23:34); %hours

    day2_n = (34:45); %hours

    T_diff = zeros(1,12);

    T_diff(1) = Th - Tm(1);

    for i = 2:12

    T_diff(i) = Tm(i) - Tm(i-1);

    end

    T_des = Th - Tm(1); % Temperature difference

    v_hab = 330; % volume of habitat [m^3]

    d_air = 1.3; % density of air [kg/m^3]

    m_air = d_air * v_hab; % mass of air in hab [kg]

    cp_air = 1.005; % specific heat of air [kJ/(kg.K)]

    h = 9.45; % [m]

    r = 3.334; % [m]

    A_surf = (2 * pi * r * h) + (2 * pi * r^2); %

  • BACK UP SLIDES k = 0.167; % k of material (aluminum)

    [Watts/m*K]

    t = 0.0127; % Thickness of Aluminum [m]

    n = 40; % Layers of material

    d = t * n; % total thickness of Aluminum

    cp_alum = 0.91; % Specific Heat Capacity

    Aluminum [kJ/kg.K]

    rho = 2.7e3; % Mass density of Aluminum

    [kg/m^3]

    A_cyl = (2 * pi * r * h) + (2 * pi * r^2);

    e = 0.04; % emissivity

    boltz = 1.38064852e-23; % Boltzman constant

    h1= 5; % conduction coefficient

    h2= 5;

    Rcv1 = 1/h1; % Resistance of convection

    between inside hab and inside wall

    Rcn = d/k;

    Rcv2 = 1/h2; % Resistance of convection

    between outside wall and moon atmosphere

    Rtot = Rcv1 + Rcn + Rcv2; % Total

    Resistance

    q1 = (T_diff) ./ (Rtot); % estimated total

    heat transfer used to find temperature of

    walls

    Tyler Murray

    Ts1 = Th - Rcv1*q1; % Surface Temperature of Inside

    Wall [K]

    Ts2 = Tm - Rcv2*q1; % Surface Temperature of Outside

    Wall [K]

    k1 = 1.67;

    Q_v = cp_air * m_air * (Th - Tm_n) / (3600*3); % kW

    needed to increase to desired temp (60 needed to

    convert from kJ to kW)

    Q_lc = (A_surf * k1 .* (Th - Tm)) ./ (d * 1000); %

    kW needed from losses by conduction

    Q_r = (e./((n+1).*(2-e))).*boltz.*(Ts2.^4-

    Tm.^4).*A_cyl/1000; % kW needed from losses by

    radiation

    Q_t = Q_lc + Q_r; % kW needed to regulate power

    Q_t(1) = Q_t(1) + Q_v;

    Q_t(2) = Q_t(2) + Q_v;

    Q_t(3) = Q_t(3) + Q_v;

    Q_t1 = fliplr(Q_t);

    figure(1)

    plot(day1_m,Q_t)

    xlabel('Time (hour)')

    ylabel('Power (kW)')

    title('Power Required to Heat Hab 1 Day')

    axis([1 12 0 85])

  • BACK UP SLIDES figure(2)

    plot(day1_m,Q_t, 'b')

    xlabel('Time (hour)')

    ylabel('Power (kW)')

    title('Power Required to Account for

    Conduction & Radiation')

    hold on

    plot(day1_n,Q_t1, 'b')

    hold on

    plot(day2_m,Q_t, 'b')

    hold on

    plot(day2_n,Q_t1, 'b')

    v_impact = 1480; %volume excavated from

    impact [m^3]

    m_impact = 2219; %mass excavated from

    impact [Mg]

    r_length = 24; %length of rectangle portion

    of base [m]

    r_width = 32; %width of rectangle portion

    of base [m]

    height = 3; %triangle height [m]

    angle = 16; %ramp angle [deg]

    t_side = height/tand(angle); %width of

    triangle portion of base

    density = 1500; %density of lunar regolith

    [kg/m^3]

    Tyler Murray

    scoop_v = 0.5; %volume of scoop collecting regolith

    [m^3]

    scoop_m = density * scoop_v; %mass of regolith

    collected [kg]

    power = 480; %power needed to pick up, transport,

    and drop regolith [W]

    charge = (24 + 28.8)/24; %days needed to charge

    battery

    per_day = 10; %desired power used per day for

    construction [kW]

    r_vol = r_length * r_width * height; %volume of

    rectangle portion of base [m^3]

    t_vol = t_side * height * r_width * .5; %volume of

    triangle portion of base [m^3]

    b_vol = r_vol + t_vol; %volume of base

    b_mass = b_vol * density / 1000; %total mass of

    lunar regolith in area

    dig_v = b_vol - v_impact; %volume needed to dig by

    rover [m^3]

    dig_m = b_mass - m_impact; %mass needed to dig by

    rover [Mg]

    scoops = dig_m / scoop_m * 1000; %number of scoops

    to dig base

    total_p = power * scoops / 1000; %power needed to

    dig entire base [kWh]

    days = total_p / per_day * charge; %number of days

    to complete construction

  • REFERENCES "Battery Charge Time Calculator." Battery Charge Time Calculator. CSG Network, n.d. Web. 02 Mar. 2016. . Lunar regolith: density = 1500 kg/m3

    Tyler Murray

  • Unified Rover System for Astronauts and Habitat Modules

    ARIEL DIMSTON STRUCTURES

  • AIRLOCKS AND WHEEL ASSEMBLY

    Objective Stress Analysis of

    Wheels, Airlocks, Hab Analysis

    Reasoning To design the airlocks

    for the rover, estimate mass for

    wheels and hab modules.

    Fig. 1: Hula-Hoop Stress Condition Rim & Tire

    Fig. 2 Airlock Open Fig. 3: Airlock Shut

    Ariel Dimston

    Airlock Door Specifications

    Length 1 [m]

    Width 0.6 [m]

    Thickness 88.3 [mm]

    Max Pressure Differential

    27 [psi]

  • HABITAT STRUCTURE

    Ariel Dimston

    Fig. 5: Stress of Habitat Modules

    Fig. 6: Displacement

    Specification Value

    Diameter 7 [m]

    Height 10 [m]

    Pressure 14.7 [PSI]

    Structural Mass 5.3 [Mg]

    FEA Parameter Result

    Safety Factor 7.5

    Max Displacement

    1.2 [mm]

    Wall Thickness 33.5 [mm]

    Regolith Mass 55.0 [Mg]

  • ADDITIONAL AIRLOCK PICTURES

    Ariel Dimston

  • SEATING AREA IN ROVER

  • AIRLOCK DESIGN DETAILS

    There are a total of six hydraulic lock

    assemblies in the door.

    Each assembly contains two physical

    locks.

    The door is designed to be safe to the

    astronauts should three locks fail.

    The locks are designed to fail without

    jamming.

    Should the locks become jammed they

    can be disassembled from the door when

    docked to the habitat system.

    The locks can be unlocked from the

    outside with a specially designed wrench

    but it is impossible to open the door if

    there is a pressure differential.

  • CONTROLS MAO KONISHI

    Rover video and light attachments

    March 3, 2016

  • CREWED/UNCREWED ROVER VIEWS APPROACH

    Objective: Control uncrewed rover remotely from Earth; increase visibility from crewed

    rover for driving

    Requirements: Uncrewed

    • Operate from Earth

    • Send images/videos for drivers

    • See 35+ m ahead of rover

    • Clear views of attachments

    Requirements: Crewed

    • Clear views of rover surroundings

    • Front, back

    • Clear view of attachments

    Mao Konishi

    Rover CAD by Ariel Dimston

  • CREWED/UNCREWED ROVER VIEWS INSTRUMENTS

    Attachments (C - crewed, U – uncrewed)

    • Video camera – 2 on C, 1+ on U

    • M = 0.6 kg, P = 8 W, V = 5.493*10-4 m3 each1

    • LED headlights – 2 on C, 1 on U

    • M = 10.89 kg, P = 12.8~25.6 W, V = 0.0565 m3 each2

    • On-board monitor – 1 on C

    • M = 0.700 kg, P = 8 W, V = 6.967*10-4 m3

    Control Instruments (Uncrewed - TBD)

    • Actuators

    Total Mass (C/U): 23.68 kg, 11.58 kg

    Total Power (C/U): 75.20 W, 33.60 W

    Total Volume (C/U): 0.1148 m3, 0.0570 m3

    Mao Konishi

    Example camera/light placement

    (Rover CAD by Ariel Dimston)

  • BACKUP SLIDES CALCULATIONS – VISIBILITY REQUIREMENT

    Mao Konishi

  • BACKUP SLIDES CODE – TORQUE CALCULATION

    Mao Konishi

    Sample calculation with mrover = 100 kg

  • BACKUP SLIDES REFERENCES

    1 HDTV Digital Camera HV-HD30. Hitachi Kokusai Electric (March 2008).

    http://www.hitachi-

    keu.com/test/broadcast/hdtv_box_pov_cameras/pdf/hv_hd30_datasheet.pdf 2 NH LED 200 RECT. GE Lighting (2015). http://consumer.gelighting.com/catalog/p/69822 3 VM-7X Customizable LCD Monitor. Tru-Vu Monitors Inc.

    http://www.tru-vumonitors.com/images/7_LCD_Monitor_VM-7X.pdf

    4 Dagnelie, G. (2011). Visual prosthetics: Physiology, bioengineering, and rehabilitation.

    New York: Springer. 5 Drive Wheel Motor Torque Calculations. MAE Design and Manufacturing Laboratory.

    http://www2.mae.ufl.edu/designlab/motors/EML2322L%20Drive%20Wheel%20Motor

    %20Torque%20Calculations.pdf

    Mao Konishi

  • SCIENCE GROUP RACHEL MAXWELL

    3 March 2016 STM Updates (Justifications, Instrumentation)

    Location of Instruments

    47

  • USES OF EXPERIMENTS / INSTRUMENTS UNDERSTANDING THE SCIENCE RETURNS

    Objective: Provide a clear context for the experiments and instruments with regard to the mission

    Reasoning: Optimize science return of the mission

    Lunar Sample Dating

    Late Heavy Bombardment

    Understand melt differentiation

    Spectrometers

    Locate volatiles

    Measure volatiles

    Understand composition and mineralogy

    Measure abundance of elements

    Cameras

    Characterize landscape geomorphology, processes, and the geologic record

    Provide operational support and scientific context

    48 Rachel Maxwell

    Artist’s concept of SuperCam (Mars 2020) Image Credit: NASA

  • INSTRUMENT PLACEMENT NECESSARY LAB SETTINGS FOR INSTRUMENTS

    Mass: 18.75 kg

    Power: 53 W

    Volume: 0.419 m3

    Autonomous Rover

    • Spectrometers

    • APXS

    • DAN

    • SuperCam

    • CheMin

    • NIRVSS

    • Mastcam-Z

    • RAD

    Crewed Rover

    • Spectrometers

    • Same as

    above

    49

    Lunar Laboratory*

    • SAM

    • Gas Chromatograph

    • Quadrupole Mass Spectrometer

    • Tunable Laser Spectrometer

    • ALSEP

    • Passive seismometer

    • Magnetometer

    • Lunar dust detector

    • Heat flow experiment

    Earth-based Laboratories

    • Alternative dating methods (Sm-Nd, Rb-Sr)

    Rachel Maxwell

    Mass: 24.85 kg

    Power: 69 W

    Volume: 0.429 m3 Mass: 65 kg

    Power: TBD

    Volume: TBD

    *Not a complete list of instruments

  • BACKUP SLIDES

    50

    DESCRIPTION AND USE OF EACH INSTRUMENT

    Sample Analysis at Mars (SAM): Gas Chromatograph, Quadrupole Mass Spectrometer, Tunable Laser Spectrometer.

