11
or if we take Y = exp (-- Dr t--Dr t) F -- e-O* F, (A .7) F ---~ (D -- D ---v - - D r ) - ' K], ix- (A .8) Substitution of (A.7) and also of the corresponding Value for Xay into (A.4) leads to (2.10), while (A.8) is _ I equivalent to the expression (D ~T _ DT)F = KI,I~, i.e., to the second equation in (2.10a). 3. Similarly, solving Eq. (2.11), we obtain k~ (t) ----Z~: B~ -- Y,r B ~ R~ v,r~ + perm., (A .9) where Yot~ has the earlier meaning of (A.6), while t Z,~ = .[ d': (e-D(t--"),p (e-D'f--~))'~ "K~o, -- (e-D')~ . (A .10) 0 Changing to the modified matrix notation and integrating, we obtain Z ---- exp (-- _Dr t) O -- exp(-- Dr-- Dr) O, (A.11) where G (D + D-- D r)-' ~x = -- Kl1,1 (A .12) Expressions (2.13) and (2.14) follow from (A.9), (A.11), and (A.7). 1~ 2. 3. 4. 5. LITERATURE CITED R. L. Stratonovich, Vestn. Mosk. Gos. Univ., Fiz. Astren., No. 4, 84 (1967). R. L. Stratonovich, Vestn. Mosk. Gos. Univ., Fiz. Astron., No. 5, 479 (1970). R. L. Stratonovich, Izv. Vyssh. Uchebn. Zaved., Radiofiz., 13, No. 10, 1512 (1970). N. A. Krupennikov, Izv. Vyssh. Uchebn. Zaved., Radiofiz., 1__88,No. 3, 383 (1975). G. F. Efremov, Zh. Eksp. Teor. Fiz., 51, 156 (1966). PROBABILITY CHARACTERISTICS OF DYNAMIC SYSTEMS SUBJECTED TO NON-DELTA-CORRELATED RANDOM FORCES A. N. Malakhov and O. V. Muzychuk UDC 538.56:519.25 The authors develop a method of analyzing dynamic systems of fairly genera[ form acted on by intensive random forces with an arbitrary scale of correlation. Chains of kinetic equations are set up to determine the one-point probability characteristics. Breaking of these chains at some step corresponds to disregarding the higher-order statistical relations between the random action and some functional of it. A correspondence is established between the proposed procedure of obtaining closed kinetic equations and another approach based on replacement of a Gaussian random force by a superposition of statistically independent telegraph processes. Using some examples, the possibility of using the second approximation for determining the probability characteristics of nonlinear systems and of systems with fluctuating parameters is investigated. 1. In statistical physics, in the theory of wave propagation in randomly inhomogeneous media, and in statistical radio engineering, extensive use is made of the kinetic equations of the Markov (or first diffusion) approximation to determine the probability characteristics of processes and fields [1, 2]. These equations Gorki State University. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 23, No. 8, pp. 968-981, August, 1980. Original article submitted April 4, 1979. 0033-8443/80/2308-0651507.50 1981 Plenum Publishing Corporation 651

Probability characteristics of dynamic systems subjected to non-delta-correlated random forces

Embed Size (px)

Citation preview

o r

if we take

Y = exp ( - - Dr t - - D r t) F - - e-O* F, (A .7)

F ---~ (D - - D ---v - - D r ) - ' K], ix- (A .8)

Substitution of (A.7) and also of the cor responding Value for X a y into (A.4) leads to (2.10), while (A.8) is _ I equivalent to the express ion (D ~ T _ DT)F = KI,I~, i . e . , to the second equation in (2.10a).

3. S imi la r ly , solving Eq. (2.11), we obtain

k~ (t) ---- Z~: B ~ - - Y,r B ~ R~ v,r~ + perm., (A .9)

where Yot~ has the e a r l i e r meaning of (A.6), while t

Z , ~ = .[ d': (e-D(t--"),p (e-D'f--~))'~ "K~o, -- (e-D')~ . (A .10) 0

Changing to the modif ied m a t r i x notation and integrat ing, we obtain

Z ---- exp (-- _Dr t) O -- exp(-- D r - - Dr) O, (A.11)

where

G (D + D - - D r ) - ' ~x = -- Kl1,1 (A .12)

Expressions (2.13) and (2.14) follow f rom (A.9), (A.11), and (A.7).

1~

2. 3. 4. 5.

