49
School of Mechanical and Aerospace Engineering Ashby Building Stranmillis Road Belfast BT9 5AH Mechanical and Aerospace Engineering Project 3 Report MEE3030 Design and Fabrication of Coil Spring for Soft Actuator Application by Shape Memory NiTi Alloy Author M Gibson [40061742] Project supervisor Dr CW Chan Programme BEng Mechanical Engineering Date 4 April 2014

Project 3B Final

Embed Size (px)

Citation preview

Page 1: Project 3B Final

  School  of    Mechanical  and     Aerospace     Engineering     Ashby  Building     Stranmillis  Road     Belfast     BT9  5AH              

Mechanical  and  Aerospace  Engineering  

 Project  3  Report  

MEE3030          

Design  and  Fabrication  of  Coil  Spring  for  Soft  Actuator  Application  by  

Shape  Memory  NiTi  Alloy  

                   

  Author   M  Gibson  [40061742]     Project  supervisor   Dr  CW  Chan     Programme   BEng  Mechanical  Engineering     Date   4  April  2014        

Page 2: Project 3B Final

   ii  

 Abstract  

 

This   investigation   looked   at   the   material   NiTi   and   how   it   utilises   special   capabilities   with  

Superelasticity  and  the  Shape  Memory  Effect.  Understanding  how  the  material  behaves   to  

certain  external  manipulation  allows   the  material   to  be   tailored   to   carry  out   specific   tasks  

due  to  its  ‘smart’  nature.  It  is  a  very  important  field  of  study  as  NiTi  offers  a  broad  range  of  

applications.   One   of   the   biggest   areas   NiTi   is   used   in   is   the   medical   industry.   This  

investigation   looks  at  optimising  NiTi   to  be  used  as  an  actuator   in  a  soft   robot  application.  

Experimentation   was   carried   out   on   the   NiTi   to   gain   more   of   an   understanding   into   the  

material.  This   involved  various  heat  treatments  of  the  material.   In  order  to  understand  the  

effect  of  the  heat  treatment,  mechanical  testing  was  carried  out  to  assess  the  effect  on  the  

structure  of  the  material.  This  involved  tensile  to  fracture  tests  as  well  as  cyclic  tensile  tests  

to  assess  the  fatigue  of  the  material.  Analysis  using  a  Differential  Scanning  Calorimeter  was  

also   carried   out.   This   was   used   to   assess   the   effect   the   heat   treatment   had   on   the  

transformation  temperature  of  the  material.  This   is  was  an   important  step  as   it   is  a  critical  

factor  in  utilising  the  materials  Shape  Memory  Effect.  After  gaining  a  further  understanding  

from  the  experimentation,  a  coil  prototype  was  manufactured,  and  a  CAD  model  of  the  coil  

designed.   The  experimentation  on   the  NiTi   found   that   the  heat   treatment  has  predictable  

and   profound   effects   on   the  material.   The   appearance   and   characteristics   of   the  material  

vary   considerably   depending   on   the   temperature   of   heat   treatment.   The   balance   of  

martensite   to  austenite  structure  and   its   transformation   temperature  can  be  altered  using  

precise   heat   treatment   ranges.   This   allows   the   material   to   be   tailor-­‐made   to   a   specific  

application.   The   prototype   showed   that   the   wire   could   easily   be   drawn   into   a   coil   spring  

shape,  and  the  coil  behaves  in  a  suitable  manner  to  be  used  as  an  actuator.  

   

Page 3: Project 3B Final

   iii  

Table  of  Contents  

 

Abstract………………………………………………………………………………………….   ii  

Table  of  Contents…………………………………………………………………………...   iii  

List  of  Figures………………………………………………………………………………….   v  

List  of  Tables…………………………………………………………………………………..   vii  

Nomenclature…………………………………………………………………………………   viii  

 

Chapter  1.  Introduction…………………………………………………………………....   1  

 

1.1.   Introduction  to  NiTi……………………………………………………………..   1    

1.2.   Project  Objectives……………………………………………………………....   1  

1.3.   Previous  Studies……………………….................................………….   2  

 

Chapter  2.  Literature  Review……………………………………………………………   3  

 

2.1.   The  Shape  Memory  Effect  and  Superelasticity…………………….   3  

2.2.   NiTi……………..  ……………………………………………………………………..   4  

2.3.   Heat  Treatment  of  NiTi………………………………………………………..   5  

2.4.   Existing  applications  of  NiTi  under  SME……………………………….   6  

 

Chapter  3.  Methodology…………………………………………………………………...   7  

 

3.1.   Experimental  Design  and  Procedure……………………………………..   7  

3.1.1.   Heat  Treatment…………………………………………………………………….   7  

3.1.2.   Mechanical  Testing……………………………………………………………….   7  

3.1.3   Differential  Scanning  Calorimeter  (DSC)………………………………..   8  

3.1.4   Coil  spring  prototype…………………………………………………………….   8  

 

Chapter  4.  Results  and  Calculations…………………………………………………..   9  

 

4.1.   Experimental  Observations…………………………………………………..   9  

4.1.1   Heat  Treatment…………………………………………………………………….   9  

4.1.2   Mechanical  Testing……………………………………………………………….   11  

Page 4: Project 3B Final

   iv  

4.1.3   Differential  Scanning  Calorimeter…………………………………………   11  

4.2   Experimental  Results……………………………………………..…………….     13  

4.2.1   Mechanical  Testing……………………………………………..………….......   13  

4.2.2   Differential  Scanning  Calorimeter  (DSC)…………………………….   16  

4.3   Fabrication  of  Coil  spring  prototype…………………………………..   20  

4.4   Analysis  of  prototype…………………………………………………………   21  

4.5   CAD  model  of  coil………………………………………………………………   24  

 

Chapter  5.  Discussion…………………………………………………….……………..   26  

 

5.1     Mechanical  Testing…………………………………………………………..   26  

5.1.1   Tensile  fracture  test…………………………………………………………   26  

5.1.2   Tensile  cyclic  test……………………………………………………………..   26  

5.1.3   Differential  Scanning  Calorimeter…………………………………….   28  

5.2   Limitations  of  project……………………………………………………….   31  

 

Chapter  6.  Conclusions  and  Recommendations…………………………….   32  

 

References……………………………………………………………………………………   34  

Appendix  A.  Calculating  performance  of  prototype.…………………….   35  

Appendix  B.  CAD  Simulation…………………….…………………………………..   37  

Appendix  C.  Project  Planning  &  Time  Management……………………..   39  

 

   

 

   

Page 5: Project 3B Final

   v  

List  of  Figures  

 

Fig   2.1   Illustration   of   transformation   paths   between   austenite   and   martensite  

transformation.  [6]  

Fig  2.2  Showing  stress/strain  curves  graphs  for  SME  and  SE  transformations.  Taken  from  [1]  

Figure  2.3  Temperature  dependence  on  the  elongation  of  NiTi  alloy.  [5]  

Fig  2.4.  Growth  of  grain  size  due  to  heat  treatment.  [11]  

Fig  4.1  Untreated  NiTi  

Fig  4.2  300  °C  H-­‐T  NiTi  sample  

Fig  4.3  350  °C  H-­‐T  sample  

Fig  4.4  400  °C  H-­‐T  sample  

Fig  4.5  Load-­‐deflection  curves  to  failure  for  the  samples  under  a  tensile  test.  

Fig.   4.6   Shows   the   samples   at   the   ‘plateau’   where   they   are   undergoing   a   phase  

transformation  due  to  stress  loading.  

Fig  4.7  Cyclic  tensile  testing  of  untreated  sample  of  NiTi  

Fig  4.8  Cyclic  tensile  testing  of  300  °C  H-­‐T  NiTi  

Fig  4.9  Cyclic  tensile  testing  of  400  °C  H-­‐T  NiTi  

Fig  4.10  Summary  table  of  NiTi  Transformation  temperatures  

Fig.  4.11  Heat  flow  against  temperature  graph  for  untreated  NiTi  

Fig  4.12  Phase  transformation  under  heating  for  untreated  alloy.  

Fig  4.13  Phase  transformation  under  cooling  for  untreated  alloy.    

Fig.  4.14  Heat  flow  against  temperature  graph  for  300  °C  H-­‐T  NiTi  

Fig.  4.15  Phase  transformation  under  heating  for  300  °C  H-­‐T  NiTi  

Fig.  4.16  Phase  transformation  during  cooling  for  300  C  H-­‐T  NiTi  

Fig  4.17  Heat  flow  against  temperature  graph  for  350  °C  H-­‐T  NiTi  

Fig  4.18  Phase  transformation  under  heating  for  350  °C  H-­‐T  NiTi  

Fig  4.19  Phase  transformation  under  cooling  for  350  °C  H-­‐T  NiTi  

Fig  4.20  Heat  flow  against  temperature  graph  for  400  °C  H-­‐T  NiTi  

Fig  4.21  Phase  transformation  under  heating  for  400  °C  H-­‐T  NiTi  

Fig  4.22  Phase  transformation  under  cooling  for  400  °C  H-­‐T  NiTi  

Fig  4.23  Coil  setup  before  H-­‐T    

Fig  4.24  Coil  setup  after  H-­‐T  

Fig  4.25  NiTi  coil  in  incoherent  martensite  form.  Room  temperature  and  no  load.  

Fig  4.26  NiTi  coil  in  coherent  martensite  form  Room  temperature  and  after  a  stress  loading.  

Page 6: Project 3B Final

   vi  

Fig  4.27  NiTi  coil  in  austenite  form  after  heating  

Fig  4.28  450  °C  H-­‐T  coil  &  400  °C  H-­‐T  coil  at  room  temperature  

Fig  4.29  SMA  compression  spring  actuation  [13]  

Fig  4.30  extension  spring  actuation  [13]  

Fig  4.31  CAD  model  of  the  coil  in  High  temperature  austenite  phase  

Fig  4.32  CAD  model  of  the  coil   in  the   incoherent  martensite  form  (  room  temperature  free  

state)  

Fig  4.33  CAD  coil  in  the  Coherent  martensite  form  after  stress  loading.  