    What are the chemical and isotopic states of the lighter elements in rocks and regolith?

    Alpha Particle X-Ray Spectrometer (APXS): Highly sensitive X-Ray detector

    Measure the abundance of chemical elements in rocks and regolith

    Near-Infrared Volatiles Spectrometer System (NIRVSS): Near-Infrared Spectrometer

    Measure the volatiles in regolith samples

    Mastcam-Z: Multispectral and stereoscopic imaging

    Characterize the overall landscape geomorphology, processes, and the geologic record

    Provide operational support and scientific context

    SuperCam: Laser Induced Breakdown Spectroscopy (LIBS), Raman Spectroscopy, Time Resolved Fluorescence Spectroscopy, Visible and Infrared Spectroscopy, Remote-Micro Imager

    Remote optical measurements and laser spectroscopy to determine fine-scale mineralogy, chemistry, and atomic and molecular composition of samples

    Chemistry and Camera (ChemCam): LIBS, Remote-Micro Imager

    Analyze the elemental composition of vaporized materials from areas smaller than 1 millimeter (Precursor to SuperCam)

    Rachel Maxwell

  • BACKUP SLIDES

    51

    DESCRIPTION AND USE OF EACH INSTRUMENT

    Radiation Assessment Detector (RAD): Stack of silicon detectors

    Measure and identify all high-energy radiation on the surface

    Chemistry and Mineralogy Instrument (CheMin): X-Ray diffraction

    Identify and measure various minerals on the surface

    Apollo Lunar Surface Experiments Package (ALSEP): Passive seismometer; Lunar

    Surface Magnetometer; Solar Wind Spectrometer; Suprathermal Ion Detector; Cold

    Cathode Ion Gauge; Lunar Dust Detector; Heat Flow Experiment

    Measure seismic activity; Magnetic Field at surface; flux and spectra of electrons and

    protons from the sun; Flux, composition, energy, velocity of positive ions; atmosphere

    and variations over time or solar activity; dust accumulation; radiation damage to

    solar cells; rate of heat loss from lunar interior and thermal properties of lunar

    material

    Dynamic Albedo of Neutrons (DAN): Active/Passive Neutron Spectrometer

    Measure the abundance and depth distribution of H- and OH-bearing materials (e.g.,

    adsorbed water, hydrated minerals) in a shallow layer (~1 m) of subsurface along

    rover path

    Rachel Maxwell

  • BACKUP SLIDE: AUTONOMOUS ROVER

    52

    MASS, POWER, VOLUME

    Instrument Model from Mass (kg) Power (W) Volume (m3)

    DAN MSL 2.6 13 0.0019025

    NIRVSS Resource Prospector Unavailable*

    Mastcam-Z Mars 2020 4.5 11.8 0.009

    RAD MSL 1.6 4.2 0.00024

    ChemCam MSL 5.778 Unavailable 0.1327

    SuperCam Mars 2020 Unavailable**

    APXS MER / Mars 2020 0.37 Unavailable 0.000368

    CheMin MSL 10 40 0.027

    Total per Rover 24.848 69 0.17122

    Rachel Maxwell

    *NIRVSS is an instrument designed for launch in 2020. Mass, Power, Volume not yet available, but instrument has been tested as of August 2015. **SuperCam is the Mars 2020 version of ChemCam with more instruments. Mass, Power, Volume not yet available

  • BACKUP SLIDE: CREWED ROVER

    53

    MASS, POWER, VOLUME

    Instrument Model from Mass (kg) Power (W) Volume (m3)

    DAN MSL 2.6 13 0.0019025

    NIRVSS Resource Prospector Unavailable*

    ChemCam MSL 5.778 Unavailable 0.1327

    SuperCam Mars 2020 Unavailable**

    APXS MER / Mars 2020 0.37 Unavailable 0.000368

    CheMin MSL 10 40 0.027

    Total per Rover 18.748 53 0.16198

    Rachel Maxwell

    *NIRVSS is an instrument designed for launch in 2020. Mass, Power, Volume not yet available, but instrument has been tested as of August 2015. **SuperCam is the Mars 2020 version of ChemCam with more instruments. Mass, Power, Volume not yet available

  • BACKUP SLIDE: INSTRUMENTS ON BASE

    54

    Instrument Model from Mass (kg) Power (W) Volume (m3)

    SAM MSL 40 max 990 ~size of a microwave

    oven

    ASLEP Apollo 15 25 max 65.41 0.0348

    Base Total 65 TBD TBD

    NOTE:

    SAM will go in the lunar laboratory inside the hab

    ASLEP will go outside the hab

    Rachel Maxwell

  • REFERENCES

    55

    http://mars.nasa.gov/msl/mission/instruments/

    http://mars.nasa.gov/mars2020/mission/science/for-scientists/instruments/

    Andrews, D. R., “Resource Prospector (RP) - Early Prototyping and Development,” AIAA SPACE 2014 Conference and Exposition, 2015, pp. 1–15.

    Blake, D., Vaniman, D., Anderson, R., Bish, D., Chipera, S., Chemtob, S., Crisp, J., DesMarais, D., Downs, R., Farmer, J., and Others, “The CheMin mineralogical instrument on the Mars Science Laboratory

    mission,” Lunar and Planetary Institute Science Conference Abstracts, vol. 40, 2009, p. 1484.

    Campbell, J. L., “The instrumental blank of the Mars Science Laboratory alpha particle X-ray spectrometer,” Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with

    Materials and Atoms, vol. 288, 2012, pp. 102–110.

    Campbell, J. L., Perrett, G. M., Gellert, R., Andrushenko, S. M., Boyd, N. I., Maxwell, J. A., King, P. L., and Schofield, C. D. M., “Calibration of the Mars Science Laboratory alpha particle X-ray spectrometer,”

    Space Science Reviews, vol. 170, 2012, pp. 319–340.

    Bell, J.F. III, Maki, J.N., Mehall, G.L., Ravine, M.A., Caplinger, M.A., and the Mastcam-Z Science Team. “Mastcam-Z: A Geologic, Stereoscopic, and Multispectral Investigation on the NASA Mars-2020

    Rover,”

    Grotzinger, J. P., Crisp, J., Vasavada, A. R., Anderson, R. C., Baker, C. J., Barry, R., Blake, D. F., Conrad, P., Edgett, K. S., Ferdowski, B., Gellert, R., Gilbert, J. B., Golombek, M., Gómez-Elvira, J.,

    Hassler, D. M., Jandura, L., Litvak, M., Mahaffy, P., Maki, J., Meyer, M., Malin, M. C., Mitrofanov, I., Simmonds, J. J., Vaniman, D., Welch, R. V., and Wiens, R. C., Mars Science Laboratory

    mission and science investigation, 2012.

    Hassler, D. M., Zeitlin, C., Wimmer-Schweingruber, R. F., Böttcher, S., Martin, C., Andrews, J., Böhm, E., Brinza, D. E., Bullock, M. A., Burmeister, S., Ehresmann, B., Epperly, M., Grinspoon, D., Köhler, J.,

    Kortmann, O., Neal, K., Peterson, J., Posner, A., Rafkin, S., Seimetz, L., Smith, K. D., Tyler, Y., Weigle, G., Reitz, G., and Cucinotta, F. A., “The Radiation Assessment Detector (RAD)

    investigation,” Space Science Reviews, vol. 170, 2012, pp. 503–558.

    Jet Propulsion Laboratory, “Sample Analysis at Mars (SAM),” 2012.

    Mahaffy, P. R., Webster, C. R., Cabane, M., Conrad, P. G., Coll, P., Atreya, S. K., Arvey, R., Barciniak, M., Benna, M., Bleacher, L., Brinckerhoff, W. B., Eigenbrode, J. L., Carignan, D., Cascia, M.,

    Chalmers, R. A., Dworkin, J. P., Errigo, T., Everson, P., Franz, H., Farley, R., Feng, S., Frazier, G., Freissinet, C., Glavin, D. P., Harpold, D. N., Hawk, D., Holmes, V., Johnson, C. S., Jones, A.,

    Jordan, P., Kellogg, J., Lewis, J., Lyness, E., Malespin, C. A., Martin, D. K., Maurer, J., McAdam, A. C., McLennan, D., Nolan, T. J., Noriega, M., Pavlov, A. A., Prats, B., Raaen, E., Sheinman, O.,

    Sheppard, D., Smith, J., Stern, J. C., Tan, F., Trainer, M., Ming, D. W., Morris, R. V., Jones, J., Gundersen, C., Steele, A., Wray, J., Botta, O., Leshin, L. A., Owen, T., Battel, S., Jakosky, B. M.,

    Manning, H., Squyres, S., Navarro-Gonz??lez, R., McKay, C. P., Raulin, F., Sternberg, R., Buch, A., Sorensen, P., Kline-Schoder, R., Coscia, D., Szopa, C., Teinturier, S., Baffes, C., Feldman, J.,

    Flesch, G., Forouhar, S., Garcia, R., Keymeulen, D., Woodward, S., Block, B. P., Arnett, K., Miller, R., Edmonson, C., Gorevan, S., and Mumm, E., “The sample analysis at mars investigation and

    instrument suite,” Space Science Reviews, vol. 170, 2012, pp. 401–478.

    Maurice, S., Wiens, R. C., Saccoccio, M., Barraclough, B., Gasnault, O., Forni, O., Mangold, N., Baratoux, D., Bender, S., Berger, G., Bernardin, J., Berth, M., Bridges, N., Blaney, D., Bouye, M., Ca??s, P.,

    Clark, B., Clegg, S., Cousin, A., Cremers, D., Cros, A., Deflores, L., Derycke, C., Dingler, B., Dromart, G., Dubois, B., Dupieux, M., Durand, E., D’Uston, L., Fabre, C., Faure, B., Gaboriaud, A.,

    Gharsa, T., Herkenhoff, K., Kan, E., Kirkland, L., Kouach, D., Lacour, J. L., Langevin, Y., Lasue, J., Le Moulic, S., Lescure, M., Lewin, E., Limonadi, D., Manh??s, G., Mauchien, P., McKay, C.,

    Meslin, P. Y., Michel, Y., Miller, E., Newsom, H. E., Orttner, G., Paillet, A., Pares, L., Parot, Y., Perez, R., Pinet, P., Poitrasson, F., Quertier, B., Sall, B., Sotin, C., Sautter, V., S??ran, H.,

    Simmonds, J. J., Sirven, J. B., Stiglich, R., Striebig, N., Thocaven, J. J., Toplis, M. J., and Vaniman, D., “The ChemCam instrument suite on the Mars Science Laboratory (MSL) rover: Science

    objectives and mast unit description,” Space Science Reviews, vol. 170, 2012, pp. 95–166.

