47
Prof. David R. Jackson Notes 20 Rectangular Waveguides ECE 3317 1 Spring 2013

Prof. David R. Jackson Notes 20 Rectangular Waveguides Rectangular Waveguides ECE 3317 1 Spring 2013

Embed Size (px)

Citation preview

Page 1: Prof. David R. Jackson Notes 20 Rectangular Waveguides Rectangular Waveguides ECE 3317 1 Spring 2013

1

Prof. David R. Jackson

Notes 20

Rectangular Waveguides

ECE 3317

Spring 2013

Page 2: Prof. David R. Jackson Notes 20 Rectangular Waveguides Rectangular Waveguides ECE 3317 1 Spring 2013

2

Rectangular Waveguide

Rectangular Waveguide

a

bx

y

,

Cross section

We assume that the boundary is a perfect electric conductor (PEC).

We analyze the problem to solve for Ez or Hz (all other fields come from these).

TMz: Ez onlyTEz: Hz only

Page 3: Prof. David R. Jackson Notes 20 Rectangular Waveguides Rectangular Waveguides ECE 3317 1 Spring 2013

3

TMz Modes

2 2E E 0z zk (Helmholtz equation)

H 0, E 0z z

E 0z on boundary (PEC walls)

0E , , E , zjk zz zx y z x y eGuided-wave assumption:

2 2 22

2 2 2

E E EE 0z z z

zkx y z

2 22 2

2 2

E EE E 0z z

z z zk kx y

TMz

Page 4: Prof. David R. Jackson Notes 20 Rectangular Waveguides Rectangular Waveguides ECE 3317 1 Spring 2013

4

TMz Modes (cont.)

We solve the above equation by using the method of separation of variables.

2 2

2 22 2

E EE 0z z

z zk kx y

Define:2 2 2c zk k k

2 22

2 2

E EE 0z z

c zkx y

Note that kc is an

unknown at this point.We then have:

We assume: 0E ,z x y X x Y y

2 220 0

02 2

E EE 0z z

c zkx y

Dividing by the exp(-j kz z) term, we have:

Page 5: Prof. David R. Jackson Notes 20 Rectangular Waveguides Rectangular Waveguides ECE 3317 1 Spring 2013

5

TMz Modes (cont.)

Hence, 2cX Y XY k XY

2c

X Yk

X Y

Hence 2c

X Yk

X Y

Divide by XY :

0E ,z x y X x Y ywhere

F x G yThis has the formBoth sides of the equation must be a constant!

2 220 0

02 2

E EE 0z z

c zkx y

Page 6: Prof. David R. Jackson Notes 20 Rectangular Waveguides Rectangular Waveguides ECE 3317 1 Spring 2013

6

TMz Modes (cont.)

Denote

2c

X Yk

X Y

constant

2x

Xk

X

constant

(0) 0 (1)

( ) 0 (2)

X

X a

( ) sin( ) cos( )x xX x A k x B k x

Boundary conditions:

General solution:

0 ( ) sin( )xB X x A k x

sin( ) 0xk a

(1)

(2)

Page 7: Prof. David R. Jackson Notes 20 Rectangular Waveguides Rectangular Waveguides ECE 3317 1 Spring 2013

7

TMz Modes (cont.)

sin( ) 0xk a The second boundary condition results in

This gives us the following result:

, 1, 2xk a m m

( ) sinm x

X x Aa

Hence

Now we turn our attention to the Y (y) function.

x

mk

a

Page 8: Prof. David R. Jackson Notes 20 Rectangular Waveguides Rectangular Waveguides ECE 3317 1 Spring 2013

8

TMz Modes (cont.)

We have

2 2c x

X Yk k

X Y

2 2x c

Yk k

Y

Hence

2 2 2y c xk k k

Then we have2y

Yk

Y

Denote

( ) sin( ) cos( )y yY y C k y D k y General solution:

Page 9: Prof. David R. Jackson Notes 20 Rectangular Waveguides Rectangular Waveguides ECE 3317 1 Spring 2013

9

TMz Modes (cont.)