Fig  4.34  shows  the  relationship  between  the  three  phases.  [16]  

Fig  5.1  Extension  against  temperature  schematic.  Detailing  Mf,  Ms,  As,  Af  and  hysteresis  (h).  

[13]  

Fig  B.1  Stress  distribution  in  coil  under  100N  tensile  load.  

Fig  B.2  Extension  of  coil  under  100N  tensile  load.  

Fig  C.1  Work  chart  showing  planned  schedule  against  actual  schedule.  

 

   

Page 7: Project 3B Final

   vii  

List  of  Tables    Table  3.1  shows  a  summary  of  the  progression  of  objectives  throughout  the  project.  

 

Table  4.1  Summary  table  of  tensile  to  failure  tests  

 

Table  4.2  Summary  table  of  NiTi  Transformation  temperatures  

 

Table  B.1  Table  comparing  properties  of  Ti-­‐6Al-­‐4V  [15]  

 

Table  C.1  A  summary  of  the  progression  of  objectives  throughout  the  project.  

 

 

 

   

Page 8: Project 3B Final

   viii  

Nomenclature  

 

Abbreviations  

 

NiTi     Nickel  Titanium  /  Nitinol  

SMA     Shape  Memory  Alloy  

SME     Shape  Memory  Effect  

SE     Superelastic  

CAD     Computer  Aided  Design  

H-­‐T     Heat  Treatment  

DSC     Differential  Scanning  Calorimeter  

XRD     X-­‐Ray  Diffraction  

SEM     Scanning  Electron  Microscope  

TEM     Transmission  Electron  Microscope  

Mf     Martensite  Finish  

Ms     Martensite  Start  

As     Austenite  Start  

Af     Austenite  Finish  

h     Hysteresis    

Lh     Length  (High  Temp)  

Ll     Length  (Low  Temp)  

HT     High  Temperature  

LT     Low  Temperature  

S     Stroke  

Symbols  

 

C     Spring  Index  

D     Spring  Diameter  

d     Wire  Diameter  

w     Wahl’s  Stress  Correction  Factor  

 

 

 

 

Page 9: Project 3B Final

   ix  

Units  

 

°C     Degrees  Celsius  

Pa     Pascals  

N     Newton  

mW     MilliWatts  

τmax     Max  Shear  Stress  

Δϒ     Strain  difference  between  austenite  and  austenite  

ϒA     Strain  in  austenite  phase  

ϒmax     Max  strain  in  martensite  phase  

G     Shear  Modulus  

ΔL     Stroke  Length  of  Coil  

n     Number  of  turns  of  coils  

Fload     External  Load  

Page 10: Project 3B Final

   1  

1. Introduction    

 

1.1  Introduction  to  NiTi  

 

NiTi  is  one  of  the  most  common  shape  memory  alloys  (SMA)  that  has  the  ability  to  perform  highly  

as   an   actuator   through   the   shape   memory   and   SE   effects   (SME   and   SE).   NiTi   was   compared  

against  other  kinds  of  shape  memory  alloys,  i.e.  CuZnAl  and  CuAlNi  and  it  was  concluded  that  NiTi  

is  the  most  successful  with  respect  to  most  thermo-­‐mechanic-­‐related  performances  [1].  First,  the  

SME  and  SE  of  NiTi  can  be  tailor-­‐controlled  by  heat  treatment  (H-­‐T)  at  certain  temperature  ranges  

to  modify  the  martensitic  transformation  temperatures.  Second,  NiTi  is  an  energy  dense  material  

and   this   allows   it   to   store   more   potential   energy   than   similar   intermetallics.   Third,   NiTi   has   a  

maximum  strain  of  8%  within   its  SE   limit.  This   is   impressive  compared  to  similar  alloys  that  only  

achieve  around  2-­‐4%  strain.  Finally,  NiTi  has  good  biocompatibility  and  corrosion  resistance  [13].  

 

1.2  Project  Objectives  

 

Soft   robotics   is   an   emerging   field   with   many   challenges   for   roboticists.   One   of   the   most  

challenging  elements  is  the  soft  actuator  which  can  deform  along  with  the  surrounding  structure.  

NiTi   alloy   is   very   suitable   for   this   application   due   to   its   high   flexibility   and   energy   density.   The  

problem  under  investigation  in  this  project  is  to  understand  the  effect  H-­‐T  has  on  the  mechanical  

and  functional  properties  of  NiTi.      

 

The  aim  of  the  project  is  to  design  and  produce  a  coil  spring  for  use  in  a  soft  robot.  The  wire  of  the  

coil  produced  will  be  made  from  NiTi,  and  the  coil  will  be  produced  and  subsequently  modified  by  

H-­‐T   to   perform   the   SME   and   SE   that   are   most   desirable   for   actuator   applications.   Finally,   a  

computer  model   is  made   to   predict   the   performance   of   the   coil,  which  will   then   be   compared  

with  the  actual  performance  recorded  from  the  coil   itself.  The  main  reason  that  NiTi   is  used  for  

this  investigation  is  due  to  its  SME  effects  and  its  performance  as  a  SMA.  The  NiTi  coil  can  act  as  a  

sensor  and  actuator  once  under  the  SME,  so  is  able  to  react  to  a  change  in  temperature  and  will  

then  transform  its  shape.  The  change  in  the  microscopic  structure  causes  an  extension  of  the  coil.  

This  elongation  of   the  coil  can  cause  a  change   in  a  structure.  The  elongation  and  contraction  of  

the  coil  under  the  SME  could  replicate  the  action  of  a  muscle  in  a  joint.  If  the  coil  is  heated  it  will  

return   to   its   original   shape,   thus   acting   as   a   controllable   actuator.   This   use   as   a   robotic   device  

could  be  in  a  device  such  as  an  endoscope.  NiTi   is  said  to  be  a  ‘smart’  material  as  it  can  react  in  

this  way  to  a  change  in  its  environment.  On  the  other  hand,  The  SE  effect  allows  the  material  to  

Page 11: Project 3B Final

   2  

undergo  a  large  strain,  but  stops  it  from  going  beyond  the  elastic  limit.  It  is  able  to  return  to  the  

parent  shape  without  being  altered  in  any  way  theoretically.  

 

1.3  Previous  Studies  

 

NiTi  used  in  actuator  applications  due  to  its  SME  and  SE  has  been  extensively  studied  in  the  past.  

Sreekumar  et  al.  [2]  reported  that  trained  actuators  where  able  to  verify  predicted  forces  due  to  

the  SME  of  SM  alloys.  Kim  et  al.  [3]  developed  a  NiTi  actuator  using  the  two-­‐way  SME.  They  found  

that   the   recovery   stresses  were   almost   identical   as   in   the   one-­‐way  method.   Also,   the   two-­‐way  

method   does   not   require   compressive   loading   and   unloading   to   form,   resulting   in   an   easier  

method.   Predki   et   al.   [4]   showed   that   NiTi   can   be   used   for   technical   applications   in   drive  

technology,   given   that   stress-­‐strain   behaviour   for  NiTi   SMA  under   axial   compression,   necessary  

forces  and  compressions   to  reach  demanded  elongations  can  be  calculated.  Otsuka  and  Ren  [5]  

discussed   the   development   in   the   research   of   SMA   in   the   last   decade.   They   stated   couplings,  

actuators  and  smart  materials  as  the  most  common  applications  of  SMA  and  acknowledged  NiTi  

as  the  best  practical  SMA.  Otsuka  and  Kakeshita  [6]  explained  the  SME,  SE  effect  and  martensitic  

transformation   in  basic  detail  and  how  these  characteristics  make   intermetallics  under   the  SME  

such   as   NiTi   very   useful   in   certain   applications.   More   specifically   in   reference   to   this   report,  

Stoeckel   and  Waram   [7]   described   the   use   of   NiTi   coils   transforming   due   to   the   SME   under   a  

change  in  temperature.  These  studies  give  an  insight  into  the  SME  and  the  characteristics  of  NiTi.  

Furthermore,   there   are   some   fundamentals   in   the   project   that   are   not   covered   in   the   past.   In  

order  to  be  able  to  improve  the  design  process  of  a  NiTi  actuator,  the  relationship  between  a  CAD  

model   of   the   coil   and   the   physical   coil   must   be   better   understood.   This   will   lead   to   a   better  

understanding  of  theoretical  testing  for  computer  models.  

 

Page 12: Project 3B Final

   3  

2.  Literature  Review  

 

2.1  The  Shape  Memory  Effects  and  Superelasticity  

 

The   shape   memory   effect   is   the   name   given   to   the   process   in   which   a   material   can   be  

restored   to   its   original   shape   under   heating   after   being   plastically   deformed.   It   occurs   in  

intermetallic  compounds.  Materials   therefore  act  as  sensors  and  actuators  as   they  sense  a  

change   in   the   temperature   and  will   change   their   shape   subsequently.   They   are   said   to  be  

‘smart’  materials  as  they  can  do  this.  This  area  is  well  covered  in  literature,  “shape  memory  

alloys   show   great   potential   in   many   applications…Many   alloys   displaying   shape   memory  

have  been  found  and  considerable  effort  is  still  being  made  to  discover  new  materials”  [1].  

The  two  phases  of  the  transformation  are  the  martensitic  phase  of   lower  temperature  and  

the   austenite   or   ‘parent’   phase   of   higher   temperature,  when   the  material   is   in   its   natural  

form.    

