31
Prof. David R. Jackson Notes 8 Transmission Lines (Bounce Diagram) ECE 3317 1 Spring 2013

Prof. David R. Jackson Notes 8 Transmission Lines (Bounce Diagram) ECE 3317 1 Spring 2013

Embed Size (px)

Citation preview

Page 1: Prof. David R. Jackson Notes 8 Transmission Lines (Bounce Diagram) ECE 3317 1 Spring 2013

1

Prof. David R. Jackson

Notes 8 Transmission Lines(Bounce Diagram)

ECE 3317

Spring 2013

Page 2: Prof. David R. Jackson Notes 8 Transmission Lines (Bounce Diagram) ECE 3317 1 Spring 2013

2

Step Response

The concept of the bounce diagram is illustrated for a unit step response on a terminated line.

RL

z = 0 z = L

V0 [V]

t = 0

+

-

Rg

gV t Z0

t

gV t

0gV t V u t

0V

Page 3: Prof. David R. Jackson Notes 8 Transmission Lines (Bounce Diagram) ECE 3317 1 Spring 2013

3

Step Response (cont.)

The wave is shown approaching the load.

RL

z = 0 z = L

V0 [V]

t = 0

+

-

Rg

gV t Z0

dct = 0 t = t1 t = t2 V +

00

0g

ZV V

R Z

(from voltage divider)

Page 4: Prof. David R. Jackson Notes 8 Transmission Lines (Bounce Diagram) ECE 3317 1 Spring 2013

4

Bounce Diagram

d

LT

c

00

0g

ZV V

R Z

0

0

gg

g

R Z

R Z

0

0

LL

L

R Z

R Z

0t

T

2T

3T

4T

5T

6T

Lg

V

L V

g L V

2g L V

2 2g L V

2 3g L V

0

V

(1 )L V

(1 )L g L V

2(1 )L g L g L V

2 2(1 )g L V

2 3(1 )g L V

z

t

z = 0

RL

z = L

V0 [V]

t = 0

+

-

Rg

gV t Z0

Page 5: Prof. David R. Jackson Notes 8 Transmission Lines (Bounce Diagram) ECE 3317 1 Spring 2013

5

Steady-State Solution

2 2 3 3 2 2 3 3

Sum of all right-traveling waves Sum of all left-traveling waves

0

( , ) (1 ) (1 )

(1 )

1 1 1

1

g L g L g L L g L g L g L

L L

g L g L g L

L

L

V z V V

VVV

R Z

R

0 00

00 0

0 0

00 0

0 00

00 0 0 0

1

1

gg L

g L

Lg L

L

gg L g L

Z ZV

R ZR Z R Z

R Z R Z

R ZR Z R Z

R Z ZV

R ZR Z R Z R Z R Z

Adding all infinite number of bounces, we have:

0

1

1

1

n

n

zz

z

Note: We have used

Page 6: Prof. David R. Jackson Notes 8 Transmission Lines (Bounce Diagram) ECE 3317 1 Spring 2013

6

Steady-State Solution (cont.)

00 0

0 00

00 0 0 0

0 00 0

000 0 0 0

0 00

00 0 0 0

0 0

0

1

( , )

2

2

2

Lg L

L

gg L g L

Lg L

L

gg L g L

L g

gg L g L

L

g L

R ZR Z R Z

R Z ZV z V

R ZR Z R Z R Z R Z

RR Z R Z

R Z ZV

R ZR Z R Z R Z R Z

R R Z ZV

R ZR Z R Z R Z R Z

R Z V

R Z R Z

0 0 0

0 02 20 0 0 0 0 0

0 0

0 0 0 0

2

2

g L

L

g L L g g L L g

L

L g L g

R Z R Z

R Z V

R R Z R Z R Z R R Z R Z R Z

R Z V

R Z R Z R Z R Z

Simplifying, we have:

Page 7: Prof. David R. Jackson Notes 8 Transmission Lines (Bounce Diagram) ECE 3317 1 Spring 2013

7

0 0

0 0 0 0

0 0

0 0

0 0

0 0

0

2( , )

2

2

L

L g L g

L

L g

L

L g

L

L g

R Z VV z

R Z R Z R Z R Z

R Z V

R Z R Z

R Z V

R Z R Z

R V

R R

0( , ) L

L g

RV z V

R R

Hence we finally have:

This is the DC circuit-theory voltage divider equation!