( ) sin( ) cos( )y yY y C k y D k y

(0) 0 (3)

( ) 0 (4)

Y

Y b

Boundary conditions:

0 ( ) sin( )yD Y y C k y

sin( ) 0yk b

Equation (4) gives us the following result:

, 1, 2yk b n n

(3)

(4)

y

nk

b

Page 10: Prof. David R. Jackson Notes 20 Rectangular Waveguides Rectangular Waveguides ECE 3317 1 Spring 2013

10

TMz Modes (cont.)

( ) sinn y

Y y Cb

Hence

0E , ( ) sin sinz

m x n yx y X x Y y AC

a b

Therefore, we have

0E , sin sinz mn

m x n yx y A

a b

,

E , , sin sinm n

zjk zz mn

m x n yx y z A e

a b

New notation:

The TMz field inside the waveguide thus has the following form:

Page 11: Prof. David R. Jackson Notes 20 Rectangular Waveguides Rectangular Waveguides ECE 3317 1 Spring 2013

11

TMz Modes (cont.)

Recall that 2 2 2y c xk k k

2 2 2c x yk k k Hence

2 22c

m nk

a b

Therefore the solution for kc is given by

Next, recall that 2 2 2c zk k k

2 2 2z ck k k Hence

Page 12: Prof. David R. Jackson Notes 20 Rectangular Waveguides Rectangular Waveguides ECE 3317 1 Spring 2013

12

TMz Modes (cont.)

Summary of TMz Solution for (m,n) Mode (Hz = 0)

,

E , , sin sinm n

zjk zz mn

m x n yx y z A e

a b

2 2

, 2m nz

m nk k

a b

1,2,

1,2,

m

n

Note: If either m or n is zero, the entire field is zero.

Page 13: Prof. David R. Jackson Notes 20 Rectangular Waveguides Rectangular Waveguides ECE 3317 1 Spring 2013

13

TMz Modes (cont.)

Cutoff frequency

2, ,2m n m n

z ck k k

2 2

,m nc

m nk

a b

where

Set , 0m nzk

,m nck k

,m nck

,2 m ncf k

We start with

Note: The number kc is the

value of k for which the wavenumber kz is zero.

Page 14: Prof. David R. Jackson Notes 20 Rectangular Waveguides Rectangular Waveguides ECE 3317 1 Spring 2013

14

TMz Modes (cont.)

,2 m ncf k Hence

2 2

2m n

fa b

which gives us

,

2 2

2m nTM d

c

c m nf

a b

The cutoff frequency fc of the TMm,n mode is then

,

2 21

2m nTM

c

m nf

a b

This may be written as

1dc

Page 15: Prof. David R. Jackson Notes 20 Rectangular Waveguides Rectangular Waveguides ECE 3317 1 Spring 2013

15

TEz Modes

2 2

2 22 2

H HH 0z z

z zk kx y

We now start with

Using the separation of variables method again, we have

0H ,z x y X x Y y

( ) sin( ) cos( )y yY y C k y D k y

( ) sin( ) cos( )x xX x A k x B k x

2 2 2c x yk k k 2 2 2

z ck k k

where

and

E 0, H 0z z TEz

Page 16: Prof. David R. Jackson Notes 20 Rectangular Waveguides Rectangular Waveguides ECE 3317 1 Spring 2013

16

TEz Modes (cont.)

Boundary conditions:

E ( ,0) 0

E ( , ) 0x

x

x

x b

E (0, ) 0

E ( , ) 0

y

y

y

a y

a

bx

y

,

cross section

0H , cos cosz mn

m x n yx y A

a b

The result is

2 2 2 2z z z

xz z

H jk EjE

k k y k k x

2 2 2 2z z z

yz z

H jk EjE

k k x k k y

This can be shown by using the following equations:

0, 0,zHy b

y

0, 0,zHx a

x

Page 17: Prof. David R. Jackson Notes 20 Rectangular Waveguides Rectangular Waveguides ECE 3317 1 Spring 2013

17

TEz Modes (cont.)