 

There   are   two   paths   of   transformation   between   the   austenite   and   martensite  

transformation.   The   first   method   is   known   as   the   SME   and   is   due   to   a   change   in  

temperature.  When   the  material   is   in   the  parent  phase,   a  drop   in   temperature  below   the  

transformation   temperature   causes   a   change   in   structure   to   an   incoherent  martensite   as  

shown  by  (b)  in  fig  2.1.  If  the  material   is  put  under  stress  in  this  phase  it  will  change  into  a  

more   coherent   martensite   form   as   shown   by   (c)   fig   2.1.   The   material   will   return   to   the  

parent   phase   when   heated   above   the   transformation   temperature.   Heating   will   form   the  

austenite   structure   from   the   coherent   or   incoherent  martensite   form.   The   second   path   is  

known   as   the   SE   effect.   This   does   not   involve   a   temperature   change,   but   instead   a   direct  

stress   loading   of   the   parent   phase.   This   changes   the   structure   directly   into   a   coherent  

martensite   form   (c)   in   fig   2.1.   This   process   is   called   stress   induced   martensitic  

transformation.   If   the  stress   load   is  removed  the  material  will   return  to   its  parent  form,  as  

long  as  the  limit  of  SE  is  not  exceeded  (8%  strain  for  NiTi).  A  material  is  described  as  SE  when  

it  is  able  to  reach  higher  levels  of  elongation  that  would  usually  be  beyond  the  elastic  limit  of  

the   material.   NiTi   is   described   as   having   ‘superelasticity’.   This   explains   why   it   is   able   to  

transform  under  the  stress   induced  martensitic  method.      The  transformation  can  produce  

relatively  large  movement  in  the  overall  structure  for  its  small  size.  This  gives  the  material  a  

high  work  output.  The  process  gives  NiTi  a  wide  range  of  applications  that  make  use  of   its  

SME.    

Page 13: Project 3B Final

   4  

 

 

 

2.2  NiTi  

 

NiTi  has  been  chosen   in   this   investigation  as   it  has   the  best  SME  and  SE  properties  among  

existing  intermetallic  alloys.  This  has  been  covered  previously  in  literature.  “In  this  paper,  a  

systematic  study  on  the  selection  of  SMAs  for  actuators   is  presented.  The  candidates,  NiTi,  

CuZnAl,  CuAlNi.  The  current  study  shows  that  NiTi  is  the  overall  winner  in  respect  to  most  of  

the   thermo-­‐mechanic   related   performances”   [1].   NiTi   alloys   have   several   characteristics  

which  make  them  particularly  suitable  for  applications  based  on  the  shape  memory  effect.  

NiTi  alloys  are  very  ductile  compared  to  other  similar   intermetallics.  Elongation  of  50%  can  

be  easily  obtained  [5].  Materials  in  this  class  are  usually  much  more  brittle.  The  elongation  of  

NiTi   at   certain   temperature   is   shown   in   fig   2.3.   It   can   be   seen   that   the   highest   point   of  

elongation   is   closely   related   to   the   temperature   around  martensitic   transformation.   There  

are   factors   which   explain   this   relationship   such   as   a   high   number   of   deformation   modes  

upon  stress-­‐induced  transformation.  The  grain  size  in  the  alloy  is  usually  very  small,  typically  

around  30  μm.  This  compares  to  the  others  similar  alloys  with  a  grain  size  of  around  1mm.  

Also,   the  critical   tensile  stress   for  a  slip   is   less   than  50MPa  when  the  alloy   is   in  martensite  

form,  which  is  very  low  compared  to  around  400MPa  when  the  alloy  is  in  parent  form.  

 

The   ductility   decreases   significantly   at   higher   temperatures,   above   the   critical   level   for  

martensitic   transformation,   however   this   is   still   significantly   higher   than   that   of   other  

intermetallics  (20%)  [5].  Another  factor  that  makes  NiTi  particularly  suitable  is  that  the  SME  

can   be   improved   and   altered   easily   using   H-­‐T.   An   optimum   temperature   for   the  material  

transformation  from  martensite  to  austenite  can  be  easily   found  using  the  right  H-­‐T  of  the  

alloy.  This  means  the  material  can  be  tailored  to  perform  in  a  specified  way   in  a  particular  

Fig  2.1  Illustration  of  transformation  paths  between  austenite  and  martensite  transformation.  [6]  

Fig  2.2  Showing  stress/strain  curves  graphs  for  SME  and  SE  transformations.  Taken  from  [1]  

Page 14: Project 3B Final

   5  

application.  NiTi  alloys  also  have  a  superior  tensile  strength  (100Mpa)  to  other  intermetallic  

as   well   high   corrosion   and   abrasion   resistance,   making   them   suitable   to   a   wide   range   of  

applications.   The   excellent   SE   properties   of  NiTi   can   be   partly   explained   due   to   their   high  

energy  density.  They  can  hold  a  particularly  high  amount  of  potential  energy  which  allows  

them  to  return  to  their  original  shape  under  strain.  

 

 

 

 

 

 

 

 

 

2.3  Heat  treatment  of  NiTi  

 

The  mechanical  properties  of  NiTi  can  be  altered  using  H-­‐T.  This  in  an  important  process  as  it  

allows  the  transformation  temperature  for  the  SME  to  be  changed.  This  allows  fine  tuning  of  

the  material   for   a  particular  process.   The   investigation  being   carried  out  will   involve  heat-­‐

treating  a  coil  of  NiTi  so  it  performs  in  the  correct  temperature  window  when  being  used  as  

an  actuator  in  soft  robotics.  The  temperatures  the  material  should  be  subjected  to  under  H-­‐T    

are  not  clear,  which  is  part  of  what  will  be  investigated.  What  is  known  from  past  literature  

however   is   that   H-­‐T   can   cause   a   material   to   undergo   crystallisation.   “We   found   that  

equiatomic   amorphous   NiTi   crystallizes   by   polymorphic   mechanisms   and   that   there   is   a  

direct  correlation  between  the  average  crystal  size  and  the  processing  temperature”  [8].    

Recrystallisation   causes   the   material   to   become   more   brittle   and   lose   its   elongation   as  

investigated   by  Mentz   at   el.   [9].   For   this   reason,  we  want   to   avoid   recrystillisation   of   the  

material  as  much  as  possible.  Chan  et  al.  reported  that  significant  grain  growth  in  NiTi  above  

700oC   [10].   For   this   reason   it   is   necessary   to   limit   the   maximum   H-­‐T   temperature   at   a  

maximum  of  600oC  for   this   investigation.   If   this   limit   is  exceeded,   the  grain  size   in  the  NiTi  

will  become  too  large.  This  results  in  it  becoming  too  plastic  or  brittle,  losing  its  SE  effects.  It  

is  known  already   that  H-­‐T  will   change   the   temperature   region   for   transformation  between  

martensitic  and  austenite  forms  of  NiTi.  This  investigation  aims  to  analyse  this  to  understand  

the  relationship  so  we  can  more  easily  modify  NiTi  for  a  particular  application.  

Figure  2.3  Temperature  dependence  on  the  elongation  of  NiTi  alloy.  [5]  

Page 15: Project 3B Final

   6  

 

 

 

 

 

 

 

 

2.4  Existing  Applications  of  NiTi  under  SM  

 

NiTi   is   known  as   the  best  performing  SMA   [1].   This   results   in   it  being  desirable   for  a  wide  

variety  of  applications.  They  are  most  commonly  used  as  actuators,  fasteners  and  couplings.  

The  NiTi   alloys  have  among   the  best   SME  among  many  SMA,  however   if   SMA  with  higher  

operating   temperatures  are  developed   they  would  be  very  useful   for  uses   in  automobiles,  

planes  etc.  Uniqueness  of  the  SMA  gives  them  a  very  high  potential  for  applications,  10000  

patents   have   been   proposed   previously.   SE   qualities   of  NiTi  make   it   useful   in   applications  

such  as  catheters  for  medical  use  or  mobile  phone  antennas.  This  is  because  of  the  flexible  

properties  and  the  fact  it  cannot  be  permanently  bent.  Fisher  at  al.  carried  out  a  project  in  

which  NiTi  was  used  in  an  endoscope  to  replace  existing  materials,  allowing  an  increased  90°  

angle   of   view.   [12].     This   investigation   looks   at   using  NiTi   as   an   actuator   in   a   soft   robotic  

application.   One   such   application   of   soft   robotics   is   an   endoscope   for   medical   use.   The  

device  allows  doctors  to  examine  the  internals  of  a  body  with  no  discomfort  to  the  patient.  

Coil   springs  are  used   in   lots  of  other  applications  such  as   in  various  car  components.  They  

are  particularly  useful  when  the  car  is  starting  from  cold.  For  example,  the  coil  can  alter  the  

engine  speed  when  the  car  is  cold  so  that  the  engine  is  allowed  to  heat  up  faster.  

 

Fig  2.4.  Growth  of  grain  size  due  to  heat  treatment.  [11]  

Page 16: Project 3B Final

   7  

3.  Methodology  

 

 3.1  Experimental  Design  and  Procedure  

 

The   initial   phase   of   the   project   involved   attempting   to   establish   an   understanding   of   the  

shape  memory   effect   of   NiTi.   Looking   at   the   theory   has   allowed   a   tentative   prediction   of  

how  the  material  will  behave.  The  next  phase  of  the  project  is  to  carry  out  experimentation  

to  validate  the  theory  and  to  establish  solid  understanding  of  the  properties  of  the  material.  

With   an   understanding   of   exactly   how   the   material   responds   to   H-­‐T,   implementing   the  

material  in  products  to  utilise  the  SME  will  be  possible.  

 

3.1.1  Heat  Treatment    

 

The  first  process  is  to  subject  samples  of  NiTi  to  H-­‐T  at  varying  temperatures.  This  will  allow  

us  to  see  how  the  process  of  H-­‐T  affects  the  properties  of  NiTi.  It  is  particularly  important  to  

understand  how  H-­‐T  affects  the  transition  temperature  from  austenite  of  martensite  form  so  

that  the  material  can  be  tailored  for  any  particular  application.  

 

The   apparatus   used   for   this   stage   will   be   a   furnace.   There   will   be   three   different    

temperatures.  These  are  300  °C,  350   °C  and  400°  C.  This   is  an   important   range   to   find   the  

crossover   between   the   austenite   and   martensite   structure   in   the   H-­‐T   wires.   The   reason  

higher  temperatures  are  not  used  is  because  H-­‐T  above  450  °C  produces  detrimental  results  

in  the  material.  At  450  °C  –  550  °C  H-­‐T  will  cause  intermetallic  grain  growth.  This  decreases  

the   effectiveness   of   SE   and   the   SME.   Above   600   °C   the   material   will   undergo   re-­‐

crystallization.  This  leads  to  the  material  becoming  too  soft  and  will  lead  to  loss  of  the  SME.  