Continuing with the simplification:

Note: The steady-state solution does not depend on the transmission line length or characteristic impedance!

Steady-State Solution (cont.)

Page 8: Prof. David R. Jackson Notes 8 Transmission Lines (Bounce Diagram) ECE 3317 1 Spring 2013

8

Example

z = 0

RL = 25 []

z = L

V0 = 4 [V]

t = 0

+

-

Rg = 225 []

gV t Z0 = 75 [] T = 1 [ns]

0

1

2

3

4

5

6

1

2L 1

2g

1 [V]

1[V]

2

1[V]

4

1[V]

8

1[V]

16

1[V]

32

0

1 [V]

0.5 [V]

0.25 [V]

0.375 [V]

0.4375 [V]

0.40625 [V]1

[V]64

0.390625 [V]

[ns]t

[m]z0

00

1 [V]g

ZV V

R Z

0

0

1

2g

gg

R Z

R Z

0

0

1

2L

LL

R Z

R Z

Page 9: Prof. David R. Jackson Notes 8 Transmission Lines (Bounce Diagram) ECE 3317 1 Spring 2013

9

Example (cont.)The bounce diagram can be used to get an “oscilloscope trace” at any point on the line.

Steady state voltage: 0( , ) 0.400 [V]L

L g

RV z V

R R

[ns]t

1 2 3 4 5

1 [V]

0.5 [V]0.375 [V] 0.4375 [V]

0.25 [V]

34( , ) ( )V L t oscilloscope trace

[V]

3

4z L

0.75 [ns]

1.25 [ns]

2.75 [ns]

3.25 [ns]

0

1

2

3

4

5

6

1

2L 1

2g

1 [V]

1[V]

2

1[V]

4

1[V]

8

1[V]

16

1[V]

32

0

1 [V]

0.5 [V]

0.25 [V]

0.375 [V]

0.4375 [V]

0.40625 [V]1

[V]64

0.390625 [V]

[ns]t

[m]z

Page 10: Prof. David R. Jackson Notes 8 Transmission Lines (Bounce Diagram) ECE 3317 1 Spring 2013

10

The bounce diagram can also be used to get a “snapshot” of the line voltage at any point in time.

Example (cont.)

0

1

2

3

4

5

6

1

2L 1

2g

1 [V]

1[V]

2

1[V]

4

1[V]

8

1[V]

16

1[V]

32

0

1 [V]

0.5 [V]

0.25 [V]

0.375 [V]

0.4375 [V]

0.40625 [V]1

[V]64

0.390625 [V]

[ns]t

[m]z0

1

2

3

4

5

6

1

2L 1

2g

1 [V]

1[V]

2

1[V]

4

1[V]

8

1[V]

16

1[V]

32

0

1 [V]

0.5 [V]

0.25 [V]

0.375 [V]

0.4375 [V]

0.40625 [V]1

[V]64

0.390625 [V]

[ns]t

[m]z

3.75 [ns]t

L/4

[m]z

4

L

0.375 [V]0.25 [V]

( , 3.75 [ns]) ( )V z snapshot

2

L 3

4

LL

Wavefront is moving to the left

[V]

Page 11: Prof. David R. Jackson Notes 8 Transmission Lines (Bounce Diagram) ECE 3317 1 Spring 2013

11

To obtain a current bounce diagram from the voltage diagram, multiply forward-traveling voltages by 1/Z0, backward-traveling voltages by -1/Z0.

0

1

2

3

4

5

6

1

1

2

1

4

1

16

1

32

0

1

1.5

1.25

1.125

1.1875

1

64

1.203125

[ns]t

1

8

1.21875

0

1

2

3

4

5

6

1

2L 1

2g

1 [V]

1[V]

2

1[V]

4

1[V]

8

1[V]

16

1[V]

32

0

1 [V]

0.5 [V]

0.25 [V]

0.375 [V]

0.4375 [V]

0.40625 [V]1

[V]64

0.390625 [V]

[ns]t

[m]z0

1

2

3

4

5

6

1

2L 1

2g

1 [V]

1[V]

2

1[V]

4

1[V]

8

1[V]

16

1[V]

32

0

1 [V]

0.5 [V]

0.25 [V]

0.375 [V]

0.4375 [V]

0.40625 [V]1

[V]64

0.390625 [V]

[ns]t

[m]z

Note: This diagram is for the normalized current, defined as Z0 I (z,t).