Summary of TEz Solution for (m,n) Mode (Ez = 0)

,

H , , cos cosm n

zjk zz mn

m x n yx y z A e

a b

2 2

, 2m nz

m nk k

a b

0,1,2

0,1,2

m

n

Note: The (0,0) TEz mode is not valid, since it violates the magnetic Gauss law:

, 0,0m n

00ˆH , , jkzx y z z A e H , , 0x y z

Same formula for cutoff frequency as the TEz case!

Page 18: Prof. David R. Jackson Notes 20 Rectangular Waveguides Rectangular Waveguides ECE 3317 1 Spring 2013

18

Summary

,

H , , cos cosm n

zjk zz mn

m x n yx y z A e

a b

2 2

, 2m nz

m nk k

a b

0,1,2,

0,1,2,

, 0,0

m

n

m n

Same formula for both cases

,

E , , sin sinm n

zjk zz mn

m x n yx y z A e

a b

TMz

TEz

2 2

,

2m n d

c

c m nf

a b

Same formula for both cases

1,2,

1,2,

m

n

TMz TEz

Page 19: Prof. David R. Jackson Notes 20 Rectangular Waveguides Rectangular Waveguides ECE 3317 1 Spring 2013

19

Wavenumber

2 2z ck k k

2 2

c

m nk

a b

General formula for the wavenumber

TMz or TEz mode: with

2

2

2

1 /

1 /

1 /

z c

c

c

k k k k

k

k f f

c c

k

k

Recall:

21 /z ck k f f Hence

2 2

2d

c

c m nf

a b

Note: The (m,n) notation is suppressed here.

Above cutoff:

Page 20: Prof. David R. Jackson Notes 20 Rectangular Waveguides Rectangular Waveguides ECE 3317 1 Spring 2013

20

Wavenumber (cont.)

2 2 2 2z c ck k k j k k

Hence

2 2

2

2

2

1 /

1 /

1 /

z c

c c

c c

c c

k j k k

jk k k

jk

jk f f

21 /z c ck jk f f Hence

2 2

2d

c

c m nf

a b

Below cutoff:

Page 21: Prof. David R. Jackson Notes 20 Rectangular Waveguides Rectangular Waveguides ECE 3317 1 Spring 2013

21

Wavenumber (cont.)

zk j

Hence we have

21 / ,c ck f f f f

21 / ,c c ck f f f f

2 2

2d

c

c m nf

a b

Recal that

Page 22: Prof. David R. Jackson Notes 20 Rectangular Waveguides Rectangular Waveguides ECE 3317 1 Spring 2013

22

Wavenumber Plot

f

ck

cf

k

General behavior of the wavenumber

21 / ,c ck f f f f

21 / ,c c ck f f f f

2 2

2d

c

c m nf

a b

“Light line”

Page 23: Prof. David R. Jackson Notes 20 Rectangular Waveguides Rectangular Waveguides ECE 3317 1 Spring 2013

23

Dominant Mode

The "dominant" mode is the one with the lowest cutoff frequency.

2 2

2d

c

c m nf

a b

Assume b < a

a

bx

y

,

Cross sectionLowest TMz mode: TM11

Lowest TEz mode: TE10

0,1,2,

0,1,2,

, 0,0

m

n

m n

1,2,

1,2,

m

n

TMz

TEz

The dominant mode is the TE10 mode.

Page 24: Prof. David R. Jackson Notes 20 Rectangular Waveguides Rectangular Waveguides ECE 3317 1 Spring 2013

24

Dominant Mode (cont.)