Each   sample   should   be   treated   for   60  minutes,   followed   by   immediate   quenching   in   cold  

water.    

 

3.1.2  Mechanical  Testing  

 

In  order  to  see  the  effect  that  the  H-­‐T  has  had  on  the  material,   it  should  be  subjected  to  a  

tensile   test.   Studying   the   loads   achieved   by   samples,   which   have   undergone   different  

treatments,  will  allow  us  to  see  the  effect  the  H-­‐T  has  on  the  tensile  strength  of  the  material.  

Page 17: Project 3B Final

   8  

This   is   a   very   important   factor,   because   different   mechanism   applications   require   the  

material  to  have  specific  tensile  strength.  

 

3.1.3  Differential  Scanning  Calorimeter  (DSC)  

 

A   DSC   machine   works   by   measuring   the   heat   flow   between   a   material   and   its   ambient  

surroundings  while   that   ambient   temperature   is   altered.   The   principle   is   to   show   at  what  

temperature   the   material   undergoes   a   physical   transformation.   Under   a   phase  

transformation,  such  as  during  the  SME  and  SE  in  NiTi,  there  will  be  a  difference  in  the  heat  

flow  between  the  material  and  the  surroundings.  This  is  picked  up  by  the  DSC  machine.  The  

results  of   this  experiment   should   show  a   spike   in  heat   flow   for   the  NiTi   sample  when   it   is  

tested   at   a   particular   temperature.   This   point   represents   the   change   in  material   structure  

from  martensitic  form  to  austenitic  form.  This   is  the  phase  transformation  that  defines  the  

SME.  Analysing  this  point  for  each  sample  that  has  been  H-­‐T  will  allow  us  to  see  exactly  what  

effect  the  H-­‐T  has  had  on  the  shape  memory  effect  of  the  NiTi  sample.  If  the  predictions  are  

correct,   the   H-­‐T   should   allow   us   to   change   the   transformation   temperature   in   the   NiTi  

sample.    

 

The  process   involves  taking  a  sample  of  each  H-­‐T  temperature  and  analysing   it   in  the  DSC.  

The  temperature  range  used  in  the  DSC  should  be  between  from  -­‐60  °C  to  100  °C  in  order  to  

include  the  transformation  on  heating  and  cooling  for  each  sample.  

 

3.1.4  Coil  spring  prototype  

 

These   forms   of   testing   will   give   a   better   understanding   of   the   material.   Possessing   this,  

attempts  to  create  a  coil  prototype  should  then  be  made.  Having  a  physical  coil  allows  us  to  

make  some  calculations  and  comparisons  with  the  computer  model  of  the  coil.  

 

 

 

 

 

 

 

Page 18: Project 3B Final

   9  

4.  Results  and  Calculations  

 

4.1  Experimental  Observations  

 

4.1.1  Heat  Treatment  

 

The   NiTi   samples   were   successfully   treated   in   the   furnace.   For   each   temperature,   three  

400mm  samples  were  treated.  Each  treatment  temperature  showed  different  characteristics  

once  cooled.  The  untreated  sample  is  shown  in  fig  4.1.  

 

 

 

 

300   °C  –  The  samples  at  300   °C  had   lost   some  of   their   rigidity   compared   to   the  untreated  

sample.  The  colour  had  also  changed  from  a  grey/silver  to  a  straw/brass  colour.  The  reason  

for  the  colour  change  is  due  to  changes  in  the  surface  of  the  material  at  a  microscopic  level.  

The  light  refraction  is  altered  on  the  treated  sample,  causing  a  change  in  the  appearance  of  

the  colour.  The  treated  sample  had  also  lost  rigidity.  The  material  was  much  easier  to  bend  

out  of  shape  after  being  treated.  The  material  is  however  still  in  in  a  majority  austenite  form  

at  room  temperature,  and  the  wire  generally  holds  its  shape  well.  The  300°C  H-­‐T  sample  is  

shown  in  fig  4.2.  

Fig  4.1  Untreated  NiTi  

Fig  4.2  300  °C  H-­‐T  NiTi  sample  

Page 19: Project 3B Final

   10  

 

 

 

350   °C   –   The   samples   at   350   °C   were   less   rigid   than   those   at   300   °C.   The   material   had  

become  softer,  and  had  less  resistance  to  being  misshapen.  The  colour  had  changed  again,  

and  had  become  a  stronger  colour  of  brass.  The  material  is  still  in  a  majority  austenite  form  

at   room   temperature,   however   the   proportion   of   martensite   structure   has   increased  

compared  to  the  300  °C  sample  and  its  transformation  region  has  therefore  increased.  This  

explains   its   relative  softness  and   increased  ductility.  The  350  °C  H-­‐T  sample   is  shown   in   fig  

4.3.  

 

400  °C  –  There  was  a  much  bigger  change  with  the  400  °C  sample  than  was  seen  at  previous  

temperatures.   The   sample   was   a   majority   martensite   form   at   room   temperature.   The  

material  behaved  completely  plastically.   It  would  take  any  shape   it  was  bent   into,  and  had  

almost  no  rigidity  to  remain  in  its  original  shape.  The  shape  memory  effect  was  of  course  still  

present,  and  the  material  would  retain  its  original  form  when  heat  was  applied.  The  colour  

was   very   different   from   the   previous   samples.   It   had   changed   to   a   dark   blue   colour,  

representing  a  significant  change  in  its  surface  smoothness.  The  400  °C  H-­‐T  sample  is  shown  

in  fig  4.4.  

 

 

 

Fig  4.3  350  °C  H-­‐T  sample  

Fig  4.4  400  °C  H-­‐T  

sample  

 

Page 20: Project 3B Final

   11  

Before   any   mechanical   testing   had   been   undertaken,   it   was   clear   to   see   there   was   a  

significant  change  in  the  appearance  and  behaviour  of  the  material.  

 

4.1.2  Mechanical  Testing  

 

To   understand   the   effect   of   the   H-­‐T,   mechanical   testing   would   allow   us   to   analyse   the  

change  to  the  structure  of  the  material.  The  first  test  to  carry  out  was  a  simple  tensile  test  to  

failure.  A  second  tensile  cyclic  test  was  carried  out  to  analyse  the  fatigue  in  the  material  over  

a  period  of  stresses.  

 

All   the   mechanical   testing   was   carried   using   a   standard   tensile   testing   machine   with   a  

maximum  load  of  500N.    Special  grippers  were  used  with  a  radius  at   their  ends.  These  are  

intended  for  use  with  wires,  and  ensure  that  there  is  not  a  stress  concentration  at  the  point  

were   the   wire   is   secured.     The   machine   carried   out   all   experiments   at   a   strain   rate   of  

5mm/min.  A  gauge  length  of  100mm  was  set.    

 

 Tensile  test  to  failure  

 

This   test   involved   a   simple   stress   to   failure   set   up  with   the   tensile  machine.   The   samples  

were  loaded  until  fracture  occurred.  

 

Tensile  cyclic  test  

 

The   tensile   cyclic   test   was   to   show   how   a   series   of   loading   and   unloading   affected   the  

material.  The  resulting  load  extension  curve  shows  a  series  of  lines  representing  each  cycle.  

The  machine  was  calibrated  to  reach  6%  extension  (within  8%  SE  limit)  in  each  cycle  before  

unloading.  Each  sample  was  subjected  to  five  complete  cycles.  

 

4.1.3  Differential  Scanning  Calorimeter    

 

Samples   for  each  H-­‐T   temperature  were  analysed  using   the  DSC.  The  machine  used  was  a  

Diamond   DSC.   It   is   designed   to   run   samples   at   high   speeds   (~200   °C/min).   In   our  

investigation  a  speed  of  10  °C/min  was  more  appropriate.  This  meant  that  the  sensitivity  of  

the  machine  was  relatively  poor  at  these  speeds.  Each  sample  was  run  for  the  temperature  

Page 21: Project 3B Final

   12  

range  of  -­‐60  °C  to  100  °C.  This  temperature  range   is  necessary  so  that  each  sample  will  go  

through   a   complete   phase   transformation   on   heating   and   cooling.   The   results   show   the  

effect  the  H-­‐T  has  on  the  transformation  temperature.    

Page 22: Project 3B Final

   13  

4.2  Experimental  Results  

 

4.2.1  Mechanical  Testing    

 

Table  4.1  shows  a  summary  of  the  tensile  to  failure  graphs.  

 

H-­‐T  Temperature  (°C)   Transformation   Stress  

(MN/m2)  

Tensile   Strength  

(MN.m2)  

Tensile  Strain  

Untreated   550   1536   0.32  

300   504   1512   0.37  

350   484   1528   0.33  

400   387   1533   0.35  

 

Fig  4.5  shows  the  results  for  each  sample  tested  to  failure  with  the  tensile  testing  machine.  

 

 

 

 

-­‐50  

0  

50  

100  

150  

200  

250  

300  

350  

-­‐10   0   10   20   30   40  

Load  (N)  

De+lection  (mm)  

Tensile  to  failure  test  

300  C  

350  C  

400  C  

Untreated  

Fig  4.5  Load-­‐deflection  curves  to  failure  for  the  samples  under  a  tensile  test.  

Page 23: Project 3B Final

   14  

   

 

 

 

 

 

 

 

Fig  4.6  is  a  zoomed  in  section  of  fig  4.5.  It  shows  an  important  section  of  the  load  deflection  

curve   in   more   detail.   This   is   the   ‘plateau’   region   where   they   undergo   a   change   from  

austenite  to  martensite  due  to  the  stress  loading.  

Fig  4.7,  4.8,  4.9  show  the  cyclic  tensile  test  on  three  differently  treated  specimens.  

 

   

 

Fig.  4.6  Shows  the  samples  at  the  ‘plateau’  where  they  are  undergoing  a  phase  transformation  due  to  stress  loading.  