    Maurice, S., Wiens, R. C., Anderson, R., Beyssac, O., Bonal, L., Clegg, S., DeFlores, L., Dromard, G., Fischer, W., Forni, O., Gasnault, O., Grotzinger, J., Johnson, J., Martinez-Frias, J., Mangold, N.,

    McLennan, S., Montmessin, F., Rull, F., Sharma, S., Fouchet, T., Poulet, F., and Team, T. S., “Science Objectives of the SuperCam Instrument for th Mars2020 rover,” Lunar Planetary Sciences

    Conference, vol. 10, 2015, pp. 6–7.

    Mitrofanov, I. G., Litvak, M. L., Varenikov, A. B., Barmakov, Y. N., Behar, A., Bobrovnitsky, Y. I., Bogolubov, E. P., Boynton, W. V., Harshman, K., Kan, E., Kozyrev, A. S., Kuzmin, R. O., Malakhov, A. V.,

    Mokrousov, M. I., Ponomareva, S. N., Ryzhkov, V. I., Sanin, A. B., Smirnov, G. A., Shvetsov, V. N., Timoshenko, G. N., Tomilina, T. M., Tret’Yakov, V. I., and Vostrukhin, A. A., “Dynamic Albedo

    of Neutrons (DAN) experiment onboard NASA’s Mars Science Laboratory,” Space Science Reviews, vol. 170, 2012, pp. 559–582.

    NASA, “Apollo Lunar Surface Experiment Package,” 1972.

    Rieder, R., Gellert, R., Brückner, J., Klingelhöfer, G., Dreibus, G., Yen, A., and Squyres, S. W., “The new Athena alpha particle X-ray spectrometer for the Mars Exploration Rovers,” Journal of Geophysical

    Research, vol. 108, 2003, p. 8066.

    http://mars.nasa.gov/msl/mission/instruments/http://mars.nasa.gov/msl/mission/instruments/http://mars.nasa.gov/mars2020/mission/science/for-scientists/instruments/http://mars.nasa.gov/mars2020/mission/science/for-scientists/instruments/http://mars.nasa.gov/mars2020/mission/science/for-scientists/instruments/http://mars.nasa.gov/mars2020/mission/science/for-scientists/instruments/

  • PROPULSION CLAIRE ALEXANDER

    • Science Probe Design

    • Recommended Final Design and ACS

    56 Claire Alexander

  • SCIENCE PROBE DESIGN CURRENT DESIGN AND GUIDELINES FOR RE-DESIGN

    57 Claire Alexander

    Mass (kg) Power (W) Volume (m^3)

    Propulsion 110 46 0.4

    Total 174.1 107.6 1.123

    Prop. Percentage 63.1% 42.7% 35.6%

    New Total Payload Mass Needed: 64.31 kg

    NEW RECOMMENDED MAIN PROPULSION

    SYSTEM:

    • Aerojet Rocketdyne R-6D (x3) • Power: 36 Watts • 111 N • TRL = 9

    * old design configuration

  • PROPULSION SYSTEM REDESIGN

    58 Claire Alexander

    RECOMMENDED FINAL DESIGN

    ACS Requirements: • Accommodate Precision Landing • Efficient use of fuel

    ACS Recommendation: • Use variable thrust main engine • Use Control Moment Gyroscope

    (CMG) system Overall Propulsion System:

    Mass (kg) Volume (m^3)

    Propulsion 89.54 0.069

    Total 149.6 0.783

    * CAD by Jay Millane and Claire Alexander

    * for one probe

  • BACKUP SLIDE 1 REFERENCES

    59 Claire Alexander

    “Aerojet Rocketdyne Capabilities”. Bipropellant Fact Sheet. http://www.rocket.com/files/aerojet/documents/Capabilities/PDFs/Bipropellant%20Data%20Sheets.pdf. [Retrieved 13 February 2016]. “Design Considerations for Reaction control Systems”. https://solarsystem.nasa.gov/docs/Dyakonov%20RCS%20Design%20Considerations.pdf. [Retrieved 1 March 2016]. “Robotic Lunar Landers for Science and Exploration”. https://solarsystem.nasa.gov/docs/pr412.pdf. [Retrieved 1 March 2016].

    http://www.rocket.com/files/aerojet/documents/Capabilities/PDFs/Bipropellant Data Sheets.pdfhttp://www.rocket.com/files/aerojet/documents/Capabilities/PDFs/Bipropellant Data Sheets.pdfhttps://solarsystem.nasa.gov/docs/pr412.pdfhttps://solarsystem.nasa.gov/docs/pr412.pdfhttps://solarsystem.nasa.gov/docs/pr412.pdf

  • BACKUP SLIDE 2 MATLAB CODE

    60 Claire Alexander

    % Landing on Lunar Surface for Science Probes % Author: Claire Alexander clear all close all clc mpay = 64.05; deltav = 2183; % (km/s) from LLO to surface g = 9.80655; % (m/s^2) for Earth x = [1:1:9]; Isp = [294 280 315.5 323 329 303 327 333 293]; % Isp of engines (sec) mi = [0.454 2 4.31 5.44 5.44 4.53 7.3 5.4 6.8]; % mass of engines (kg) p = [5 36 46 46 46 46 45 45 70]; % power required to operate the valve (W) t = [22 111 490 445 445 890 890 623 4000]; % Thrust avaliable for engines mg = 9.80655/6; % gravitational acceleration of the Moon (m/s^2) ACSmass = mi(1)*6; % Calculations to narrow down engine options MR = exp(deltav./(g.*Isp)); mprop = MR.*(mi+mpay)-mpay-mi; mfull = mprop+mpay+mi+ACSmass; mempty = mi+mpay; T = mfull*mg/3; % thrust required for each engine figure(1) set(gcf,'color','w'); subplot(3,1,1) plot(x,mfull) xlabel('Engine number') ylabel('Mass (kg)') title('Total Mass of Probe') subplot(3,1,2) plot(x,p) xlabel('Engine number') ylabel('Power (W)')

    title('Power Required') subplot(3,1,3) plot(x,T,'b') hold on plot(x,t,'r') xlabel('Engine number') ylabel('Thrust (N)') title('Comparrison of Thrust Provded and Required by Engine') legend('Required','Provided') MEthrust = t(2)/3; MEmass = mprop(2)/3; MEOF = 1.65; % Choosen Engine O/F ratio fd = 880; % Density of Fuel (kg/m^3) od = 1440; % Density of Oxidizer (kg/m^3) MEmfuel = MEmass/2.65; % Mass of fuel needed (kg) MEmox = 1.65*MEmfuel; % Mass of oxidizer needed (kg) MEvfuel = MEmfuel/fd; % Volume required for fuel (m^3) MEvox = MEmox/od; % Volume required for oxidizer (m^3) Tmass = mprop(2)+mi(2)*3; Tvolume = MEvfuel+MEvox; fprintf('--------------------------\n') fprintf('----ME System Specs------\n') fprintf('Number of Engines: 3\n') fprintf('Initial Mass of each: %d Total Initial Mass: %d \n',mi(2),mi(2)*3) fprintf('Fuel Mass of each: %4.2d Total Fuel Mass: %4.2d \n',MEmfuel,MEmfuel*3) fprintf('OX Mass of each: %4.2d Total OX Mass: %4.2d \n',MEmox,MEmox*3) fprintf('OX Volume of each: %4.2d Total Volume OX: %4.2d \n',MEvox,MEvox*3) fprintf('Fuel Volume of each: %4.2d Total Volume Fuel: %4.2d \n',MEvfuel,MEvfuel*3) fprintf('----Total Prop System Specs------\n') fprintf('Total Mass: %d\n',Tmass) fprintf('Total Propellant Volume: %d\n',Tvolume)

  • BACKUP SLIDE 3 MATLAB CODE

    61 Claire Alexander

    -------------------------- ----ME System Specs------ Number of Engines: 3 Initial Mass of each: 2 Total Initial Mass: 6 Fuel Mass of each: 1.01e+01 Total Fuel Mass: 3.03e+01 OX Mass of each: 1.66e+01 Total OX Mass: 4.99e+01 OX Volume of each: 1.16e-02 Total Volume OX: 3.47e-02 Fuel Volume of each: 1.15e-02 Total Volume Fuel: 3.44e-02 ----Total Prop System Specs------ Total Mass: 8.621713e+01 Total Propellant Volume: 2.302784e-02

  • POWER/THERMO BRIAN O’NEILL

    Ideal location for Fuel Depot

  • PROBLEM DESCRIPTION OBJECTIVES/REASONING

    Objective: Determine ideal location for Fuel depot

    Reasoning: To minimize energy required and prepare for extreme temperatures

    Landing Pad = 312.25 ⁰ E,-83.68 ⁰ Fuel Depot = 312.10 ⁰ E,-83.82 ⁰ Base = 315.567 ⁰ E, -84.083 ⁰ Mining/ISRU = 314.95 ⁰ E,-84.29 ⁰ [longitude, latitude]

  • RESULTS OF ANALYSIS LOCATION, METHOD, M/P/V

    Power required: .60 KW (±.18KW) Mass for Insulation: 1.92 Kg (±.576Kg) Volume for Insulation: 29.15 m^3 (±8.75m^3)

    AAAS Report

  • BACK UP SLIDES

    Full Shade Full Illumination

    Illumination Phase Power Required [KW]

    Full Sun 0.6

    Average 0.403

    Full Shade 0.404

    ILLUMINATION VARIANCE

  • BACK UP SLIDES

    %LCH4

    %% Heat Transfer Analysis for Fuel Tanks

    %% Weronika Juszczak(Modified by Brian O'Neill for fuel tank simulations)

    close all

    %% Defining Variables

    d1 = 147E9 %meters from earth to sun

    d2 = d1

    viewfactor = 1/(4*pi)*atan(sqrt((1/(d1^2+d2^2+d1^2*d2^2))))

    sun_fluct = linspace(0,100,100);

    n = 40; % number of layers

    ks = 0.00004; % Thermal conductivity of MLI spencer [W/m*K]

    Tw1 = 95; % Temperature of Inside Wall [K]

    Volume = 20 %m^3

    Tw2 = linspace(50,400,100)% Temperature of Outside Wall [K] now the temp of Permenately shadowed region

    % Tw2 = 40

    L = .002; % length between layers of MLI [m]

    emm = 0.9; % average emissivity of lunar regolith

    e = 0.04; % emissivity of MLI aluminum

    em = 0.3; % emissivity of mylar

    boltz = 5.67e-8; % Boltzman constant W/m^2*K^-4

    Tsun = 5779; % Temperature of sun [K]