[m]z

Voltage Current

Example (cont.)

Page 12: Prof. David R. Jackson Notes 8 Transmission Lines (Bounce Diagram) ECE 3317 1 Spring 2013

12

Note: We can also just change the signs of the reflection coefficients, as shown.

Note: These diagrams are for the normalized current, defined as Z0 I (z,t).

I

0

1

2

3

4

5

6

1

1

2

1

4

1

16

1

32

0

1

1.5

1.25

1.125

1.1875

1

64

1.203125

[ns]t

1

8

1.21875

1

2Ig 1

2IL

[m]z

Current

Example (cont.)

0

0

,

,

, 1/

, 1/

,

,

IL

L

I L t

I L t

V L t Z

V L t Z

V L t

V L t

Page 13: Prof. David R. Jackson Notes 8 Transmission Lines (Bounce Diagram) ECE 3317 1 Spring 2013

13

0

1

2

3

4

5

6

1

1

2

1

4

1

16

1

32

0

1

1.5

1.25

1.125

1.1875

1

64

1.203125

[ns]t

1

8

1.21875

1

2Ig 1

2IL

[m]z

Current

Example (cont.)

Steady state current: 0( , ) 0.016 [A]L g

VI z

R R

0 ( , ) 0.016 75 1.20Z I z

1 2 3 4 5

1

1.5

1.125 1.1875

1.25

30 4( , )

(

Z I L t

oscilloscope trace of current)

[ ]t ns

2.75 [ns]

3.25 [ns]

0.75 [ns]

1.25 [ns]

3

4z L

(units are volts)

Page 14: Prof. David R. Jackson Notes 8 Transmission Lines (Bounce Diagram) ECE 3317 1 Spring 2013

14

Example (cont.)

0

1

2

3

4

5

6

1

1

2

1

4

1

16

1

32

0

1

1.5

1.25

1.125

1.1875

1

64

1.203125

[ns]t

1

8

1.21875

1

2Ig 1

2IL

[m]z

Current

3.75 [ns]t

L/4

[m]z

4

L

1.1251.25

0 ( , 3.75 [ns])Z I z

(snapshot of current)

2

L 3

4

LL

Wavefront is moving to the left

(units are volts)

Page 15: Prof. David R. Jackson Notes 8 Transmission Lines (Bounce Diagram) ECE 3317 1 Spring 2013

15

Example

Reflection and Transmission Coefficient at Junction Between Two Lines

z = 0

RL = 50 []

z = L

V0 = 4 [V]

t = 0

+

-

Rg = 225 []

gV t Z0 = 75 [] Z0 = 150 []

T = 1 [ns]T = 1 [ns]

150 75 1

225 34

13

J

J JT

75 150 1

225 32

13

J

J JT

Junction

KVL: TJ = 1 + J(since voltage must be continuous across the junction)

J

JT

JT

J

Page 16: Prof. David R. Jackson Notes 8 Transmission Lines (Bounce Diagram) ECE 3317 1 Spring 2013

16

Example (cont.)

1

32

3

J

JT

4

31

3

J

J

T

Bounce Diagram for Cascaded Lines

z = 0

RL = 50 []

z = L

V0 = 4 [V]

t = 0

+

-

Rg = 225 []

gV t Z0 = 75 [] Z0 = 150 []

T = 1 [ns]T = 1 [ns]

0

1

2

3

4

1

2g

1 [V]

0.3333 [V]

0.1667[V]

0[V]

1 [V]

1.3333 [V]

1.5000 [V]

[ns]t

1

2L

1.3333 [V]

0.6667 [V]

0 [V]

1.3333 [V]

0.6667 [V]-0.4444 [V] 0.0555 [V]-0.3888 [V]

1.1111 [V] 1.1111 [V]

0.2222 [V] 0.2222 [V] 0.4444 [V]

[m]z

Page 17: Prof. David R. Jackson Notes 8 Transmission Lines (Bounce Diagram) ECE 3317 1 Spring 2013

17

Pulse Response

Superposition can be used to get the response due to a pulse.

0gV t V u t u t W

t

gV t 0V

W

We thus subtract two bounce diagrams, with the second one being a shifted version of the first one.