70  

80  

90  

100  

110  

120  

130  

0   5   10   15  

Load  (N)  

De+lection  (mm)  

300  C   350  C   400  C   Untreated  

-­‐20  

0  

20  

40  

60  

80  

100  

120  

-­‐1   0   1   2   3   4   5   6  

Load  (N)  

Elongation  (mm)  

Untreated    

Cycle  1  

Cycle  2  

Cycle  3  

Cycle  4  

Cycle  5  

Fig  4.7  Cyclic  tensile  testing  of  untreated  sample  of  NiTi  

Page 24: Project 3B Final

   15  

 

 

 

 

0  

20  

40  

60  

80  

100  

120  

-­‐1   0   1   2   3   4   5   6  

Load  (N)  

Elongation  (mm)  

300  C  

Cycle  1  

Cycle  2  

Cycle  3  

Cycle  4  

Cycle  5  

Fig  4.8  Cyclic  tensile  testing  of  300  °C  H-­‐T  NiTi  

Fig  4.9  Cyclic  tensile  testing  of  400  °C  H-­‐T  NiTi  

-­‐5  

15  

35  

55  

75  

95  

-­‐1   0   1   2   3   4   5   6  

Load  (N)  

Elongation  (mm)  

400  C  

Cycle  1  

Cycle  2  

Cycle  3  

Cycle  4  

Cycle  5  

Page 25: Project 3B Final

   16  

4.2.2  Differential  Scanning  Calorimeter  

 

Table  4.2  shows  a  summary  table  for  the  DSC  transformation  temperatures.  

 

 

 

 

 

 

 

Fig  4.10,  4.11,  4.12  show  the  DSC  heat  flow  results  for  the  untreated  alloy.    

 

Fig  4.11  Phase  transformation  under  heating                            Fig  4.12  Phase  transformation  for                                   untreated  NiTi                                                      under  cooling  for  untreated  NiTi                                                                                                            

H-­‐T  Temperature  (°C)   AS  (°C)   Af  (°C)   Ms  (°C)   Mf  (°C)  

Untreated   -­‐5   15   10   -­‐10  

300   10   20   15   -­‐5  

350   15   35   20   0  

400   30   45   45   25  

-­‐10  10  

Fig.  4.10  Heat  flow  against  temperature  graph  for  untreated  NiTi  

Page 26: Project 3B Final

   17  

Fig.  4.13,  4.14,  4.15  DSC  results  for  300  °C  H-­‐T  NiTi    

     

Fig.  4.14  Phase  transformation  under  heating  for  300  °C  H-­‐T  NiTi  

Fig.  4.15  Phase  transformation  during  cooling  for  300  °C  H-­‐T  NiTi  

-­‐5  

15  

Fig.  4.13  Heat  flow  against  temperature  graph  for  300  °C  H-­‐T  NiTi  

Page 27: Project 3B Final

   18  

Fig.  4.16,  4.17,  4.18  DSC  results  for  350  °C  treated  NiTi    

     

Fig  4.17  Phase  transformation  under  heating  for  350  °C  H-­‐T  NiTi  

Fig  4.18  Phase  transformation  under  cooling  for  350  °C  H-­‐T  NiTi  

0  

20  

Fig  4.16  Heat  flow  against  temperature  graph  for  350  °C  H-­‐T  NiTi  

Page 28: Project 3B Final

   19  

Fig.  4.19,  4.20,  4.21  DSC  results  for  400  °C  H-­‐T  NiTi    

     

Fig  4.20  Phase  transformation  under  heating  for  400  °C  H-­‐T  NiTi  

Fig  4.21  Phase  transformation  under  cooling  for  400  °C    H-­‐T  NiTi  

Fig  4.19  Heat  flow  against  temperature  graph  for  400  °C  H-­‐T  NiTi  

Page 29: Project 3B Final

   20  

4.3  Fabrication  of  coil  spring  prototype  

 

Having  gained  more  of  an  understanding  of  the  material,  it  was  important  to  try  and  make  a  

model  of  the  NiTi  in  the  coil  application.  The  challenge  of  this  was  coming  up  with  a  method  

of   creating  a   coil   from  a   length  of   straight  wire.   In  order   to   resolve   this,   an  assembly  was  

constructed.   This   involved   clamping   the   wire   tightly   into   a   coil   around   a   solid   bar.   This  

assembly   is   shown   in   fig  4.22.  The  assembly  was   then   treated   in   the   furnace  at  400   °C   for  

one  hour.  This  temperature  was  chosen  because  the  coil  would  work  well  under  the  SME  if  it  

were   in   a  highly  martensitic   form  at   room   temperature.   The  H-­‐T  didn’t  work   as   expected,  

because  the  cooling  rate  of  the  coil  during  quenching  was  different  as  it  was  still  attached  to  

the  fixture.  This  resulted   in  the  coil  having  characteristics  of  a  standard  wire  H-­‐T  to  350  °C  

and  with  a  structure  much  less  martensitic  in  proportion  than  desired  for  the  coil.  To  resolve  

this,  the  H-­‐T  was  carried  out  again  at  450  °C.  This  produced  a  coil  that  had  more  appropriate  

H-­‐T  characteristics.  Fig  4.24  shows  the  two  resulting  coils.  

Figs  4.25,  4.26,  4.27  show  a  demonstration  of  the  three  phases  of  the  SME  on  the  prototype.  

 

 

 

 

 

             

Fig  4.22  Coil  setup  before  H-­‐T     Fig  4.23  Coil  setup  after  H-­‐T  

Fig  4.24  450  °C  H-­‐T  coil  &  400  °C  H-­‐T  coil  at  room  temperature  

Fig  4.25  NiTi  coil  in  incoherent  martensite  form.  Room  temperature  and  no  load.  

Fig  4.26  NiTi  coil  in  coherent  martensite  form  Room  temperature  and  after  a  stress  loading.  

Fig  4.27  NiTi  coil  in  austenite  form  after  heating.  

Page 30: Project 3B Final

   21  

4.4  Analysis  of  Prototype  

 

In  order  to  visualise  how  the  NiTi  coil  works  as  an  actuator,  a  simple  demonstration  with  a  

heat  gun  shows  how  the  SME  can  be  utilised  in  the  coil.  It  is  known  from  previous  content  in  

this  report  that  the  NiTi  will  change  from  the  parent  or  austenite  form  into  the  martensite  

form   when   subject   to   a   stress   loading.   This   stress   loading   can   be   replicated   by   simply  

stretching  the  coil  out  by  hand.  It  will  remain  in  a  steady  plastic  form.  If  a  heat  source  is  then  

applied  to  the  stretched  coil,  such  as  a  heat  gun,  it  will  return  to  the  austenite  form  from  the  

martensite  form.  This  is  shown  in  the  coil  by  returning  to  the  shape  that  was  formed  in  the  

H-­‐T  process.  This  clearly  demonstrates  how  the  application  of  heat  can  be  used  to  control  an  

actuator  exploiting  the  SME.  

 

Using  a  thermocouple  to  measure  the  exact  heat  source  from  the  heat  gun  allows  a  precise  

temperature   reading   of   which   the   coil   is   subjected   to.   Having   a   precise   reading   of   the  

temperature  allows  us   to  see   the   temperature   region   in  which   the  coil  undergoes  a  phase  

transformation.   This   information   allows   the  NiTi   coil   to   be   used   as   a   smart   actuator,  with  

precise  control  over  its  function.  Applying  the  same  tests  to  the  coil  treated  at  400  °C  shows  

similar  results,  but  the  transformation  is  less  apparent  of  an  than  the  450  °C.  This  is  because  

it  is  in  a  more  austenitic  form  at  room  temperature  and  behaves  less  plastically.  The  450  °C  

sample   has   a   larger   stroke   than   the   400   °C   sample   and   thus   the   SME   is   more   clearly  

displayed.  

 

After   seeing  a  prototype  of  what   the  coil   is  physically   like,   the  next   stage  was   to  establish  

how  a  particular  coil  could  be  created  or  treated  in  order  to  behave  in  a  predictable  way  and  

carry   out   a   specific   task.   The   experimentation   carried   out   previously   has   shown   how   the  

transformation   temperature   is  affected  by  H-­‐T  of   the  material.  The  mechanical   testing  has  

shown   some   ultimate   tensile   and   cyclic   tensile   properties   of   a   straight   NiTi   wire.   The  

application  being  analysed  by  this  report  is  in  the  use  of  a  coil,  so  it  is  important  to  find  out  

some  performance  figures  for  the  material  in  the  coil  spring  form.  

Within  the  coil  actuator  application  there  are  two  different  forms;  

 

Page 31: Project 3B Final

   22  

• Compression  spring  –  This   is  when  the  coil   is  compressed  at   low  temperature,  and  

extends  when  it  is  subjected  to  heat.  (fig  4.28)  

•  

• Extension   spring   –   This   is   when   the   coil   is   extended   at   low   temperature,   and  

compresses  when  subjected  to  heat.  (fig  4.29)  

 

Activation  types    

 

There  are  two  relevant  types  of  activation  that  fall  under  this  investigation;  

• Thermal  activation  –  this  is  when  the  actuation  of  the  coil  is  induced  by  a  change  in  

the   temperature   surrounding   the   coil.   This   can   be   intentionally   provoked   by   an  

external   source   from   the   user.   It   can   also   be   as   a   result   of   an   ambient   or   varying  

temperature  in  its  application,  eg.  Human  body.  

• Electrical  activation  –  this  is  when  the  actuation  of  the  coil  is  induced  by  a  current  in  

the  NiTi  wire.  NiTi   inherently   possesses   a   high   resistivity   due   to   its   structure   [13].  

This  means  any  current  flowing  through  it  will  increase  the  temperature  of  the  wire.  

This  heat  increase  is  able  to  activate  the  SME.  The  amount  of  power  flowing  through  

the  wire  for  activation  can  be  easily  calculated.  The  wire  can  be  tailored  to  conform  

to  a  certain  flow  requirement  by  defining  its  dimensions.    