    %% Heat Transfer Across MLI with Varying n

    % Conduction Heat Transfer of Spacer

    qc_MLI = ks*(Tw1-Tw2)./(n*L);

    % Radiation Heat Transfer

    qr1_MLI = (e./((n+1).*(2-e))).*boltz.*(Tw1.^4-Tw2.^4); % heat transfer per unit area for radiation heat transfer through layers [Watts/m^2]

    qr2_MLI = e*boltz*(Tsun.^4 - Tw2.^4)%*.216;

    qtot_MLI = qr1_MLI+qr2_MLI+qc_MLI;

    % figure

    % plot(n, qtot_MLI,n,qr1_MLI+qr2_MLI,n,qc_MLI)

    % legend('total','radiation','conduction')

    % title('Heat Transfer per Unit Area','FontSize',20)

    % xlabel('Number of MLI layers (n)')

    % ylabel('Heat Flux [Watts/m^2]')

    % figure

    % plot(L.*n,qtot_MLI)

    % title('Heat Transfer vs. Thickness of MLI','FontSize',20)

    % xlabel('Thickness [m]')

    % ylabel('Heat Flux [Watts/m^2]')

    % Effective Emmitance of MLI (test of efficiency)

    e1 = e;% emissivity of surface 1

    e2 = e; % emissivity of surface 2

    eff = (((2.*n)./emm)-n-1+(1/e1)+(1/e2)).^-1*sun_fluct/100;

    % plot(n,eff)

    % title('Effective Emittance of MLI','FontSize',20)

    % xlabel('Number of Layers')

    % ylabel('Eff')

    %% Heat Transfer Through Regolith of Varying Thickness

    k = .015; % Thermal conductivity of Lunar Regolith 1 M thick [W/m*K]

    x = .08; % Thickness

    qc = 0; % Heat flux of regolith of varying thickness

    qr = boltz*e*(Tsun^4-Tw2.^4) * 3.68260778129241e-24.*sun_fluct/100*viewfactor

    qr2 = boltz*e*(Tw1.^4-Tw2.^4)*.271;

    q_tot = qc + qr + qr2;

    %% FOR CYLINDER

    %Brian O'Neill

    MATLAB SCRIPT

    %LOX %% Heat Transfer Analysis for Fuel Tanks %% Weronika Juszczak(Modified by Brian O'Neill for fuel tank simulations) %% Defining Variables d1 = 147E9 %meters from earth to sun d2 = d1 viewfactor = 1/(4*pi)*atan(sqrt((1/(d1^2+d2^2+d1^2*d2^2)))) sun_fluct = linspace(0,100,100); n = 40; % number of layers ks = 0.00004; % Thermal conductivity of MLI spencer [W/m*K] Tw1 = 90; % Temperature of Inside Wall [K] Volume = 28 %m^3 Tw2 = linspace(50,400,100)% Temperature of Outside Wall [K] now the temp of Permenately shadowed region % Tw2 = 40 L = .002; % length between layers of MLI [m] emm = 0.9; % average emissivity of lunar regolith e = 0.04; % emissivity of MLI aluminum em = 0.3; % emissivity of mylar boltz = 5.67e-8; % Boltzman constant W/m^2*K^-4 Tsun = 5779; % Temperature of sun [K] %% Heat Transfer Across MLI with Varying n % Conduction Heat Transfer of Spacer % qc_MLI = ks*(Tw1-Tw2)./(n*L); % Radiation Heat Transfer qr1_MLI = (e./((n+1).*(2-e))).*boltz.*(Tw1.^4-Tw2.^4); % heat transfer per unit area for radiation heat transfer through layers [Watts/m^2] qr2_MLI = e*boltz*(Tsun.^4 - Tw2.^4)%*.216; qtot_MLI = qr1_MLI+qr2_MLI+qc_MLI; % figure % plot(n, qtot_MLI,n,qr1_MLI+qr2_MLI,n,qc_MLI) % legend('total','radiation','conduction') % title('Heat Transfer per Unit Area','FontSize',20) % xlabel('Number of MLI layers (n)') % ylabel('Heat Flux [Watts/m^2]') % figure % plot(L.*n,qtot_MLI) % title('Heat Transfer vs. Thickness of MLI','FontSize',20) % xlabel('Thickness [m]') % ylabel('Heat Flux [Watts/m^2]') % Effective Emmitance of MLI (test of efficiency) e1 = e;% emissivity of surface 1 e2 = e; % emissivity of surface 2 eff = (((2.*n)./emm)-n-1+(1/e1)+(1/e2)).^-1*sun_fluct/100; % plot(n,eff) % title('Effective Emittance of MLI','FontSize',20) % xlabel('Number of Layers') % ylabel('Eff') %% Heat Transfer Through Regolith of Varying Thickness k = .015; % Thermal conductivity of Lunar Regolith 1 M thick [W/m*K] x = .08; % Thickness qc = 0; % Heat flux of regolith of varying thickness qr = boltz*e*(Tsun^4-Tw2.^4) * 3.68260778129241e-24.*sun_fluct/100 qr2 = boltz*e*(Tw1.^4-Tw2.^4)*.271; q_tot = qc + qr + qr2; %% FOR CYLINDER %Brian O'Neill

  • BACKUP SLIDES

    %m^3

    Cyl_length = .9 %axial length of cylinder in meters

    % Thickness = n*L

    Thickness = .08;

    ri = sqrt(Volume./(pi*(Cyl_length-2*Thickness))) %meters INSIDE RADIUS OF CYLINDER

    OSA = 2*pi*(ri+Thickness)*Cyl_length+2*pi*(ri+Thickness).^2 ;%OUTSIDE SURFACE AREA

    ISA = 2*pi*(ri)*Cyl_length-(2.*Thickness)+2*pi*(ri).^2; %INSIDE SURFACE AREA

    ASA = (OSA + ISA)/2; %AVERAGE BETWEEN INSIDE AND OUTSIDE SURFACE AREAS

    t = 1:.1:28.5;

    day_night_cycle = (1-.213)/2*sin(2*pi*t/28.5)+1.213/2; %CHECK WITH SCIENCE IF YOU WANT TO USE THIS

    % figure

    % plot(t,day_night_cycle)

    % title('Moon cycle','FontSize',20)

    % xlabel('Thickness [m]')

    % ylabel('Heat transfer [Watts]')

    Q = ASA.*qtot_MLI%(.08/.002)

    %

    % figure

    % plot(Thickness,Q)

    % title('Heat Transfer vs. Thickness of MLI, For Super Assembly','FontSize',15)

    % xlabel('Thickness [m]')

    % ylabel('Heat transfer [Watts]')

    %

    % figure

    % plot(n,Q)

    % title('Heat Transfer vs. Layers of MLI,For Super Assembly','FontSize',15)

    % xlabel('Layers of MLI')

    % ylabel('Heat transfer [Watts]')

    %% Volume calculator

    ri2 = 3.5; %m

    Cyl_length = 2; %m

    Thickness = .08; %m

    Volume = pi*(ri2+Thickness)^2*Cyl_length-pi*ri2^2*(Cyl_length-2*Thickness);

    density = (95+37)/2; %[kg/m^3]for MLI A144 cyrostat

    Mass = density*Volume/1000;

    massm = Mass

    volumem = Volume

    Qo = ASA.*q_tot;

    n = 1:1:100;

    figure

    plot(Tw2,Qo)

    title('Q vs. temperature level LOX')

    xlabel('Temperature [K]')

    ylabel('Q [watts]')

    qtot1 = q_tot

    %Sabatier

    %% Heat Transfer Analysis for Fuel Tanks

    %% Weronika Juszczak(Modified by Brian O'Neill for fuel tank simulations)

    %% Defining Variables

    d1 = 147E9 %meters from earth to sun

    d2 = d1

    viewfactor = 1/(4*pi)*atan(sqrt((1/(d1^2+d2^2+d1^2*d2^2))))

    sun_fluct = linspace(0,100,100);

    n = 40; % number of layers

    ks = 0.00004; % Thermal conductivity of MLI spencer [W/m*K]

    Tw1 = 673.15; % Temperature of Inside Wall [K]

    Volume = .3 %m^3

    Tw2 = linspace(50,400,100)% Temperature of Outside Wall [K] now the temp of Permenately shadowed region

    % Tw2 = 40

    L = .002; % length between layers of MLI [m]

    emm = 0.9; % average emissivity of lunar regolith

    e = 0.04; % emissivity of MLI aluminum

    em = 0.3; % emissivity of mylar

    boltz = 5.67e-8; % Boltzman constant W/m^2*K^-4

    Tsun = 5779; % Temperature of sun [K]

    %% Heat Transfer Across MLI with Varying n

    % Conduction Heat Transfer of Spacer

    % qc_MLI = ks*(Tw1-Tw2)./(n*L);

    % Radiation Heat Transfer

    qr1_MLI = (e./((n+1).*(2-e))).*boltz.*(Tw1.^4-Tw2.^4); % heat transfer per unit area for radiation heat transfer through layers [Watts/m^2]

    qr2_MLI = e*boltz*(Tsun.^4 - Tw2.^4)%*.216;

    qtot_MLI = qr1_MLI+qr2_MLI+qc_MLI;

    % figure

    % plot(n, qtot_MLI,n,qr1_MLI+qr2_MLI,n,qc_MLI)

    % legend('total','radiation','conduction')

    % title('Heat Transfer per Unit Area','FontSize',20)

    % xlabel('Number of MLI layers (n)')

    % ylabel('Heat Flux [Watts/m^2]')

    % figure

    % plot(L.*n,qtot_MLI)

    % title('Heat Transfer vs. Thickness of MLI','FontSize',20)

    % xlabel('Thickness [m]')

    % ylabel('Heat Flux [Watts/m^2]')

    % Effective Emmitance of MLI (test of efficiency)

    e1 = e;% emissivity of surface 1

    e2 = e; % emissivity of surface 2

    eff = (((2.*n)./emm)-n-1+(1/e1)+(1/e2)).̂ -1*sun_fluct/100;

    % plot(n,eff)

    % title('Effective Emittance of MLI','FontSize',20)

    % xlabel('Number of Layers')

    % ylabel('Eff')

    %% Heat Transfer Through Regolith of Varying Thickness

    k = .015; % Thermal conductivity of Lunar Regolith 1 M thick [W/m*K]

    x = .08; % Thickness

    qc = 0; % Heat flux of regolith of varying thickness

    qr = boltz*e*(Tsun^4-Tw2.^4) * 3.68260778129241e-24.*sun_fluct/100

    qr2 = boltz*e*(Tw1.^4-Tw2.^4)*.271;

    q_tot = qc + qr + qr2;

    %% FOR CYLINDER

    %Brian O'Neill

    %% FOR CYLINDER

    %Brian O'Neill

    %m^3

    Cyl_length = .9 %axial length of cylinder in meters

    % Thickness = n*L

    Thickness = .08;

    ri = sqrt(Volume./(pi*(Cyl_length-2*Thickness))) %meters INSIDE RADIUS OF CYLINDER