RL

z = 0 z = L

Vg (t)+

-

Rg

gV t Z0+-

Page 18: Prof. David R. Jackson Notes 8 Transmission Lines (Bounce Diagram) ECE 3317 1 Spring 2013

18

Example: Pulse

RL = 25 []

z = 0.75 L

z = 0 z = L

Rg = 225 []

Z0 = 75 [] T = 1 [ns]Vg (t) +-

W = 0.25 [ns]

V0 = 4 [V]

t

gV t 0V

W

1 [V]V

Oscilloscope trace

Page 19: Prof. David R. Jackson Notes 8 Transmission Lines (Bounce Diagram) ECE 3317 1 Spring 2013

19

Example: Pulse (cont.)

Subtract 0gV t V u t u t W

0

1

2

3

4

5

6

1

2L 1

2g

1 [V]

1[V]

2

1[V]

4

1[V]

8

1[V]

16

1[V]

32

0 [V]

1 [V]

0.5 [V]

0.25 [V]

0.375 [V]

0.4375 [V]

0.40625 [V]1

[V]64

0.390625 [V]

[ns]t

0.75 [ns]

1.25 [ns]

2.75 [ns]

3.25 [ns]

4.75 [ns]

5.25 [ns]

1.25

2.25

3.25

4.25

5.25

6.25

1

2L 1

2g

1 [V]

1[V]

2

1[V]

4

1[V]

8

1[V]

16

1[V]

32

0 [V]

1 [V]

0.5 [V]

0.25 [V]

0.375 [V]

0.4375 [V]

0.40625 [V]1

[V]64

0.390625 [V]

[m]z

W0.25

1.00 [ns]

1.50 [ns]

3.00[ns]

3.50[ns]

5.00 [ns]

5.50 [ns]

W = 0.25 [ns]3

4z L 3

4z L

Page 20: Prof. David R. Jackson Notes 8 Transmission Lines (Bounce Diagram) ECE 3317 1 Spring 2013

20

Example: Pulse (cont.)

Oscilloscope trace of voltage

[ns]t1 2 3 4 5

1 [V]

0.5 [V]

0.125 [V]

0.25 [V]

34( , )V L t

0.0625 [V]

0.03125 [V]

RL = 25 []

z = 0.75 L

z = 0 z = L

Rg = 225 []

Z0 = 75 [] T = 1 [ns]Vg (t) +-

W = 0.25 [ns]

V0 = 4 [V]

t

gV t 0V

W

Page 21: Prof. David R. Jackson Notes 8 Transmission Lines (Bounce Diagram) ECE 3317 1 Spring 2013

21

Example: Pulse (cont.)

t = 1.5 [ns]

1

2L 1

2g

1 [V]

1[V]

2

1[V]

4

1[V]

8

1[V]

16

1[V]

32

0

1 [V]

0.5 [V]

0.25 [V]

0.375 [V]

0.4375 [V]

0.40625 [V]1

[V]64

0.390625 [V]

[m]zW

3L / 4

0

1

2

3

4

5

6

1

2L 1

2g

1 [V]

1[V]

2

1[V]

4

1[V]

8

1[V]

16

1[V]

32

0

1 [V]

0.5 [V]

0.25 [V]

0.375 [V]

0.4375 [V]

0.40625 [V]1

[V]64

0.390625 [V]

[ns]t

1.25

2.25

3.25

4.25

5.25

6.25

0.25

L / 2

subtract

W = 0.25 [ns]

Snapshot 0gV t V u t u t W

Page 22: Prof. David R. Jackson Notes 8 Transmission Lines (Bounce Diagram) ECE 3317 1 Spring 2013

22

Example: Pulse (cont.)

Snapshot of voltage

[m]z

0.5 [V]

( , 1.5 [ns])V z

L0.5L 0.75L0.25L

t = 1.5 [ns]

RL = 25 []

z = 0 z = L

Rg = 225 []

Z0 = 75 [] T = 1 [ns]Vg (t) +-

W = 0.25 [ns]

V0 = 4 [V]

t

gV t 0V

W

Pulse is moving to the left

Page 23: Prof. David R. Jackson Notes 8 Transmission Lines (Bounce Diagram) ECE 3317 1 Spring 2013

23

Capacitive Load

C

z = 0 z = L

V0 [V]

t = 0

+

-

Rg = Z0

gV t Z0

Note: The generator is assumed to be matched to the transmission line for convenience (we wish to focus on the effects of the capacitive load).