Formulas for the dominant TE10 mode

10H , , cos zjk zz

xx y z A e

a

22

zk ka

2d

c

cf

a

21 / ,c ck f f f f

21 / ,c c ck f f f f

At the cutoff frequency:

/ /d d cc f c f

cf f

2a

Page 25: Prof. David R. Jackson Notes 20 Rectangular Waveguides Rectangular Waveguides ECE 3317 1 Spring 2013

25

Dominant Mode (cont.)

What is the mode with the next highest cutoff frequency?

2 2

2d

c

c m nf

a b

Assume b < a / 2

The next highest is the TE20 mode.

fcTE10 TE20

2,0 1,02c cf f

useful operating region

a

bx

y

,

Cross section

TE01

2

0,1 1

2 2d d

c

c cf

b b

2

2,0 2 2

2 2d d

c

c cf

a a

Page 26: Prof. David R. Jackson Notes 20 Rectangular Waveguides Rectangular Waveguides ECE 3317 1 Spring 2013

26

Dominant Mode (cont.)

Fields of the dominant TE10 mode

10H , , cos zjk zz

xx y z A e

a

Find the other fields from these equations:

2 2 2 2

H EE z z z

yz z

jkj

k k x k k y

2 2 2 2

E HH z z z

xz z

jkj

k k y k k x

2 2 2 2

H EE z z z

xz z

jkj

k k y k k x

2 2 2 2

E HH z z z

yz z

jkj

k k x k k y

Page 27: Prof. David R. Jackson Notes 20 Rectangular Waveguides Rectangular Waveguides ECE 3317 1 Spring 2013

27

Dominant Mode (cont.)

From these, we find the other fields to be:

10ˆE , , sin zjk zxx y z y E e

a

10ˆH , , sin zjk zzk xx y z x E e

a

x

y

a

b

E

H

10 102 2z

jE A

k k a

where

Page 28: Prof. David R. Jackson Notes 20 Rectangular Waveguides Rectangular Waveguides ECE 3317 1 Spring 2013

28

Dominant Mode (cont.)

2

2

E

H

1 /

1 /

y

x z

c

c

k

k f f

f f

2

E 1

H 1 /

yTE

x zc

Zk f f

Define the wave impedance:

Wave impedance:

Note: This is the same formula as for a TEz plane wave!

0

r

Page 29: Prof. David R. Jackson Notes 20 Rectangular Waveguides Rectangular Waveguides ECE 3317 1 Spring 2013

29

Example

Standard X-band* waveguide (air-filled):

* X-band: from 8.0 to 12 GHz.

a = 0.900 inches (2.286 cm)b = 0.400 inches (1.016 cm)

1,0

2c

cf

a

1,0 6.56 [GHz]cf

2,0 13.11 [GHz]cf

Find the single-mode operating frequency region.

Hence, we have

Use

Note: b < a / 2.

Page 30: Prof. David R. Jackson Notes 20 Rectangular Waveguides Rectangular Waveguides ECE 3317 1 Spring 2013

30

Example (cont.)

Standard X-band* waveguide (air-filled):

a = 0.900 inches (2.286 cm)b = 0.400 inches (1.016 cm)

1,0 6.56 [GHz]cf

Find the phase constant of the TE10 mode at 9.00 GHz.

Find the attenuation in dB/m at 5.00 GHz

21 / ,c ck f f f f

21 / ,c c ck f f f f

0 0 02 / 2 /k f c

At 9.00 GHz: = 129.13 [rad/m] At 5.00 GHz: = 88.91 [nepers/m]

At 9.00 [GHz]: k =188.62 [rad/m]

Recall:

/ 137.43 [rad/m]ck a

Page 31: Prof. David R. Jackson Notes 20 Rectangular Waveguides Rectangular Waveguides ECE 3317 1 Spring 2013

31

Example (cont.)

At 5.00 [GHz]: = 88.91 [nepers/m]

10E , , sin zy

xx y z A e

a

110dB/m 20log e

dB/m 772A very rapid attenuation!

dB/m 8.68589 [nepers/m] 8.68589

Note: We could have also used

Therefore,

Page 32: Prof. David R. Jackson Notes 20 Rectangular Waveguides Rectangular Waveguides ECE 3317 1 Spring 2013

32

Guide Wavelength

The guide wavelength g is the distance z that it takes for the wave to repeat itself.