    OSA = 2*pi*(ri+Thickness)*Cyl_length+2*pi*(ri+Thickness).^2 ;%OUTSIDE SURFACE AREA

    ISA = 2*pi*(ri)*Cyl_length-(2.*Thickness)+2*pi*(ri).^2; %INSIDE SURFACE AREA

    ASA = (OSA + ISA)/2; %AVERAGE BETWEEN INSIDE AND OUTSIDE SURFACE AREAS

    t = 1:.1:28.5;

    day_night_cycle = (1-.213)/2*sin(2*pi*t/28.5)+1.213/2; %CHECK WITH SCIENCE IF YOU WANT TO USE THIS

    % figure

    % plot(t,day_night_cycle)

    % title('Moon cycle','FontSize',20)

    % xlabel('Thickness [m]')

    % ylabel('Heat transfer [Watts]')

    Q = ASA.*qtot_MLI%(.08/.002)

    %

    % figure

    % plot(Thickness,Q)

    % title('Heat Transfer vs. Thickness of MLI, For Super Assembly','FontSize',15)

    % xlabel('Thickness [m]')

    % ylabel('Heat transfer [Watts]')

    %

    % figure

    % plot(n,Q)

    % title('Heat Transfer vs. Layers of MLI,For Super Assembly','FontSize',15)

    % xlabel('Layers of MLI')

    % ylabel('Heat transfer [Watts]')

    %% Volume calculator

    ri2 = 3.5; %m

    Cyl_length = 2; %m

    Thickness = .08; %m

    Volume = pi*(ri2+Thickness)^2*Cyl_length-pi*ri2^2*(Cyl_length-2*Thickness);

    density = (95+37)/2; %[kg/m^3]for MLI A144 cyrostat

    Mass = density*Volume/1000;

    masss = Mass

    volumes = Volume

    Qs = ASA.*q_tot;

    n = 1:1:100;

    figure

    plot(Tw2,Qs)

    title('Q vs. temperature level Sabatier')

    xlabel('Temperature [K]')

    ylabel('Q [watts]')

    Qn = abs(Qm) + abs(Qo) + abs(Qs)

    figure

    plot(Tw2,Qn)

    title('Q vs. temperature level Sabatier, LOX, LCH4')

    xlabel('Temperature [K]')

    ylabel('Q [watts]')

    total_mass = masso + massm + masss

    total_volume = volumeo + volumem + volumes

    Qn

    References:

    David A. Paige, M. A. (2010). Diviner Lunar Radiometer Observations of Cold Traps in the Moon’s South Polar Region. AAAS. Retrieved from http://science.sciencemag.org/content/330/6003/479.figures-only

  • BACKUPSLIDES MAX/MIN CHART

    AAAS Report

  • PROPULSION DAYLE ALEXANDER

    • ISRU Fuel Depot Overview

    • ISRU Design, Mass and Volume

    69

  • ISRU/FUEL DEPOT SYSTEM

    70 Dayle Alexander

    ISRU • Function: generates usable materials for

    base/fuel depot • Located at the mining site in the

    permanently shadowed region • Mining rover needed to mine the regolith

    Fuel Depot • Function: generates fuel/ox for reusable

    lander (stores 2 launches worth) • Located at the reusable lander

    launch/landing site, in between ISRU and base

    • Fuel rover needed to transport materials from the ISRU

    Fuel Depot Model from Austin Black

  • ISRU REQUIREMENTS/MASS

    71 Dayle Alexander

    MASS OF REQUIRED MATERIALS PER DAY FOR FUEL DEPOT

    H2O [Mg] 0.0071 CH4 [Mg] 0.0200

    CO2 [Mg] 0.0087

    MASS OF MATERIALS GENERATED PER DAY

    H2O [Mg] 3.0769 CH4 [Mg] 0.0200 CO2 [Mg] 0.0668

    REGOLITH [Mg] 102.5600

    EXCESS MATERIALS GENERATED PER DAY H2O [Mg] 0.0031

    CO2 [Mg] 0.0001

    MINIMUM TANK VOLUMES H2O [m^3] 3.0769

    CH4 [m^3] 1.3887 CO2 [m^3] 1.5236

    REGOLITH [m^3] 68.3761

    TANK MASSES H2O [Mg] 2.1219

    CH4 [Mg] 1.2840 CO2 [Mg] 1.3548

    REGOLITH [Mg] 15.8720

    Regolith Tank

    Smaller tanks (H2O, CH4 & CO2)

    Shell

  • REFERENCES • “The Sabatier System: Producing Water on the Space Station”, NASA Space

    Station Research,

    http://www.nasa.gov/mission_pages/station/research/news/sabatier.html

    [retrieved 15 February 2016]

    • “Compact and Lightweight Sabatier Reactor for Carbon Dioxide Reduction”,

    NASA Marshall Space Flight Center,

    http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20120016419.pdf

    [retrieved 2 March 2016]

    • “Compact, Lightweight Adsorber and Sabatier Reactor for CO2 Capture and

    Reduction for Consumable and Propellant Production”, NASA Marshall Space

    Flight Center

    http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20120015003.pdf

    [retrieved 2 March 2016]

    • “Mars Return Fuel Production Using Table Top Electrolysis and Sabatier

    Reaction”, Colorado State University Space Research Symposium,

    http://spacegrant.colorado.edu/COSGC_Projects/symposium/2012/16_MARS

    _Return_Fuel_Production.pdf [retrieved 2 March 2016]

    72 Dayle Alexander

    http://www.nasa.gov/mission_pages/station/research/news/sabatier.htmlhttp://www.nasa.gov/mission_pages/station/research/news/sabatier.htmlhttp://www.nasa.gov/mission_pages/station/research/news/sabatier.htmlhttp://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20120016419.pdfhttp://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20120016419.pdfhttp://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20120016419.pdfhttp://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20120015003.pdfhttp://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20120015003.pdfhttp://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20120015003.pdfhttp://spacegrant.colorado.edu/COSGC_Projects/symposium/2012/16_MARS_Return_Fuel_Production.pdfhttp://spacegrant.colorado.edu/COSGC_Projects/symposium/2012/16_MARS_Return_Fuel_Production.pdfhttp://spacegrant.colorado.edu/COSGC_Projects/symposium/2012/16_MARS_Return_Fuel_Production.pdfhttp://spacegrant.colorado.edu/COSGC_Projects/symposium/2012/16_MARS_Return_Fuel_Production.pdf

  • BACKUP SLIDE 1

    – LAUNCH/LANDING

    73

    REASONING FOR REUSABLE LANDER LAUNCH/LANDING SITE AT FUEL DEPOT SITE

    • Need to transport fuels to a separate site: will waste time, rovers

    • Keeping the landers in a warmer site will cause boil off in the cryogens, which would

    require more fluids and more energy

    • Fuel depot site will be in between the mining site and base, not too far for rovers to

    travel

    Dayle Alexander

  • BACKUP SLIDE 2 – MATLAB CODE PG1

    74 Dayle Alexander

    % -MODEL FOR ISRU INFO- % AUTHOR: DAYLE ALEXANDER % LAST UPDATED: 3/2/2016 % ASSUMPTIONS: - 1 LAUNCH INCLUDES UP AND DOWN % - LUNAR SURFACE TO LUNAR ORBIT (DV 2200KM/S) % - WILL NEED TO LAUNCH FROM THE SURFACE MIN ONCE EVERY 2 % YEARS % - NEED 1 LAUNCH WORTH OF EMERGENCY FUEL IN HOLDING TANK % - USING 10 MG LANDER % - INERT MASS FRACTION OF 0.15 % - USING 6061AL WITH YIELD STRENGTH 40000PSI clear all; close all; % -CONSTANTS- % co2=0.0087; % [Mg] h2o=0.0071; % [Mg] ch4=0.0200; % [Mg] per_co2=0.0217; per_ch4=0.0065; per_h2o=0.03; p_ch4=14.402; % at 300 psi [kg/m^3]

    p_co2=43.822; % at 300 psi [kg/m^3] p_h2o=1000; % [kg/m^3] p_reg=1500; % [kg/m^3] h2o1=ch4/per_ch4; co21=h2o1*per_co2; m_reg=h2o1/per_h2o; v_ch4=ch4*1000/p_ch4; v_co2=co21*1000/p_co2; v_h2o=h2o1*1000/p_h2o; v_reg=m_reg*1000/p_reg; mch4=linspace(0,100,1000); th_1atm=101.35*2.55/(2*275790.28*0.85-0.2*101.35) th_press1=2000*0.023/(2*275790.28*0.85-0.2*2000) th_2atm=101.35*0.023/(2*275790.28*0.85-0.2*101.35) m_smallW=(4/3*pi*0.98^3-4/3*pi*0.91^3)*2700; m_smallM=(4/3*pi*0.77^3-4/3*pi*0.7^3)*2700; m_smallC=(4/3*pi*0.79^3-4/3*pi*0.72^3)*2700; m_large=(4/3*pi*2.62^3-4/3*pi*2.55^3)*2700;

    ISRU CODE PG1

  • BACKUP SLIDE 3 – MATLAB CODE PG2

    75

    ISRU CODE PG2

    Dayle Alexander

    fprintf(' MASSES REQUIRED PER DAY\n'); fprintf('--------------------------------------------------\n'); fprintf('-Mass of H2O Required [Mg] %.4f-\n',h2o); fprintf('-Mass of CH4 Required [Mg] %.4f-\n',ch4); fprintf('-Mass of CO2 Required [Mg] %.4f-\n',co2); fprintf('--------------------------------------------------\n'); fprintf(' MINIMUM MASSES PRODUCED PER DAY\n'); fprintf('--------------------------------------------------\n'); fprintf('-Mass of H2O Produced [Mg] %.4f-\n',h2o1); fprintf('-Mass of CH4 Produced [Mg] %.4f-\n',ch4); fprintf('-Mass of CO2 Produced [Mg] %.4f-\n',co21); fprintf('-Mass of Regolith Required [Mg] %.2f-\n',m_reg); fprintf('--------------------------------------------------\n'); fprintf(' EXCESSES PRODUCED PER DAY\n'); fprintf('--------------------------------------------------\n'); fprintf('-Mass of Excess H2O Produced [Mg] %.4f-\n',(h2o1-h2o)/1000); fprintf('-Mass of Excess CO2 Produced [Mg] %.4f-\n',(co21-co2)/1000); fprintf('--------------------------------------------------\n'); fprintf(' REQUIRED VOLUMES OF TANKS\n'); fprintf('--------------------------------------------------\n'); fprintf('-Volume of H2O Tank [m^3] %.4f-\n',v_h2o); fprintf('-Volume of CH4 Tank [m^3] %.4f-\n',v_ch4);

    fprintf('-Volume of CO2 Tank [m^3] %.4f-\n',v_co2); fprintf('-Volume of Regolith Tank [m^3] %.4f-\n',v_reg); fprintf('-Volume of Total ISRU [m^3] %.4f-\n',v_reg); fprintf('--------------------------------------------------\n'); fprintf(' TANK MATERIAL THICKNESS/MASSES\n'); fprintf('--------------------------------------------------\n'); fprintf('-Wall Thickness of H2O Tank [m] %.4f-\n',th_2atm+0.08); fprintf('-Wall Thickness of CH4 Tank [m] %.4f-\n',th_press1+0.08); fprintf('-Wall Thickness of CO2 Tank [m] %.4f-\n',th_press1+0.08); fprintf('-Wall Thickness of Regolith Tank [m] %.4f-\n',th_1atm+0.08); fprintf('-Mass of H2O Tank (Empty) [Mg] %.4f-\n',m_smallW/1000); fprintf('-Mass of CH4 Tank (Empty) [Mg] %.4f-\n',m_smallM/1000); fprintf('-Mass of CO2 Tank (Empty) [Mg] %.4f-\n',m_smallC/1000); fprintf('-Mass of Regolith Tank (Empty) [Mg] %.3f-\n',m_large/1000); fprintf('--------------------------------------------------\n');