 

Fig  4.28  SMA  compression  spring  actuation  [13]  

Fig  4.29  extension  spring  actuation  [13]  

Lh=  Lengh  (High  temp)   HT=(High  Temp)  Ll=  Length  (Low  temp)   LT=(Low  Temp)  S=stroke    F=force  produced  

Page 32: Project 3B Final

   23  

The  area  this  investigation  is  looking  at  is  in  soft  robotics  and  their  application  in  the  medical  

field.  These  two  actuation  types  are  important,  as  they  are  both  applicable  in  medical  field.  

There  are  many  devices  that  use  either  or  both  of  these  actuation  types.  Luo  et  al.  describe  

designing   a  device   that   changes   shape  due   to   the  higher   temperature   in   the  human  body  

(thermal   activation)   [14].   For   an   application   such   as   an   endoscope,   the   user   must   have  

control   of   the   device   from   outside   the   body.   In   order   for   this,   electrical   activation   is  

necessary  to  allow  precise  remote  control.  This  kind  of  device  could  also  be  made  to  react  to  

a  direct  temperature  stimulus,  if  there  was  some  requirement  for  it  to  adapt  to  being  inside  

the  body.  

 

   

Page 33: Project 3B Final

   24  

4.5  CAD  Model  of  Coil  

 

One  important  aspect  of  this  investigation  was  to  compare  data  predicted  through  computer  

modelling   to   that   obtained   from   fabrication   of   the   real   coil.   Using   CAD   to   design   is   an  

important   step   as   it  makes   the   design   process  much   easier.   In   order   to   fully   trust   in   CAD  

however,  it  is  important  to  validate  it  first.  

 

A  coil  was  designed  in  Solidworks  similar  based  on  the  coil  prototype  made.  The  CAD  model  

is  shown  in  fig  4.30.  This  model  illustrates  the  three  stages  in  the  cycle  of  the  SME.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig  4.30.  CAD  model  of  the  coil  in  High  temperature  austenite  phase  

Fig  4.31.  CAD  model  of  the  coil  in  the  incoherent  martensite  form  (  room  temperature  free  state)    

Page 34: Project 3B Final

   25  

 

 

 

 

 

Fig  4.33  shows  the  relationship  between  the  three  phases.  [16]  

 

 

 

This   CAD  modelling   shows   the   forms   of   the   coil   in   the   three   phases   that   were   observed  

when  experimenting  with  the  prototype.  

 

Simulation  of   the   coil   could  not  be   satisfactorily   completed,   as   there  was  no  NiTi  material  

available  in  the  Solidworks  database.    This  is  one  of  the  main  limitations  of  this  investigation.  

The   simulation   that   was   carried   out   was   using   the   titanium   alloy,   Ti6Al4V.   This   was   the  

closest  material  to  NiTi  available.  The  results  of  this  simulation  are  in  Appendix  B.  They  are  

not  included  in  this  report,  as  they  are  not  regarded  to  replicate  NiTi  closely  enough.  

 

Fig  4.32  CAD  coil  in  the  Coherent  martensite  form  after  stress  loading.    

Fig  4.33  The  SME  [16]  

Page 35: Project 3B Final

   26  

5.  Discussion  

 

5.1  Mechanical  Testing  

 

5.1.1  Tensile  fracture  test  

 

The  load  deflection  curve  for  each  sample  follows  a  similar  trend.  The  curve  initially  follows  a  

material   under   the   influence   of   Hooke’s   law.   A   ‘plateau’   region   follows   this   in   which   the  

curve   levels   off.   This   is   when   the   material   is   changing   from   the   austenite   structure  

(incoherent   martensite   for   400   °C)   to   a   coherent   martensite   structure.   This   period   is  

followed  by   a   rise   once   again   until   fracture.   The   region  up  until   the   end  of   the   plateau   is  

when  the  previously  austenite  material   is   still   in   the  SE  region.  This  means  that   if   the   load  

was  released  it  would  return  to  its  original  shape.  The  maximum  load  achieved  at  fracture  by  

each  sample  was  within  1%  of  300N.    

 

The  plateau  region  of  the  curve  where  the  sample  is  in  the  transformation  region  should  be  

much   flatter.   Looking   at   fig   4.6,   it   can   be   seen   that   this   is   not   the   case.   This   is   an   error  

produced  by  the  experiment.  A  strain  rate  of  5mm/min  was  too  high.  This  caused  heat  to  be  

produced  in  the  sample.  This  subsequently  resulted  in  the  friction  in  the  sample  increasing,  

which   caused   the   load   required   to   increase   slightly,   altering   the   shape   of   the   graph   This  

could  be  solved  by  using  external  cooling  to  stop  the  wire  from  heating  up  or  reducing  the  

strain  rate.  

 

The  whole  curve  is  very  unstable.  There  are  many  regions  with  big  fluctuations.  This  is  due  to  

having   an   unsatisfactory   gripper   to   hold   the   wire.   The   fastener   on   the   gripper   did   not  

perform   particularly   well,   and   allowed   the   wire   to   slip   very   slightly.   This   caused   minute  

releases  in  the  load  that  show  up  as  instabilities  on  the  curve.  

 

5.1.2  Tensile  Cyclic  Test  

 

The   load   extension   graph   for   each   sample   shows   some   similarities,   and   also   some  

differences   that   are   caused   by   the   H-­‐T.   Each   sample   initially   follows   Hooke’s   Law   before  

levelling   off;   the   next   section   is   the   ‘plateau’   region.   This   is   where   the   extension   of   the  

material   increases   with   no   increase   in   load.   This   period   is   when   the  material   structure   is  

Page 36: Project 3B Final

   27  

changing  from  the  austenite  form  to  the  martensite  form.  This  transformation  is  induced  by  

the  stress  loading.  The  cyclic  test  carried  up  only  loaded  the  material  to  6%  extension.  This  

point  was  when  the  graph  was  still  in  the  ‘plateau’  region.  This  is  within  the  SE  region  of  the  

material.   The   material   behaves   superelastically   until   the   end   of   the   plateau   region   (8%  

strain)  when  the  load  increases  again.  Beyond  this  point  is  plastic  deformation.  The  SE  effect  

allows  the  sample  to  return  to  its  original  length  when  the  load  is  removed.  This  can  be  seen  

figs  4.7,4.8,4.9  where  the  graph  returns  to  the  origin  between  each  cycle.  In  reality  there  is  a  

slight  difference  between  each  cycle.  The  maximum  load  reduces  slightly  (2%)  between  the  

first  and  second  cycle  for  the  required  extension.  This  difference  decreases  exponentially  for  

the  succeeding  cycles.    This  is  caused  by  the  residual  stresses.  During  each  cycle  the  material  

changes  its  structure  from  austenite  to  martensite  and  back  again  during  unloading.  During  

each  cycle  small  residual  stresses  cause  a  proportion  of  the  martensite  form  to  remain  in  this  

phase   and   not   change   back   to   the   austenite   form.   This  means   the   next   cycle  will   require  

slightly  less  external  load  to  become  fully  martensite.  

 

The  shape  of  the  curves  are  distinct.  As  the  load  begins  to  release  the  graph  does  not  follow  

the  same  path  of   loading.  The  material  remains   in  the  martensite  form  until  below  50%  of  

the  total  load  is  reached.  At  this  point  the  transformation  back  to  austenite  begins  to  occur.  

This  transformation  results  in  the  elongation  reducing  with  no  change  in  load.  Much  like  the  

transformation  during  loading  except  in  reverse.  This  point  is  seen  in  the  ‘plateau’  section  of  

the   graph   during   the   unloading   phase   of   the   cycle.   This   is   due   to   hysteresis   between   the  

austenite  and  martensite  forms.  

 

Comparing  the  cyclic  tensile  tests  it  can  be  clearly  seen  that  300  °C  and  untreated  are  very  

similar.  The  300  C  sample  is  still   inside  the  austenite  range  at  room  temperature  (Fig.  4.14,  

4.15).  It  has  lost  some  of  its  rigidity  compared  to  the  untreated  sample,  and  behaves  slightly  

more  plastically.  This  is  because  the  H-­‐T  has  brought  it  closer  to  the  transformation  region,  

resulting   in   its   structure   having   an   increased   martensitic   proportion   and   resulting  

characteristics.   This   is   only   a   small   consideration   however,   and   it   would   be   expected   to  

behave  similarly  to  the  untreated  sample.  The  300  °C  sample  achieves  a  load  of  around  5%  

(100N   against   95N)   less   than   the   untreated   sample   as   it   begins   the   phase   transformation  

due  to  stress  loading.  It  behaves  similarly  during  the  unloading  phase  also.  Comparing  these  

graphs  shows  how  the  H-­‐T  can  be  used  to  make  small  adjustments  to  the  characteristics  of  

the  material  and  how  it  behaves  with  the  SME.  

Page 37: Project 3B Final

   28  

 

 The   400   °C   sample   behaves   much   differently   to   the   other   samples.   The   400   °C   sample  

plateaus  off   at   a  much   lower   load.   The   reason   for   this   is   because   the  H-­‐T  has  moved   this  

sample  into  an  incoherent  martensite  structure  at  room  temperature.  When  the  300  °C  and  

untreated   samples  were   transformed   into  martensite   due   to   loading,   this  was   a   coherent  

martensite  form.  When  the  400  °C  sample  is  subject  to  load  it  changes  from  an  incoherent  

martensite   form   to   a   coherent   martensite   form.   This   requires   less   load   than   a  

transformation  from  austenite  as  it  already  in  a  high  proportion  of  the  martensite  structure.  

400  °C  also  behaves  more  plastically  than  the  other  samples  due  to   its  martensitic   form,   it  

does  not  return  to  its  original  shape  as  definitely  as  the  other  samples.  Comparing  with  the  

graphs  for  300  °C  and  untreated,  there  is  a  definite  ‘plateau’  period  on  the  unloading  side  of  

the  graph  that  signifies  the  martensite  changing  back  to  austenite.  In  the  case  of  the  400  °C  

sample   there   is  no   ‘plateau’   region.   Instead,   it   is   an  exponential  decrease  until   the   load   is  

released.  This  difference  is  due  to  the  400  °C  sample  returning  to  an  incoherent  martensite  

form   instead  of   the   austenite   form  of   the   lower   temperature   treated   sample.   There   is   no  

defined  transformation  phase,  as  the  material  does  not  change  back  to  the  austenite  form.  