2g

From this we have

2 2

2 221 / 1 /

g

c ck f f f f

Hence we have the result

21 /

g

cf f

0

r

(This assumes that we are above the cutoff frequency.)

Page 33: Prof. David R. Jackson Notes 20 Rectangular Waveguides Rectangular Waveguides ECE 3317 1 Spring 2013

33

Phase and Group Velocity

Recall that the phase velocity is given by

pv

Hence

2 2 2

1

1 / 1 / 1 /p

c c c

vk f f f f f f

21 /

dp

c

cv

f f

For a hollow waveguide (cd = c): 2

1 /p

c

cv

f f

We then have

vp > c ! (This does not violate relativity.)Hence:

Page 34: Prof. David R. Jackson Notes 20 Rectangular Waveguides Rectangular Waveguides ECE 3317 1 Spring 2013

34

Phase and Group Velocity (cont.)

The group velocity is the velocity at which a pulse travels on a structure.

The group velocity is given by

1g

dv

ddd

(The derivation of this is omitted.)

A pulse consists of a "group" of frequencies (according to the Fourier transform).

t

iV t

Vi (t) +- waveguiding system

gv

Page 35: Prof. David R. Jackson Notes 20 Rectangular Waveguides Rectangular Waveguides ECE 3317 1 Spring 2013

35

Phase and Group Velocity (cont.)

If the phase velocity is a function of frequency, the pulse will be distorting as it travels down the system.

Vi (t) +- waveguiding system

gv

A pulse will get distorted in a rectangular waveguide!

2

1 /

dp

c

cv f

f f

Page 36: Prof. David R. Jackson Notes 20 Rectangular Waveguides Rectangular Waveguides ECE 3317 1 Spring 2013

36

Phase and Group Velocity (cont.)

We then have the following final result:

2 2 2 2c ck k k

21 /g d cv c f f

vg < cFor a hollow waveguide:

To calculate the group velocity for a waveguide, we use

Hence we have

1/22 2

2 2 2 2

12

2 1 / 1 /c

c c c

dk

d k k k k k

Page 37: Prof. David R. Jackson Notes 20 Rectangular Waveguides Rectangular Waveguides ECE 3317 1 Spring 2013

37

Phase and Group Velocity (cont.)

k

For a lossless transmission line or a lossless plane wave (TEMz waves):

We then have

1p dv c

1 1g dv c

dd

p g dv v c Hence we have

For a lossless transmission line or a lossless plane wave line there is no distortion, since the phase velocity is constant with frequency.

j R j L G j C

j LC

j

jk

(a constant)

Page 38: Prof. David R. Jackson Notes 20 Rectangular Waveguides Rectangular Waveguides ECE 3317 1 Spring 2013

38

Plane Wave Interpretation of Dominant Mode

Consider the electric field of the dominant TE10 mode:

10

10

ˆE , , sin

ˆ2

z

x x

z

jk z

jk x jk xjk z

xx y z y E e

a

e ey E e

j

Separating the terms, we have:

10 10ˆ ˆE , ,2 2

x xz zjk x jk xjk z jk zE Ex y z y e e y e e

j j

This form is the sum of two plane waves.

1 ˆˆ z xk z k x k

/xk awhere

2 ˆˆ z xk z k x k

#1 #2

Page 39: Prof. David R. Jackson Notes 20 Rectangular Waveguides Rectangular Waveguides ECE 3317 1 Spring 2013

39

Plane Wave Interpretation (cont.)

2

/tan

1

x

zc

k a

k fk

f

At the cutoff frequency, the angle is 90o. At high frequencies (well above cutoff) the angle approaches zero.