L I T E R A T U R E C I T E D

R. L. Stratonovich, Vestn. Mosk. Gos. Univ., Fiz . As t ren . , No. 4, 84 (1967). R. L. Stra tonovich, Vestn . Mosk. Gos. Univ., Fiz . As t ron . , No. 5, 479 (1970). R. L. Stratonovich, Izv. Vyssh . Uchebn. Zaved. , Radiofiz. , 13, No. 10, 1512 (1970). N. A. Krupennikov, Izv. Vyssh. Uchebn. Zaved. , Radiofiz. , 1__88, No. 3, 383 (1975). G. F. E f r e m o v , Zh. Eksp. Teor . F iz . , 51, 156 (1966).

P R O B A B I L I T Y C H A R A C T E R I S T I C S OF D Y N A M I C

S Y S T E M S S U B J E C T E D TO N O N - D E L T A - C O R R E L A T E D

R A N D O M F O R C E S

A. N . M a l a k h o v a n d O. V . M u z y c h u k UDC 538.56:519.25

The authors develop a method of analyzing dynamic s y s t e m s of fa i r ly genera[ fo rm acted on by intensive random fo rces with an a r b i t r a r y scale of cor re la t ion . Chains of kinetic equations a re se t up to de te rmine the one-point probabi l i ty c h a r a c t e r i s t i c s . Breaking of these chains at some step co r r e sponds to d i s regard ing the h i g h e r - o r d e r s ta t i s t i ca l re la t ions between the random action and some functional of it. A cor respondence is es tab l i shed between the proposed procedure of obtaining c losed kinet ic equations and another approach based on rep lacement of a Gaussian random force by a superposi t ion of s ta t i s t ica l ly independent te legraph p r o c e s s e s . Using some e x a m p l e s , the poss ib i l i ty of using the second approximat ion for de termining the probabi l i ty c h a r a c t e r i s t i c s of nonl inear s y s t e m s and of s y s t e m s with fluctuating p a r a m e t e r s is investigated.

1. In s ta t i s t ica l phys ics , in the theory of wave propagat ion in randomly inhomogeneous media , and in s ta t i s t i ca l radio engineer ing , extensive use is made of the kinetic equations of the Markov (or f i r s t diffusion) approximat ion to de te rmine the probabi l i ty c h a r a c t e r i s t i c s of p r o c e s s e s and fields [1, 2]. These equations

Gorki State Univers i ty . T rans l a t ed f rom Izves t iya Vysshikh Uchebnykh Zavedenii , Radiofizika, Vol. 23, No. 8, pp. 968-981, August , 1980. Original a r t i c le submit ted Apri l 4, 1979.

0033-8443/80/2308-0651507.50 �9 1981 Plenum Publishing Corpora t ion 651

are exact only in the case of de l ta -cor re la ted random actions. At the same t ime, it is c lear that the idealiza- tion of real physical p rocesses as being de l ta -cor re la ted itself involves certain assmm'ptions and may be un- acceptable in a number of cases . Problems of determining the f i rs t two moments of the output coordinate of stochastic l inear sys tems with nonwhite random actions that are Markov p rocesses have been fairly well in- vestigated at present [3-6]. A more general s tat is t ical description (nonlinear systems) has been achieved only for random forces that constitute Markov p rocesses with a finite number of s ta tes , p r imar i ly for "telegraph" actions with Poisson s ta t is t ics of jumps [4, 7, 8].

Such a probabil is t ic descript ion can theoret ical ly be achieved by employing the apparatus of mult ivariate Markovproces se s , b u t i t i s exceptionally difficult to obtain pract ical resul ts along these lines in view of the di.fficuity of solving the part ia l differential kinetic equations. In this paper we propose a method of setting up the kinetic equations for the probabili ty charac te r i s t i c s of dynamic sys tems of fairly general form with non- de l ta -cor re la ted random forces . Two models of such forces are considered: a Gaussian Markov p rocess and the square of a Gaussian p roces s . The procedure is essential ly a further general izat ion of the cumulant ap- proach [9] that was used in [6, 10] to determine the moments of the output coordinate of stochastic Linear sys - tems with nonwhite actions.