0g Hence

The reflection coefficient is now a function of time.

Page 24: Prof. David R. Jackson Notes 8 Transmission Lines (Bounce Diagram) ECE 3317 1 Spring 2013

24

Capacitive Load (cont.)

0t

T

2T

3T

L t0g

V

L dt t V

0V

1 L dt t V

t

z0

00 0

0 / 2

ZV V

Z Z

V

CL

z = 0 z = L

V0 [V]

t = 0

+

- gV t Z0

Rg = Z0

/d dt L z c dt

z

Page 25: Prof. David R. Jackson Notes 8 Transmission Lines (Bounce Diagram) ECE 3317 1 Spring 2013

25

Capacitive Load (cont.)

At t = T: The capacitor acts as a short circuit: 1L T

At t = : The capacitor acts as an open circuit: 1L

Between t = T and t = , there is an exponential time-constant behavior.

/1 1 1 ,t TL t e t T

0 LZ C

/t TF t F F T F e

General time-constant formula: Hence we have:

CL

z = 0 z = L

V0 [V]

t = 0

+

-

Rg = Z0

gV t Z0

t T

Page 26: Prof. David R. Jackson Notes 8 Transmission Lines (Bounce Diagram) ECE 3317 1 Spring 2013

26

Capacitive Load (cont.)

0t

T

2T

3T

L t0g

V

L t T V

0V

1 L t T V

t

z

t

V(0,t)

T 2T

V0 / 2

V0 steady-state

/ /1 2 , 1 2 1t T t TL Lt e t e

CL

z = 0 z = L

V0 [V]

t = 0

+

-

Rg = Z0

gV t Z0

Assume z = 0

V(0,t)+

-

Oscilloscope trace

0 / 2V V

2 /0 1 t TV e

Page 27: Prof. David R. Jackson Notes 8 Transmission Lines (Bounce Diagram) ECE 3317 1 Spring 2013

27

Inductive Load

At t = T: inductor as a open circuit: 1L T

At t = : inductor acts as a short circuit: 1L

Between t = T and t = , there is an exponential time-constant behavior.

/1 1 1 ,t TL t e t T

0/LL Z

LL

z = 0 z = L

V0 [V]

t = 0

+

-

Rg = Z0

gV t Z0

Page 28: Prof. David R. Jackson Notes 8 Transmission Lines (Bounce Diagram) ECE 3317 1 Spring 2013

28

Inductive Load (cont.)

0t

T

2T

3T

L t0g

V

L t T V

0V

1 L t T V

t

z

t

V(0,t)

T 2T

V0 / 2

V0

steady-state

LL

z = 0 z = L

V0 [V]

t = 0

+

-

Rg = Z0

gV t Z0

/ /1 2 , 1 2t T t TL Lt e t e

0 / 2V V

2 /0

t TV e

Assume z = 0

V(0,t)+

-

Page 29: Prof. David R. Jackson Notes 8 Transmission Lines (Bounce Diagram) ECE 3317 1 Spring 2013

29

Time-Domain Reflectometer (TDR)

This is a device that is used to look at reflections on a line, to look for potential problems such as breaks on the line.

resistive load, RL > Z0resistive load, RL < Z0

t

V (0, t)

t

V (0, t)

The time indicates where the break is.

dt t

z = 0

Load

z = L

V0 [V]

t = 0

+

-

Rg = Z0

gV t Z0 Fault

(dt round - trip time down to fault)

The fault is modeled as a load resistor at z = zF.

z = zF

2 /d F dt Z c

Page 30: Prof. David R. Jackson Notes 8 Transmission Lines (Bounce Diagram) ECE 3317 1 Spring 2013

30

Time-Domain Reflectometer (cont.)

Capacitive load Inductive load

t

V (0, t)

t

V (0, t)

z = 0

Load

z = L

V0 [V]

t = 0

+

-

Z0

gV t Z0

(matched source)

The reflectometer can also tell us what kind of a load we have.

Page 31: Prof. David R. Jackson Notes 8 Transmission Lines (Bounce Diagram) ECE 3317 1 Spring 2013

31

Example of a commercial product

“The 20/20 Step Time Domain Reflectometer (TDR) was designed to provide the clearest picture of coaxial or twisted pair cable lengths and to pin-point cable faults.”

AEA Technology, Inc.

Time-Domain Reflectometer (cont.)