  • BACKUP SLIDE 4 – MATLAB OUTPUT

    76 Dayle Alexander

    ISRU CODE OUTPUT

    MASSES REQUIRED PER DAY -------------------------------------------------- -Mass of H2O Required [Mg] 0.0071- -Mass of CH4 Required [Mg] 0.0200- -Mass of CO2 Required [Mg] 0.0087- -------------------------------------------------- MINIMUM MASSES PRODUCED PER DAY -------------------------------------------------- -Mass of H2O Produced [Mg] 3.0769- -Mass of CH4 Produced [Mg] 0.0200- -Mass of CO2 Produced [Mg] 0.0668- -Mass of Regolith Required [Mg] 102.56- -------------------------------------------------- EXCESSES PRODUCED PER DAY -------------------------------------------------- -Mass of Excess H2O Produced [Mg] 0.0031- -Mass of Excess CO2 Produced [Mg] 0.0001- -------------------------------------------------- REQUIRED VOLUMES OF TANKS -------------------------------------------------- -Volume of H2O Tank [m^3] 3.0769- -Volume of CH4 Tank [m^3] 1.3887- -Volume of CO2 Tank [m^3] 1.5236-

    -Volume of Regolith Tank [m^3] 68.3761- -Volume of Total ISRU [m^3] 68.3761- -------------------------------------------------- TANK MATERIAL THICKNESS/MASSES -------------------------------------------------- -Wall Thickness of H2O Tank [m] 0.0800- -Wall Thickness of CH4 Tank [m] 0.0801- -Wall Thickness of CO2 Tank [m] 0.0801- -Wall Thickness of Regolith Tank [m] 0.0806- -Mass of H2O Tank (Empty) [Mg] 2.1219- -Mass of CH4 Tank (Empty) [Mg] 1.2840- -Mass of CO2 Tank (Empty) [Mg] 1.3548- -Mass of Regolith Tank (Empty) [Mg] 15.872- --------------------------------------------------

  • BACKUP SLIDE 5 – MATLAB CODE PG1

    77

    % -MODEL FOR FUEL DEPOT INFO-

    % AUTHOR: DAYLE ALEXANDER

    % LAST UPDATED: 3/2/2016

    % ASSUMPTIONS: - 1 LAUNCH INCLUDES UP AND DOWN

    % - LUNAR SURFACE TO LUNAR ORBIT (DV 2200KM/S)

    % - WILL NEED TO LAUNCH FROM THE SURFACE MIN ONCE

    EVERY 2

    % YEARS

    % - NEED 1 LAUNCH WORTH OF EMERGENCY FUEL IN

    HOLDING TANK

    % - USING 10 MG LANDER

    % - CAN HARVEST 20 KG OF CH4 A DAY FROM ISRU

    % - INERT MASS FRACTION OF 0.15

    clear all; close all;

    % -CONSTANTS- %

    % GENERAL

    boiloff=0.1; % Boiloff rate for cryogens in space in %/day

    freq_l=1; % Frequency of launch (with 1 extra) [launch/year]

    days_y=365; % Number of days in a year [days]

    % DENSITIES

    p_gh2=0.0899; % Density of GH2 at 350C [kg/m^3]

    p_gh2o=575; % Density of GH2O at 350C [kg/m^3]

    p_gco2=1.977; % Density of GCO2 at 350C [kg/m^2]

    p_gch4=0.6797; % Density of GCH4 [kg/m^2]

    p_gox=1.35; % Density of GOX [kg/m^3]

    p_lox=1141; % Density of LOX [kg/m^3]

    p_lch4=421; % Density of LCH4 [kg/m^3]

    p_lh2o=1000; % Density of LH2O [kg/m^3]

    p_lco2=1101; % Density of LCO2 [kg/m^3]

    % MOLAR MASSES

    mm_h2=0.002; % Molar mass of H2 [kg/mol]

    mm_h2o=0.018; % Molar mass of H2O [kg/mol]

    mm_co2=0.044; % Molar mass of CO2 [kg/mol]

    mm_ch4=0.016; % Molar mass of CH4 [kg/mol]

    mm_o2=0.032; % Molar mass of O2[kg/mol]

    % METHANE ENGINE VALUES

    m_prop=10*2; % Mass of Propellants needed to launch 10 Mg lander [Mg]

    of=3.8; % O/F ratio for the Raptor engine

    m_lch4=m_prop/(of+1); % Mass of CH4 needed to launch 10Mg lander [Mg]

    m_lox=m_lch4*of; % Mass of O2 needed to launch [Mg]

    % -EQUATIONS- %

    % GENERAL

    mol_lch4=m_lch4*1000/mm_ch4; % Mols of CH4 required [mols]

    mol_lox=m_lox*1000/mm_o2; % Mols of LOX required [moles]

    % SABATIER PROCESS

    mol_h2_s=mol_lch4*4; % Mols of H2 required in Sabatier Process [mols]

    mol_h2o_s=mol_lch4*2; % Mols of H2O generated in Sabatier Process [mols]

    mol_co2=mol_lch4; % Mols of CO2 required [mols]

    m_h2_s=mol_h2_s*mm_h2; % Mass of H2 required in Sabatier Process [kg]

    m_h2o_s=mol_h2o_s*mm_h2o; % Mass of H2O generated in Sabatier

    Process[kg]

    m_co2=mol_co2*mm_co2; % Mass of CO2 required [kg]

    FUEL DEPOT PG1

    Dayle Alexander

  • BACKUP SLIDE 6 – MATLAB CODE PG2

    78

    % ELECTROLYSIS

    mol_h2o_e=mol_h2_s; % Moles of H2O required from electrolysis H2 [moles]

    mol_o2_e=mol_h2_s/2; % Moles of O2 generated from electrolysis [moles]

    m_h2o_e=(mol_h2o_e*mm_h2o)/1000; % Mass of H2O in electrolysis H2 [Mg]

    m_o2_e=mol_o2_e*mm_o2; % Mass of O2 generated from electrolysis [kg]

    % -RESULTS- %

    % HOLDING TANK VOLUMES

    v_lox=(m_lox*1000)/p_lox; % Min volume of LOX needed [m^3]

    v_ch4=(m_lch4*1000)/p_lch4; % Min volume of LCH4 needed [m^3]

    excess_lox=m_o2_e-m_lox; % Extra O2 generated [kg]

    excess_h2o=m_h2o_s-m_h2o_e*1000; % Extra H2O generated [kg]

    % GENERATION RATES

    days_ch4=180; % Number of days given to make required propellants [days]

    ch4h_perday=20; % Mass of CH4 provided from ISRU per day [kg/day]

    ch4g_perday=m_lch4*1000/days_ch4-ch4h_perday; % Mass of CH4 required per day [kg/day]

    co2r_perday=(ch4g_perday/mm_ch4)*1*mm_co2; % Mass of CO2 required per day [kg/day]

    h2r_perday=(ch4g_perday/mm_ch4)*4*mm_h2; % Mass of H2 required per day [kg/day]

    h2ogs_perday=(ch4g_perday/mm_ch4)*2*mm_h2o; % Mass of H2O generated in Sabatier per day [kg/day]

    h2ore_perday=(h2r_perday/mm_h2)*1*mm_h2o; % Mass of H2O required in electrolysis per day [kg/day]

    h2or_perday=h2ore_perday-h2ogs_perday; % Mass of H2O required from the ISRU per day [kg/day]

    o2g_perday=(h2r_perday/mm_h2)*0.5*mm_o2; % Mass of O2 generated per day [kg/day]

    % ISRU TANK VOLUMES

    vh_ch4=ch4g_perday/14.402; % Volume of gas CH4 tank from ISRU [m^3]

    vh_h2o=h2ore_perday/p_lh2o; % Volume of liquid H2O tank from ISRU [m^3]

    vh_co2=co2r_perday/43.822; % Volume of gas CO2 tank from ISRU [m^3]

    % SABATIER REACTOR SIZING

    h2o_perhour=h2ogs_perday/24; % H2O required per hour [kg/hr]

    h2o_refrate=0.01/1.34*3; % H2O generated in experimental reactor [kg/hr]

    hrs_h2o=h2o_perhour/h2o_refrate; % Hours to make required H2O[hr]

    vh_refsize=18*18*18*0.0254^3; % Size of experimental reactor [m^3]

    vh_size=vh_refsize*3; % Size needed for our reactor [m^3]

    vh_rt=h2r_perday/p_gh2+co2r_perday/p_gco2; % Volume of Sabatier reactor [m^3]