2. Let us f i rs t consider a one-dimensional dynamic sys tem descr ibed by the equation

dx =~(x)+g(x) ~(t), x(O)=xo, dt

where f(x) and g(x) are a rb i t r a ry functions, while random force a(t) is a Gaussian Markov process . it by the auxil iary s tochast ic equation

d~ a--i- + rt ~ = ~ (t), (2)

where r/(t) is Gaussian de l t a - co r r e l a t ed noise , for which

< ~ > = 0 , <~( t )~ ( t - -~ ) )=D~(~) , D ~ = 2 [ I ( ~ >

[the Last equation s tems f r o m the fact that p rocess a(t) is assumed to be stationary]. System (1), (2) defines a Markov population {a (t), x(t)} which can be descr ibed stat is t ical ly on the bas is of the two-dimensional proba- bility density Wax(a , x; t) Since it is virtually never possible to solve the corresponding "two-dimensional" F o k k e r - Pianck equation, we will consider another approach.

Assume that ~(x) is an a rb i t r a ry physically "good" function. On the basis of (1) we write the Liouvitle equation for the evolution of the mean value < r

The last t e rm of this equation is not closed relative to the one-dimensional probabili ty density of the output coordinate. Putting

~,(t) g(x) oq,(x____~) = ~(x, O, Ox

we can write the kinetie equation for {qJ,(x, t)) on the bas is of (1), (2):

It makes sense to r epresen t the last s tat is t ical mean in the following form:

where (~ , a , Z) is a cumulant bracket (joint t h i rd -o rde r cumuLant); Z = [g(O/0x)12Lb is some function of ran- dom force a (t). Introducing the notation*

< ( x\ < ~ ( x , O > = ~rS~(O, gox ~ ( ) / ' s = l , 2 . . . . . (4)

* Without the stat is t ical averaging opera tor , function ~ (x, t) is the so-calLed "incomplete cumulant bracket" (see the Appendix and also [9]).

(1)

We specify

652

and using the proper t ies of cumuiant b racke t s [9], we a r r ive at the following chain of kinetic equations:

ot - \ r Ox / + ( ~ ) '

( O + n ) <q''>='/fOq~'\+<~'>/{gO'~'N Ox / \~, Ox ] *~-- + ( "> ' (5)

. . . . . . . o ~ . . . . . . . . . . . . . * �9 �9 , �9 �9

�9 �9 * . . . . . . . . . . * . . . . . . . . . . . . . . . . .

In view of the s tat is t ical independence of random force a (t) and any functional of the form Z [a] = Z(x[a]) at the initial instant t = 0 the auxil iary var iables ( S s ) posses s zero initial conditions:

(~s(x, 0)) = 0 , s = 1, 2 .....

white the unknown function ($(x)) can have an a rb i t r a ry initial condition.

System (5) is exact; as s ~ oc it contains all the stat ist ical information on the output coordinate x(t) which is available in the two-dimensional F o k k e r - Planck equation. Chain (5) can be closed at some step in two ways: a) by omitting the function ( ~ ) in the equation for ($n-1); b) by closing the equation for (g?n-1), formal ly assuming the random force to be de l ta -cor re la ted only in the equation for (~b n) . Following the t e rmin - nology of [6,10], we will cat[ the solution for ($(x)) corresponding to method of closure a) the resul t of the n- th approximation, white that corresponding to case b) will be catted the n- th diffusion approximation. Method of c losure a) cor responds to d is regarding the h ighe r -o rde r stat ist ical relationships between the random force and some functional of it.

Making the passage to the limit to de l t a -cor re la ted noise

11 -+ oo, (a ~) ~ o% 2 (~2)/[[ = D = const (6)

in the equation for (~n), we obtain

"D (g(x) O ~ t ) )

Using this last resul t for n = 1, we a r r ive at the f i rs t diffusion (Markov) approximation for the unknown func- tion (~b(x)):

ot = \ ox / ~ \ \ ox } ~>. (7) Let us also give the sys tem of equations of the second diffusion approximation:

o(q~) = / f oq~ \ + (0,) Or' \ Ox /

(8)

\ o x /

Dropping the last t e rm in the second equation of (8), we obtain the second approximation for (r which is widely known in the case of a l inear s tochast ic sys tem as the Bourre t approximation.

Let us call attention to the following c i rcumstance : the condition for obtaining the second approximation

< involves d is regarding the joint cumulant (~2) = a, ~, g ~ which corresponds to the following "dis-

honest" opening of the mixed moment :

(~z(t) z, [~l ) ~ <~) ( z~ [~l >, z, = g q, (x, t).