Picture (top view):x

z

a

k1

k2

TE10 mode

1 ˆˆ z xk z k x k

2 ˆˆ z xk z k x k

Page 40: Prof. David R. Jackson Notes 20 Rectangular Waveguides Rectangular Waveguides ECE 3317 1 Spring 2013

40

Plane Wave Interpretation (cont.)

The two plane waves add to give an electric field that is zero on the side walls of the waveguide (x = 0 and x = a).

Picture of two plane waves

a

k2

k1

z

x

Crests of waves

g

cd

vp

cd

Waves cancel out

Page 41: Prof. David R. Jackson Notes 20 Rectangular Waveguides Rectangular Waveguides ECE 3317 1 Spring 2013

41

Waveguide Modes in Transmission Lines

A transmission line normally operates in the TEMz mode, where the two conductors have equal and opposite currents.

At high frequencies, waveguide modes can also propagate on transmission lines.

This is undesirable, and limits the high-frequency range of operation for the transmission line.

Page 42: Prof. David R. Jackson Notes 20 Rectangular Waveguides Rectangular Waveguides ECE 3317 1 Spring 2013

42

Waveguide Modes in Transmission Lines (cont.)

Consider an ideal parallel-plate transmission line (neglect fringing)

x

y

w

h

EH

PMC

PEC

A “perfect magnetic conductor” (PMC) is assumed on the side walls.

Assume w > h

Rectangular “slice of plane wave” (the region inside the waveguide)

(This is an approximate model of a microstrip line.)

Page 43: Prof. David R. Jackson Notes 20 Rectangular Waveguides Rectangular Waveguides ECE 3317 1 Spring 2013

43

Waveguide Modes in Transmission Lines (cont.)

Some comments about PMC

A PMC is dual to a PEC:

PEC PMC

E 0t

ˆE Enn

H 0t

ˆH Hnn

PEC

E

PMC

H

Page 44: Prof. David R. Jackson Notes 20 Rectangular Waveguides Rectangular Waveguides ECE 3317 1 Spring 2013

44

Waveguide Modes in Transmission Lines (cont.)

From a separation of variables solution, we have the following results for the TMz and TEz waveguide modes:

x

y

w

h PMC

PEC

,

H , , sin cosm n

zjk zz mn

m x n yx y z A e

w h

2 2

, 2m nz

m nk k

w h

,

E , , cos sinm n

zjk zz mn

m x n yx y z A e

w h

TMz

TEz

Assume w > h

Page 45: Prof. David R. Jackson Notes 20 Rectangular Waveguides Rectangular Waveguides ECE 3317 1 Spring 2013

45

Waveguide Modes in Transmission Lines (cont.)

The dominant mode is TE10

1,0

10H , , sin zjk zz

xx y z A e

w

x

y

w

h PMC

PEC

2

1,0 2zk k

w

The cutoff frequency of the TE10 mode is

2

2 2d d

c

c cf

w w

Page 46: Prof. David R. Jackson Notes 20 Rectangular Waveguides Rectangular Waveguides ECE 3317 1 Spring 2013

46

Waveguide Modes in Transmission Lines (cont.)

Example

x

y

w

h

Microstrip line

fc 32 [GHz]

2.2 (Rogers 5880 Duroid)r

1.575 [mm] (62 [mils])h

2 3.15[mm]w h

0 65.4 [ ]Z

2d

c

cf

w

8

3

3 10 / 2.2

2 3.15 10cf

103.2 10 [Hz]cf

Assume:

Page 47: Prof. David R. Jackson Notes 20 Rectangular Waveguides Rectangular Waveguides ECE 3317 1 Spring 2013

47

Waveguide Modes in Transmission Lines (cont.)

Dominant waveguide mode in coax (derivation omitted)

1 1

1 /c

r

cf

b aa

4

4

0.035 inches 8.89 10 [m]

0.116 inches 29.46 10 [m]

2.2r

a

b

Example: RG 142 coax

0/ 3.31 48.4[ ]b a Z

16.8 [GHz]cf

TE11 mode:

a

b

r