    % % PRINT RESULTS

    fprintf(' MASS/VOLUME PER LAUNCH\n');

    fprintf('--------------------------------------------------\n');

    fprintf('-Mass of Methane Required [Mg] %.0f -\n',m_lch4);

    fprintf('-Volume of Methane Holding Tank [m^3] %.0f-\n',v_ch4*2);

    fprintf('--------------------------------------------------\n');

    fprintf('-Mass of LOX Required [Mg] %.0f-\n',m_lox);

    fprintf('-Volume of LOX Holding Tank [m^3] %.0f-\n',v_lox*2);

    fprintf('--------------------------------------------------\n');

    fprintf(' RAW MATERIALS REQUIRED/GENERATED\n');

    fprintf('--------------------------------------------------\n');

    fprintf('-Mass of H2O Required [Mg] %.0f-\n',m_h2o_e);

    fprintf('-Mass of CO2 Required [Mg] %.0f-\n',m_co2/1000);

    fprintf('--------------------------------------------------\n');

    fprintf('-Mass of Excess LOX Generated [Mg] %.0f-\n',excess_lox/1000);

    fprintf('--------------------------------------------------\n');

    fprintf(' VOLUME OF RAW MATERIAL TANKS\n');

    fprintf('--------------------------------------------------\n');

    fprintf('-Volume of GCH4 Tank (300psi) [m^3] %.4f-\n',vh_ch4);

    fprintf('-Volume of LH2O Tank [m^3] %.4f-\n',vh_h2o);

    fprintf('-Volume of GCO2 Tank (300psi) [m^3] %.4f-\n',vh_co2);

    fprintf('--------------------------------------------------\n');

    fprintf(' ISRU REQUIREMENTS PER DAY\n');

    fprintf('--------------------------------------------------\n');

    fprintf('-Mass of Gas CH4 Required [Mg/day] %.4f-\n',ch4h_perday/1000);

    fprintf('-Mass of Liquid H2O Required [Mg/day] %.4f-\n',h2or_perday/1000);

    fprintf('-Mass of Gas CO2 Required [Mg/day] %.4f-\n',co2r_perday/1000);

    fprintf('--------------------------------------------------\n');

    fprintf(' POWER REQUIREMENTS\n');

    fprintf('--------------------------------------------------\n');

    fprintf('-Gas CH4 Heated/Kept at 6.85C [m^3] %.4f-\n',vh_ch4);

    fprintf('-Liquid H2O Heated/Kept at 6.85C [m^3] %.4f-\n',vh_h2o);

    fprintf('-Gas CO2 Heated/Kept at 6.85C [m^3] %.4f-\n',vh_co2);

    fprintf('-Gas H2 and CO2 Heated to 350C in RT [m^3] %.4f-\n',vh_size);

    fprintf('-Reactants tank kept at 350C for [hrs/day] %.3f-\n',hrs_h2o);

    fprintf('-Liquid CH4 Heated/Kept at -178.15C [m^3] %.3f-\n',v_ch4*2);

    fprintf('-Liquid O2 Heated/Kept at -183.15C [m^3] %.3f-\n',v_lox*2);

    fprintf('-Current to process ? water in 1 day [kg] %.3f-\n',h2ore_perday);

    fprintf('--------------------------------------------------\n');

    fprintf('-*RT: Reaction Tank: Sabatier process tank where -\n- CO2 and H2 react -\n');

    fprintf('-*Cold temps are heated due to -233.15C temp of -\n- PSR (Permanently Shadowed Reigon)

    -\n');

    fprintf('--------------------------------------------------\n');

    FUEL DEPOT CODE PG2

    Dayle Alexander

  • BACKUP SLIDE 7 – CODE OUTPUT

    79

    FUEL DEPOT CODE OUTPUT

    MASS/VOLUME PER LAUNCH -------------------------------------------------- -Mass of Methane Required [Mg] 4 - -Volume of Methane Holding Tank [m^3] 20- -------------------------------------------------- -Mass of LOX Required [Mg] 16- -Volume of LOX Holding Tank [m^3] 28- -------------------------------------------------- RAW MATERIALS REQUIRED/GENERATED -------------------------------------------------- -Mass of H2O Required [Mg] 19- -Mass of CO2 Required [Mg] 11- -------------------------------------------------- -Mass of Excess LOX Generated [Mg] 17- -------------------------------------------------- VOLUME OF RAW MATERIAL TANKS -------------------------------------------------- -Volume of GCH4 Tank (300psi) [m^3] 0.2186- -Volume of LH2O Tank [m^3] 0.0142- -Volume of GCO2 Tank (300psi) [m^3] 0.1976- -------------------------------------------------- ISRU REQUIREMENTS PER DAY

    -------------------------------------------------- -Mass of Gas CH4 Required [Mg/day] 0.0200- -Mass of Liquid H2O Required [Mg/day] 0.0071- -Mass of Gas CO2 Required [Mg/day] 0.0087- -------------------------------------------------- POWER REQUIREMENTS -------------------------------------------------- -Gas CH4 Heated/Kept at 6.85C [m^3] 0.2186- -Liquid H2O Heated/Kept at 6.85C [m^3] 0.0142- -Gas CO2 Heated/Kept at 6.85C [m^3] 0.1976- -Gas H2 and CO2 Heated to 350C in RT [m^3] 0.2867- -Reactants tank kept at 350C for [hrs/day] 13.183- -Liquid CH4 Heated/Kept at -178.15C [m^3] 19.794- -Liquid O2 Heated/Kept at -183.15C [m^3] 27.753- -Current to process ? water in 1 day [kg] 14.167- -------------------------------------------------- -*RT: Reaction Tank: Sabatier process tank where - - CO2 and H2 react - -*Cold temps are heated due to -233.15C temp of - - PSR (Permanently Shadowed Region) - --------------------------------------------------

    Dayle Alexander

  • BACKUP SLIDE 8 – COMPONENTS LIST

    80

    COMPONENTS LIST OF THE FUEL DEPOT, UPDATED FROM LAST PRESENTATION

    COMPONENTS LIST

    COMPONENT REQUIRED TEMP

    [°C] REQUIRED

    VOLUME [m^3] REQUIRED

    PRESSURE [atm/psi] INLET FLUIDS EXIT FLUIDS LH2O Tank 6.85 0.014 1/14.7 LH2O (From ISRU) GH2, GO2 GCO2 Tank 6.85 0.198 20/300 GCO2 (From ISRU) GCO2 GCH4 Tank 6.85 0.219 20/300 GCH4 (From ISRU) GCH4

    Reactants Tank 350/100 0.287 1/14.7 GH2,GCO2 LH2O,GCH4 O2 Heat

    Exchanger -233.15 (no

    insulation/heat) ? 1/14.7 GO2 LOX CH4 Heat Exchanger

    -233.15 (no insulation/heat) ? 1/14.7 GCH4 LCH4

    LOX Storage Tank -183.15 28 1/14.7 LOX LOX (To lander)

    LCH4 Storage Tank -178.15 20 1/14.7 LCH4

    LCH4 (To lander)

    Dayle Alexander

  • BACKUP SLIDE 9 – FD REQUIREMENTS

    81

    REQUIREMENTS OF THE FUEL DEPOT, UPDATED FROM LAST PRESENTATION

    Dayle Alexander

    ISRU REQUIREMENTS PER DAY [Mg]

    Liquid Water 0.0071

    Gas Methane 0.0200

    Gas Carbon Dioxide 0.0087

    PROPELLANT REQUIREMENTS (PER LAUNCH) MASSES [Mg]

    CH4 4 LOX 16

    STORAGE TANK VOLUMES [m^3]

    CH4 20 LOX 28

    POWER REQUIREMENTS

    SABATIER PROCESS [m^3]

    Reaction tank (350/100C) 0.287

    ELECTROLYSIS [Mg]

    Water to process per day 0.0141

    STORAGE [m^3]

    Methane storage (-178.15C) 20

    LOX storage (-183.15C) 28

  • BACKUP SLIDE 10 – FD FLUID DIAGRAM

    82

    FUEL DEPOT FLUIDS DIAGRAM, UPDATED FROM LAST PRESENTATION

    Dayle Alexander

    Changes from this diagram • 21C now 6.85C • LOX Storage now -183.15C • Methane Storage now -178.15C

  • STRUCTURES ROBERT WHITE

    Cargo Lander

  • CARGO LANDER DESIGN ITERATION 1: MAX INERT MASS POINT

    Objective: Design a 20 Mg lander for the moon that can be launched with its cargo within

    the SLS Fairing and be sent to the moon by the EUS.

    • Payload Mass: 20 Mg

    • Maximum Initial Mass: 45 Mg

    • RL10B-2 Engine

    • ISP: 462s

    • O/F: 5.88

    • Inert Mass: 277 Kg

    • Delta-V for Landing: 3 km/s

    • SLS 8.4 Meter Payload Fairing

    • Must launch attached to HAB

    Above: HAB and Lander in SLS Fairing

  • CARGO LANDER DESIGN ITERATION 1: MAX INERT MASS POINT

    • Inert Mass: 3.2 Mg

    • Propellant Mass: 21.8 Mg

    • Propellant Volume: 75 m^3

    • 8 meters tall in landing Configuration

    • 6 meters tall in compact Configuration

    • HABs remain 10 meters tall and 7.4

    meters in diameter

    • First Iteration of Design, further

    iterations will reduce mass

    Mass: 25 Mg Wet Lander + 20 Mg Cargo

    Power:

    Volume: SLS 8.4 meter Payload Fairing

    Recommendation:

    Below: Landing Configuration

  • BACKUP SLIDES NOTES ABOUT THE DESIGN PROCESS

    Design was done at the maximum

    allowable inert mass and propellant mass

    for the allowable Initial mass. The mass

    fraction comes out to 1.93. from historical

    examination the Apollo lander had a mass

    ratio of 1.8. Since we are operating with

    more powerful engines and lighter

    materials reducing the mass in further

    iterations under a more detailed analyses

    is very likely. The design started at this

    point since this was the maximum mass

    fraction that would allow the mission to

    succeed. By making sure a design would

    satisfy the greatest possible volumetric

    requirements further iterations where the

    mass decreases are guaranteed to fit

    within the SLS fairing

  • BACKUP SLIDES EXTRA NUMBERS

    • Not pictured are struts connecting to the legs at indicated point

    • After landing the engine and legs can both retract again bringing the height down to 6 meters from the bottom of the legs to the top of the lander

    • Fuel tank uses a common wall between LOX and LH to reduce volume.

    • Volume LOX: 20 m^3

    • Volume LH: 55 m^3

    • Landing Legs each support 5800 kg

    • Assume 1g force to account for extra stress during landing impact

    • 56,833 Newton per leg

    • Thickness of 10 cm as determined by Buckling of legs at 5.5 meters long (Distance to connecting strut not shown)

    LH

    LOX

  • BACKUP SLIDES CODE AND EXTRA PICTURES

    %Standard Rocket Design Space

    clc

    clear

    close all

    %Design Space Inputs

    m_0_max = 45000;

    m_pay = 20000;

    Delta_V = 3000;

    Isp = 462;

    %Constants

    g_0 = 9.8;

    %Design Space Limit Points

    Inert_min = 0;

    Inert_max = 0;

    Inert_mid = m_0_max./(exp(Delta_V./(Isp.*g_0))) - m_pay;

    Prop_min = m_pay.*(exp(Delta_V./(Isp.*g_0))-1);

    Prop_max = m_0_max - m_pay;

    Prop_mid = m_0_max - m_pay - Inert_mid;

    %Inert Mass

    %Graph by using m_prop

    Prop = Prop_min:1:Prop_max;

    %Indepedent

    M_engine = 277 + 0*Prop;

    M_coms = 0;

    M_power = 0;

    M_controls = 0;

    %m_prop Dependent

    m_ox = (5.88./6.88).*Prop;

    m_hy = (1./6.88).*Prop;

    [m_ox_tank,r_ox] = sphere_tank(m_ox,1141,3*g_0,.1013*10^6);

    [m_hy_tank,r_hy] = sphere_tank(m_hy,70,3*g_0,.1013*10^6);

    M_tank = m_ox_tank + m_hy_tank;

    %m_inert Dependent

    %Inert Mass

    M = M_engine + M_tank;

    figure(1)

    plot([Inert_min,Inert_mid,Inert_max,Inert_min],...

    [Prop_min,Prop_mid,Prop_max,Prop_min],...