 

5.1.3  Differential  Scanning  Calorimeter  

 

Figs  4.10,  4.13,  4.16,  4.19  show  the  shape  of  graph  produced  in  the  DSC  analysis.  The  curve  

shows  a   steady   rise,  before  a  drop  and   then  steady  decline.  The  upper  curve  of   the  graph  

represents   the   heating   phase   of   the   process.   This   is   when   the   sample   begins   at   a   low  

temperature  (-­‐60  °C)  and  is  heated.  The  DSC  records  the  heat  flow  movement  between  the  

surroundings   and   the   sample.   This   is   plotted   against   the   ambient   temperature.   The   lower  

section  of  the  graph  shows  the  same  data  except  from  when  the  ambient  temperature  is  at  

its  highest  (100  °C)  and  is  cooled  back  to  its  original  temperature.  

The  piece  of  data  from  these  graphs  of  most  interest  is  the  phase  transformation,  when  the  

material  changes  between  austenite  and  martensite.  This  point  is  shown  on  each  curve  as  a  

fluctuation  of  the  heat  flow  at  a  particular  point  (t).  The  heating  transformation  regions  are  

slightly  more  distinct  than  the  cooling  regions.  With  more  appropriate  equipment  providing  

a  higher  sensitivity,  the  transformation  regions  would  be  more  clearly  defined.  However  this  

was  not  possible  as  discussed  previously.  

 

Page 38: Project 3B Final

   29  

If  the  heat  and  cool  transformations  are  compared  for  each  cycle,  (300  °C  treated  sample  –  

10  C   to   20   °C  on  heating,   -­‐5   to   15   °C  on   cooling.   350   °C   treated   sample   –   15   to   35   °C  on  

heating,   0   to   20   °C   on   cooling.)   the   temperature   range   for   each   transformation   does   not  

coincide.   This   is   caused   by   a   temperature   hysteresis.   Because   of   this   there   is   no   ‘defined  

point  of  transformation’.  There  are  four  important  temperature  points  [13];  

1. Martensite  Finish  (Mf)  

2. Martensite  Start  (Ms)  

3. Austenite  Start  (As)  

4. Austenite  Finish  (Af)  

 

The  distribution  of  these  points  and  the  hysteresis  between  them  is  illustrated  in  fig  5.1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Looking   at   the   cooling   graphs   from   the  DSC.   The  phase   transformation   can  be   seen   to   be  

shifting  on  each  sample.  Untreated  has  a  heating/cooling  transformation  range  of  (-­‐5  to  15  

°C/-­‐10  to  10  °C).  This  progresses  to  (10  to  20  °C/-­‐5  to  15  °C)  on  the  300  °C  sample  and  (15  to  

35  °C/0  to  20  °C)  on  the  350  °C  sample.  There  is  a  much  larger  jump  to  the  400  °C  sample.  Its  

transformation  region  is  (30  to  45  °C/25  to  45  °C).  The  DSC  data  shows  that  H-­‐T  of  NiTi  has  a  

direct   effect   on   the   transformation   temperature   region.   H-­‐T   of   NiTi   increases   the  

transformation  temperature  of  the  sample.  Using  smaller   intervals  of  H-­‐T,   its  effect  can  be  

Fig  5.1  Extension  against  temperature  schematic.  Detailing  Mf,  Ms,  As,  Af  and  hysteresis  (h).  [13]  

Page 39: Project 3B Final

   30  

defined   even   more   so   that   a   precise   relationship   between   the   H-­‐T   temperature   and   the  

material   transformation   temperature   can   be   documented.   With   this   knowledge,   the  

material  can  be  treated  to  produce  a  specifically  desired  transformation  region.  This  is  a  very  

important   factor   in   utilising   the   materials   SME.   It   allows   NiTi   to   be   used   as   a   precisely  

controlled  actuator  among  many  other  applications.  

Page 40: Project 3B Final

   31  

Limitations  of  project  

 

There   were   several   areas   where   external   limitations   hindered   the   investigation   to   some  

extent;  

• Limited   availability   of   the   furnaces   meant   there   was   a   delay   starting   the  

experimentation.  This  can  be  seen  to  push  everything  back   in  fig  3.1.   It  also  meant  

the  time  with  use  of  the  equipment  was  relatively  low  and  meant  only  several  broad  

H-­‐T  temperatures  could  be  used.  

• NiTi   is   an   expensive  material.   As   a   result   its   availability   for   this   experiment  was   a  

limiting   factor.   Had   there   been   a   greater   supply   available,   more   experimentation  

could  have  been  carried  out.    

• The   student   budget  was   relatively   low   and   lead   to   only   being   able   to   use   limited  

machines   for   experimentation.   Ideally,   X-­‐Ray   Diffraction   (XRD),   Scanning   Electron  

Microscope   (SEM)   and   Transmission   Electron   Microscope   (TEM)   apparatus   would  

have  been  available   to  us.   This  was  not   the   case  due   to   the   limited  budget.  Using  

this   apparatus   would   have   allowed   us   to   have   a   much   more   comprehensive  

understanding  of  the  structure  of  the  samples  on  a  microscopic  scale.  

• The   limited   time   available   on   the   equipment   that   was   used   allowed   only   limited  

samples   to   be   tested.   Carry   out   experimentation   on   more   samples   would   allow  

statistically  significant  results.  

• The   available   software   did   not   include   NiTi   as   a   suitable   material.   Ti6Al4V   was  

simulated  instead  as  it  was  the  closest  available  to  NiTi.  The  materials  however  are  

too   dissimilar   to   include   in   this   study.   The   simulation   for   Ti6Al4V   is   included   in  

Appendix  B.    

 

Page 41: Project 3B Final

   32  

6.  Conclusions  &  Recommendations  

 

1. H-­‐T  of  NiTi  produces  a   thorough  change   in   the  characteristics  and  structure  of   the  

material.   It   alters   the   proportions   of   austenite   and   martensite   structure   in   the  

material   structure.     A   higher   temperature   H-­‐T,   and   higher   martensite   proportion  

leads  to  lower  phase-­‐inducing  transformation  load.  (100N  for  untreated,  80N  for  400  

°C).   SE   limit   of   NiTi   wire   under   load   is   105-­‐115N   (austenite)   &   85N(martensite).  

Cyclic   loading  of  NiTi   results   in  an  exponentially  decreasing   load  bearing  per  cycle.  

This   fatigue   in   the   material   is   caused   by   ‘residual   strain’.   An   increase   in   the   H-­‐T  

temperature  causes  an  increase  in  the  transformation  temperature  for  the  material.  

Comparing  each  DSC  curve  shows  a  rise  of  (~10  °C  per  50  °C  of  H-­‐T).    

2. 400   °C   H-­‐T   sample   shows   the   best   qualities   for   actuator   use.   It   behaves   more  

plastically,   so   can   deform   more   than   other   samples.   This   allows   for   a   greater  

deformation  and  resulting  stroke  length  under  the  SME.  

3. Mathematical  equations  allow  performance  parameters  of  the  coil  to  be  predicted.  

These  can  be  used  to  analyse  an  existing  coil  or  to  generate  a  design  of  a  coil  for  a  

specified  application.  (Appendix  A)  

 

Recommendations  for  further  Study  

 

This   study  has  given  a   good  understanding  of  NiTi   and   its   applications  utilising   SE  and   the  

SME.  The  limitations  previously  discussed  justify  further  study   in  this  area.  The  budget  and  

equipment   shortage  meant   that   the   quantity   of   samples   to   be   tested   as   desired  was   not  

met.   Further   studies  would   carry  out  more  precise   testing,   such   as  narrower   temperature  

treatment  to  more  precisely  determine  the  effect  of  H-­‐T.  The  budget  dictated  that  only  one  

set   of   DSC   results   were   achievable.   The   lack   of   suitable   equipment   also   meant   that   the  

machine   used  was   not   suited   to   the   analysis   required.  Other   analysis   of   the  material   that  

would   have   been   beneficial   such   as   X-­‐Ray   Diffraction   (XRD)   and   the   use   of   a  

Transmission/Scanning  Electron  Microscope  (TEM/SEM)  was  not  a  realistic  proposition  due  

to   the   budget   constraints.   Having   access   to   these   instruments   allows   the   structure   of   the  

material   to   be   seen   at   a   microscopic   scale.   Access   to   data   like   this   allows   further  

understanding   of   the   structure   of   the  material   and   how   it   changes   during  H-­‐T   and   during  

mechanical  testing.  In  order  to  assess  the  simulation  of  NiTi  with  CAD,  further  study  into  this  

area  should  be  undertaken.  Software  which  can  fully  model  NiTi  is  necessary.  

Page 42: Project 3B Final

   33  

The   investigation   involved   making   a   prototype   coil   spring   to   investigate   how   it   could   be  

designed   and   created   to   carry   out   the   application   of   an   actuator.   The   next   stage   in   this  

process  is  to  use  the  principles  determined  in  this  report  to  design  and  create  a  coil  and  test  

it  as  an  actuator  in  a  device  

 

 

 

Page 43: Project 3B Final

   34  

References  

 

[1]  Selection  of   shape  memory  alloys   for  actuators,  Materials  and  Design  23   (2002)  11-­‐19,  

Huang  W.  

[2]   Application   of   trained   NiTi   SMA   actuators   in   a   spatial   compliant   mechanism:  

~Experimental  investigations  (2008),  Sreekumer  M,  Nagarajan  T,  Singaperumal  M.    

[3]   Development   of   NiTi   actuator   using   a   two-­‐way   SMA   induced   by   compressive   loading  

cycles  (2008),  Kim  HC,  Yoo  YI,  Lee  JJ.  

[4]  Engineering  applications  of  NiTi  shape  memory  alloys  (2006),  Predki  W,  Knopik  A,  Bauer  

B.    

[5]  Recent  developments  in  the  research  of  shape  memory  alloys  (1998),  Otsuka  K,  Ren  X.  

[6]   Science  and  Technology  of   Shape-­‐Memory  Alloys:New  Developments   (2002),  Otsuka  K,  

Kakeshita  T.  

[7]  Use  of  NiTi  Shape  Memory  Alloys  for  Thermal  Sensor-­‐Actuators  (1991),  Stoeckel,  Waram.  

[8]  Crystallisation  of  amorphous  sputtered  NiTi  thin  films,  2006,  Ramirez  AG,  Hai  Ni,  Lee  HJ.  

[9]   Influence   of   heat   treatments   on   the  mechanical   properties   of   high-­‐quality   Ni-­‐rich   NiTi  

produced   by   powder   metallurgical   methods,   2006,   Mentz   J,   Bram   M,   Buchkremer   HP,  

Sto  ̈ver  D.  

[10]  Effect  of  post-­‐weld-­‐annealing  on  the  tensile  deformation  characteristics  of  laser  welded  

NiTi  thin  foil,  2011,  Chan  CW,  Man  HC,  Yuen  TM.  

[11]   XRD   and   TEM   study   of   heteroepitaxial   growth   of   zirconia   on  magnesia   single   crystal,  

1998,  Guinebretiere  R,  Soulestin  B,  Dauger  A.  

[12]  Flexible  distal  tip  made  of  nitinol  (NiTi)  for  a  steerable  endoscopic  camera  system,  1999,  

Fischer  H,  Vogel  B,  Pfleging  W,  Besser  H.  

[13]  Large  Force  Shape  Memory  Alloy  Linear  Actuator,  2002,  Santiago  Anadon  JR.  

[14]  Design   of   SMA  Actuator   Based  Access  Device   for   Transanal   Endoscopic  Microsurgery,  

2010,  Luo  H,  Abel  E,  Slade  A,  Wang,  Z,  Steele  R.  

[15]  Matweb.  (2010).  Nitinol  -­‐  NiTi  Shape  Memory  Alloy;  Low-­‐Temperature  Phase.  Available:  

http://www.matweb.com/search/datasheetText.aspx?bassnum=MTiNi1.   Last   accessed  

10/3/2014.  

[16]   Mmm-­‐jun.   (2012).  Nickel   Titanium.  Available:  

http://en.wikipedia.org/wiki/Nickel_titanium.  Last  accessed  11/3/2014.  

 

 

Page 44: Project 3B Final

   35  

Appendix  A  -­‐  Calculating  Performance  of  Prototype  

 

The   purpose   of   calculating   the   performance   of   the   prototype   was   to   compare   it   to   the  

results  obtained  from  the  CAD  model.  Limitations  on  the  available  software  have  refrained  

any  useful  data  being  obtained  through  this  method.  Subsequently  these  calculations  have  

now  been  rendered  somewhat   irrelevant  to  the  report,  hence  they  are  not   included  in  the  

main  body  of  the  text.  

 

The  prototype  created  previously  was  an  extension  spring,  as  in  this  application  the  spring  is  

required  to  produce  a  tension  force  when  heat  is  applied.  For  this  case  the  calculations  must  

be   specific   to   an   extension   type   spring.   The   main   characteristic   parameters   for   NiTi  

extension   spring   design   are   maximum   shear   stress   (τmax),   maximum   shear   strain   in   the  

martensitic  phase  (ϒmax),  shear  modulus  in  the  austenite  phase  (GA)  and  shear  modulus  in  the  

martensite  phase   (GM).   The   following  equations   show   the  mathematical   process   in   solving  

these   parameters   for   the   created   coil   spring,   using   inputs   taken   from   the   coil.   Equations  

sourced  from  Luo  et  al.  study  on  Design  of  SMA  Actuator  [14].  

 

   The  spring  index,        𝐶 = !!   where;  D  =  spring  average  diameter     (1)  

          d  =  wire  diameter  

 

Wahl’s  stress  correction  factor,    𝑤 = !!!!!!!!

+ !.!"#!

        (2)  

 

Max  shear  stress,      τ!"# =  !!!"#$!"

𝛑𝒅𝟐      where;  Fload=  external  load     (3)  

 

Strain  difference  between  austenite  and  martensite,  𝛥ϒ = !"#!"!!

      (4)  

          where;  ΔL  =  Stroke  length  of  coil    

            n  =  number  of  turns  in  coil    

   

Strain  in  the  austenite  phase,  ϒ! =!!"#!!

                        (5)  

      where;  GA=  Shear  modulus  in  the  austenite  phase  

 

Max  strain  in  the  martensite  phase,  ϒ!"# = 𝛥ϒ + ϒ!           (6)  

 

Page 45: Project 3B Final

   36  

These   calculations   show   how   various   properties   of   a   coil   can   be   determined.   With   a  

comprehension   in   how   these   properties   interact   and   how   they   can   be   produced,   an  

understanding  in  how  to  produce  a  coil  with  specified  properties  can  be  deduced.  

 

 

   

Page 46: Project 3B Final

   37  

Appendix  B  –  CAD  Simulation  

 

The   coil   that  was   created   in   the  CAD   software  underwent   a   simulation   in   Solidworks.   The  

material  used  in  the  simulation  was  the  titanium  alloy,  Ti6Al4V.  This  material  was  used  as  it  

was   the  most   similar   to  NiTi.   It  was   decided   however   that   its   properties  were   not   similar  

enough   to  NiTi   to   use   it   as   a   viable   comparison.   This   it   is   not   an   officially   included   in   the  

report.   NiTi   is   a   very   distinct   material,   and   any   simulation   must   be   modelling   its   unique  

properties.  In  essence,  this  section  is  included  as  a  reference.  The  coil  was  simulated  under  a  

tensile   load  of  10N  from  one  end  while  the  other  end  was  fixed.  Fig  4.24  shows  the  stress  

distribution  in  the  coil.  Fig  4.25  shoes  the  extension  of  the  coil.  Table  B1  shows  a  summary  of  

the  properties  of  Ti-­‐6Al-­‐4V  and  the  high  and  low  phases  of  NiTi.    

 

Fig  B.1  Stress  distribution  in  coil  under  10N  tensile  load.  

Fig  B.2  Extension  of  coil  under  10N  tensile  load.  

Page 47: Project 3B Final

   38  

Property   Material  

NiTi  (HT)   NiTi  (LT)   Ti-­‐6Al-­‐4V  

Young’s  Modulus,  GPa   75   28   113.8  

Ultimate   Tensile  

Strength,   MPa   (Yield,  

MPa)  

754-­‐960  (560)   754-­‐960  (100)   950  (880)  

Elongation   at   Fracture,  

%  

15.5   15.5   14  

Shear  Modulus,  GPa   28.8   10.8   44  

 

 

 

 

Table  B.1  Table  comparing  properties  of  Ti-­‐6Al-­‐4V  [15]  

Page 48: Project 3B Final

   39  

Appendix  C  -­‐  Project  Planning  &  Time  Management  

 

In  order   to  best  carry  out  a  project  such  as   this,   it   is   important   to  plan  well  and  keep  to  a  

schedule  in  order  not  to  fall  behind.  One  of  the  first  tasks  after  undertaking  the  project  was  

to  draw  up  a  schedule.  This  split  the  project   into  sections,  working  from  start  to  finish   in  a  

logical  order.  Deadlines  for  sections  were  set  and  a  chart  was  made  to  allow  the  candidate  

to  assess  their  self  against  the  plan  throughout  the  project.  The  chart  is  shown  in  fig  3.1.  

 

 

 

 

 

 

 

 

 

 

 

 

3(S1) 4 5 6 7 8 9 10 11 12 1(S2) 2 3 4 5 6 7 8 914/10/2013 21/10/2013 28/10/2013 04/11/2013 11/11/2013 18/11/2013 25/11/2013 02/12/2013 09/12/2013 16/12/2013 03/02/2014 10/02/2013 17/02/2014 24/02/2014 03/03/2014 10/03/2014 17/03/2014 24/03/2014 31/03/2014

Introduction Meeting5&5introduction5to5project

Read5exisitng5reports5&5thesis'

Inquire5available5equipment

Produce5work5chart

Report Introduction5(ch1)

Literature5Review

Submit5interim5report

Experimentation Design5experiment5plan

Use5furnace5for5NiTi5HT

Failure5tensile5testing

Cyclic5tensile5testing

DSC5test5of5HT5samples

Analysis Analyse5experimental5results

Prototype Create5coil5prototype

Design5coil5using5CAD

Comparison5of5CAD5&5prototype

Report Discussion5of5experimentation

Discussion5of5models

Conclusions

Polish5report5&5submit

Planned5completionActual5completion

Task Week

Fig  C.1  Work  chart  showing  planned  schedule  against  actual  schedule  

Page 49: Project 3B Final

   40  

Table  C.1  shows  a  summary  of  the  progression  of  objectives  throughout  the  project.  

 

Task   Planned  Date   Achieved  Date   Days  Late  

Familiarise   self   with  

project  

25/10/13   30/10/13   5  

Interim  Report   15/10/13   15/10/13   0  

Experimentation   07/02/14   06/03/14   27  

Analysis   17/02/14   10/03/14   21  

Prototype   07/03/14   21/03/14   14  

Final  Report   04/04/14   02/04/14   -­‐2  

 

It   is   important   to   look   at   the   progress   made   during   the   course   of   the   project.   Midway  

through   there  was   a  point  where   the   author  was   significantly  behind   schedule.   This   came  

about  in  the  experimentation.  The  delay  in  equipment  becoming  available  resulted  in  falling  

behind  schedule.  This  also  coincided  with  the  holiday  and  exam  period,  which  exaggerated  

the   length   of   time   behind   schedule.   Looking   at   the   fig   3.1   &   3.2   it   can   be   seen   that   the  

candidate  was  able   to  catch   the  schedule  again   in   time  by   the  deadline  of   the   report.  The  

fact  that  the  project  was  behind  schedule  at  a  point  shows  the  importance  of  planning.  The  

chart  made  it  clear  the  author  was  behind  progress,  and  using  this  tool  allowed  a  continuous  

assessment   against   the   objectives   in   order   to   get   back   up   to   speed   with   the   required  

progress.