    M,Prop)

    axis equal

    xlabel('Inert Mass [kg]')

    ylabel('Propellant Mass [kg]')

    figure(2)

    inert_mass = Inert_min:1:Inert_mid;

    prop_mass = m_0_max - m_pay - inert_mass;

    f_inert = inert_mass./(prop_mass + inert_mass);

    plot(inert_mass,f_inert)

    MR = (Inert_mid + m_pay + Prop_mid)/(Inert_mid + m_pay)

    function [m,r]=sphere_tank(m_prop,d_prop,g_max,P_vapor)

    S = 200*10^6; %Maximum Allowable Stress of Tank Structural Material

    d_s = 2700; %Density of Tank Structural Material

    P_ext = 0; %External Atmospheric Pressure

    U = 5/100; %Ullage Percentage

    T = 0; %Trapped Volume

    B = 0; %Boiled Off Volume

    e_w = 100/100; %Weld Efficiency Percentage

    v_prop = m_prop./d_prop;

    V = v_prop + T + B + U.*v_prop;

    %Spherical Tank

    r = (3.*V./(4.*pi)).^(1/3);

    H = 2.*r;

    P = d_prop.*g_max.*H + P_vapor - P_ext;

    t_s = P.*r./(2.*S.*e_w);

    A_s = 4.*pi.*r.^2;

    m = A_s.*t_s.*d_s;

    end

  • BACKUP SLIDES REFERENCES

    • http://www.astronautix.com/engines/rl10b2.htm

    • https://www.nasa.gov/sites/default/files/files/NAC-July2014-Hill-Creech-Final.pdf

    http://www.astronautix.com/engines/rl10b2.htmhttp://www.astronautix.com/engines/rl10b2.htmhttps://www.nasa.gov/sites/default/files/files/NAC-July2014-Hill-Creech-Final.pdfhttps://www.nasa.gov/sites/default/files/files/NAC-July2014-Hill-Creech-Final.pdfhttps://www.nasa.gov/sites/default/files/files/NAC-July2014-Hill-Creech-Final.pdfhttps://www.nasa.gov/sites/default/files/files/NAC-July2014-Hill-Creech-Final.pdfhttps://www.nasa.gov/sites/default/files/files/NAC-July2014-Hill-Creech-Final.pdfhttps://www.nasa.gov/sites/default/files/files/NAC-July2014-Hill-Creech-Final.pdfhttps://www.nasa.gov/sites/default/files/files/NAC-July2014-Hill-Creech-Final.pdfhttps://www.nasa.gov/sites/default/files/files/NAC-July2014-Hill-Creech-Final.pdfhttps://www.nasa.gov/sites/default/files/files/NAC-July2014-Hill-Creech-Final.pdfhttps://www.nasa.gov/sites/default/files/files/NAC-July2014-Hill-Creech-Final.pdf

  • PROPULSION ZACHARY RADY

    Crewed Ferry Methalox Engine

    90

  • CREWED FERRY ENGINE

    Objective: Update Mass/Volume Numbers for Lower G’s/Smaller Engine

    Reasoning: Propulsion Mass/Volume Numbers for Crewed Ferry

    91 Zachary Rady

    ISP 389.9 s

    Expansion Ratio 136

    Throat Size 12 in

    O/F Ratio 3.6

    Initial Throttle Levels: 70%-100% Based on Merlin 1D

  • CREWED FERRY PROP MASS/VOLUME

    IMLEO: 30.163 Mg - For filling Propellant Tanks to 50% Capacity for single Landing

    Total Volume: 72.513 m3

    92 Zachary Rady

    Crewed Ferry Lander Propulsion Stats Initial Mass 47.930 Mg Payload Mass 10.000 Mg Intert Mass 2.397 Mg Methane Mass 27.809 Mg LOX Mass 7.725 Mg Methane Volume 65.743 m^3 LOX Volume 6.770 m^3 Required Thrust 292.218 kN Required Engines 3 Required deltaV 5.171 km/s Initial G Force 0.1704 G's Final G Force 0.6381 G's Propellent Mass 35.534 Mg

    based on code by Alexander Burton, Hakusho Chin, Zachary Rady, Andrew Cull

  • BACKUP SLIDE 1

    93 Zachary Rady

    NASA CEA Outputs AR=136 O/F 3.5 3.6 3.7 3.8 3.9 4 4.1 4.2 ISPvac [m/s] 3820.7 3823.7 3823 3818 3807.6 3791 3770.9 3749.4 CSTAR [m/s] 1838.1 1829.5 1820.6 1811.6 1802.5 1793.4 1784.4 1775.5 CF 2.0029 2.0111 2.0173 2.0211 2.0219 2.0219 2.022 2.0218

    5 Mg Crewed Capsule Payload Option Initial Mass 23.877 Mg Payload Mass 5.000 Mg Intert Mass 1.194 Mg Methane Mass 13.839 Mg LOX Mass 3.844 Mg Methane Volume 32.717 m^3 LOX Volume 3.369 m^3

    Required Thrust 292.218 kN Required Engines 3 Required deltaV 5.160 km/s

    Initial G Force 0.9747 G's Final G Force 1.4405 G's Propellent Mass 35.534 Mg

    Future Work • Look at Expandable Nozzle as

    possibility to reduce nozzle length • Work with Structures on refining

    design for Landing Strut Compatibility and fitting overall structure in Payload Faring for initial Launch

    • More in depth analysis for Throttling capability

  • BACKUP SLIDE 2

    94 Zachary Rady

    Dimensions in m

  • REFERENCES

    95

    "Merlin (Rocket Engine Family)." Wikipedia. Wikimedia Foundation, n.d. Web. 10 Feb. 2016. Sutton, G. P., & Oscar, B. (2010). Rocket Propulsion Elements. John Wiley & Sons Inc. Cengel, Y. A., Cimbala, J. M., & Turner, R. H. (2012). Fundimentals of Thermal-Fluid Sciences. McGraw Hill. Bergin, C. (2013, March 20). Falcon 9 boost as Merlin 1D engine achieves major milestone. Retrieved from nasaspaceflight.com: http://www.nasaspaceflight.com/2013/03/falcon-9-boost-merlin-1d-engine-achieves-milestone/

    Zachary Rady

  • PROPULSION ANDREW CULL

    XM Module ACS Thruster

    96 Andrew Cull

  • ACS THRUSTERS ENGINE & PROPELLANT SELECTION Objective: Propellant & Engine Selection, Determine # and placement of ACS thrusters

    Reasoning: Need attitude control for XM Modules

    Assumptions

    • ΔV = 100 m/s/year

    • XM Module weight = 20 tons

    • 20 year life span of BA330

    Requirements

    • Ability to pulse

    • Quick start up

    • High ISP

    • 6 DOF control

    Propellant/Engine Selection

    • MR-107 (220 N)

    • Monopropellant Hydrazine

    • Catalyst S405/LCH-202

    • ISP = 229 sec

    97 Andrew Cull

  • ACS THRUSTERS THRUSTER PLACEMENT AND # OF THRUSTERS Need

    • 12 Thrusters to satisfy 6 DOF

    Recommend

    • 16 Thrusters in clusters of 4

    • 90 Degrees between clusters

    98 Andrew Cull

    System Parameters – 20 years

    Propellant Mass 18 – 28 Mg

    Inert Mass 20.01 Mg

    Power 552 W

    Propellant Volume 17 – 28 m3

    Resupply after 10 years Propellant Mass = 11.23 Mg Propellant Volume = 11 m3

  • BACK UP SLIDE 01 REFUELING INTERVAL

    99 Andrew Cull

    Recommend refueling ACS Thruster tank once every 10 years. This will only add 11.2 Mg of Fuel to the initial vehicle with a tank volume of 11 m3. Will need to adjust a mission’s cargo to replace needed fuel.

  • BACK UP SLIDE 02

    100

    VOLUME OF HYDRAZINE

    Andrew Cull

  • MATLAB CODE % ACS Thruster Code

    % Primary use: XM Modules

    % Andrew Cull

    clear;clc;

    %Constants

    g0 = 9.80665; %m/s^2

    rho_N2H2 = 1021; %kg/m^3

    yearsOperationmax = 20;

    %Memory Allocation

    mp = zeros(1,yearsOperationmax);

    N2H2w = zeros(1,yearsOperationmax);

    %Define Requirements:

    dV = 100; %m/s/year

    mpay = 20e3; %kg

    numThrusters = 16; %Need 12 for 6 DOF control

    %Engine Selection

    %MR-107 (220 N)

    %Properties

    Wt = 1.01; %kg/thruster

    ISP = 229; %s

    totalWt = Wt*numThrusters; %kg

    %Rocket Equation for 1 year of thrust

    c = g0*ISP; %effective exhaust velocity

    MR = exp(-dV/c); %mass ratio

    mf = mpay+totalWt; %final mass

    %Calculate Mass of Hydrazine needed without refueling

    for year = 1:1:yearsOperationmax

    MR = exp(-dV*year/c);

    syms mprop;

    mp(year) = double(solve(MR==mf/(mf+mprop)));

    end

    yearOperation = 1:1:yearsOperationmax;

    plot(yearOperation,mp/1000)

    title('Mass of Hydrazine needed for # Years w/o Refueling','FontSize',17)

    xlabel('Years of Continuous Operation [years]','FontSize',18)

    ylabel('Mass Hydrazine [Mg]','FontSize',18)

    %Calculate Total Mass of Hydrazine needed as function of refuel interval

    for refueltime = 1:1:yearsOperationmax

    N2H2w(refueltime) = mp(refueltime)*(yearsOperationmax)/refueltime;

    end

    refueltime = 1:1:yearsOperationmax;

    figure(2)

    plot(refueltime,N2H2w/1000)

    title('Total Mass of Hydrazine Needed vs Refueling Interval','FontSize',18)

    xlabel('Refuel Interval [year]','FontSize',18)

    ylabel('Total Mass of Hydrazine [Mg]','FontSize',18)

    VolContinuous = mp/rho_N2H2;

    Volrefuel = N2H2w/rho_N2H2;

    figure(3)

    plot(yearOperation,VolContinuous)

    title('Volume of Hydrazine needed for # years w/o Refueling','FontSize',18)

    xlabel('Years of Continuous Operation [years]','FontSize',18)

    ylabel('Volume Hydrazine [m^3]','FontSize',18)

    figure(4)

    plot(refueltime,Volrefuel)

    title('Volume of Hydrazine Needed vs Refueling Interval','FontSize',18)

    xlabel('Refuel Interval [year]','FontSize',18)

    ylabel('Total Volume of Hydrazine','FontSize',18)

    101 Andrew Cull

  • REFERENCES

    102

    "Hydrazine." Wikipedia. Wikimedia Foundation, n.d. Web. 20 Feb. 2016.

    .

    Monopropellant Data Sheets. Redmond, WA: Aerojet, 24 Apr. 2006. PDF.

    Andrew Cull

  • HUMAN FACTORS KATE FOWEE

    Crew Selection

    Radiation Shielding – Dose, Budget

    Life support systems

    Pressurized Rover

  • CREW SELECTION Objective: Describe the selection criteria and psychological considerations for