It is known, however, that this last formula is exact for any functional Zt[a] if random force a(t) is a tele- graph (dichotomous) p rocess with a Poisson stat is t ic of jumps [7, 8]. This process possesses the same c o r - relation function Bo~(T)= ( a 2 ) e x p ( - l q l T I ) a s the Gaussian process under consideration. Thus, limiting

653

o u r s e l v e s to the second approx ima t ion c o r r e s p o n d s to r ep l ac ing a Gaussian r a n d o m act ion by a t e l eg raph act ion with the same c o r r e l a t i o n funct ion. Compar ing with the r e s u l t s of [11], we can a s s e r t that conf ining o u r s e l v e s to the n - t h approx ima t ion in this r e s p e c t is adequate to a r e p l a c e m e n t of a (t) by a supe rpos i t ion of n - 1 s t a - t i s t i ca l ly independent t e l e g r a p h p r o c e s s e s .

Set t ing $(x) = x n in (4) and (5), we obtain a s y s t e m of coupled equat ions fo r de t e rmin ing the m o m e n t ( x n ) . In the case o f an addi t ive ac t ion (g(x) = 1), this chain has f ini te o r d e r n . We should no te , however , that fo r any non l inea r function f(x) the s y s t e m is unsolvable without addi t ional a s s u m p t i o n s , s ince it includes h igher m o m e n t s of the output coord ina te . F o r the l i nea r p r o b l e m (f(x) = - a x ) the exac t value of the m o m e n t can be r ead i ly de t e rmined . In the case of a Linear s t ochas t i c equat ion if(x) = - a x , g(x) = - x ) s y s t e m (5) r educ e s to an infinite chain r e l a t ive to the v a r i a b l e s

(x"), O, x"> .... , Oral, x">, .:.,

whose solution can be represented by a continued fraction [6].

3. Since for the nonlinear problem system (8), like any closed system of equations of the n-th or n-th* diffusion approximation, does not enable us to determine the moments, let us consider the construction of a system of kinetic equations to obtain the one-dimensional probability distributions of the output coordinate W(x; t). Set t ing ~b(x) = f i x - x(t)] in (4) and (5), and p e r f o r m i n g some manipu la t ions that a re d e s c r i b e d in the Appendix , we can Obtain

OW O O o-7- + ~ (f w) = ~ (g w,),

. . . . . . . . . . . . . . . . . . . . . . . . . . (9)

s-----l, 2 ....

Here W(x; t) ~-W0(x , t ) , while the aux i l i a ry v a r i a b l e s Ws(x , t) a r e r e l a t ed to the condi t ional cumulan t s of the p r o c e s s ~ (t) (see the Appendix):

w,(x, 0 = ( - - 1 p W(x; t) O~sh>x. (10)

They p o s s e s s ze ro ini t ial condi t ions and "ze ro weight" :

W,(x, O),= O, ~ Ws(x, t)dx = O, s = l, 2 .... - - c o

Chain of equat ions (9) is c l o sed at some s tep in a m a n n e r s i m i l a r to (5). Thus , the s y s t e m of equat ions of the n - t h diffusion approx ima t ion fo r the probabi l i ty dens i ty W(X; t) can be obta ined by p a s s a g e to the l imi t to white noise in the equat ion fo r Wn(x, t) , where

W,~(x, t ) = D 0 2 o---; g(x) w~_, (x, O.

Using the las t e x p r e s s i o n fo r n = 1 and subs t i tu t ing into the f i r s t equat ion in (9), we read i ly obtain the F o k k e r - PLanck equat ion. The c o r r e s p o n d i n g p robab i l i ty dens i ty will be ca l led the r e su l t of the diffusion approx imat ion and denoted by Wd(X; t) in what fo l lows. Omit t ing the va r i ab le W 2 in the second equat ion of chain (9), we ob- ta in the c losed s y s t e m of equat ions of the second approx ima t ion :

OW 0 Tx 0--7 + ~ (fW)= (gW,), (11) (0 ) 0

J7 + ~ ~' + -~x (/w,) = o'> (gW).

The corresponding probability density willbe denotedby W(2 ) in what follows. Assuming that there exists a stationary probability density W(2)(x) = W(2)(X; oo), on the basks of (II) we can readily obtain

C l g l exp ( I I . [ f a x ) /,(x) < O'> g~(x) (12) Wr = <~2) g, _/2 _ <~2> g, __ f2

O, f=(x) > <~'> g~(x)

*As in R u s s i a n o r ig ina l -- P u b l i s h e r .

654

This impl ies that funct ion W(2)(x) is f ini te . A s i m i l a r r e su l t was f i r s t obtained in [8], where this p robabi l i ty dens i ty was the exac t solut ion of the in t eg rod i f f e ren t i a l k inet ic equat ion c o r r e s p o n d i n g to t e l eg raph p r o c e s s a ( t ) . Making the p a s s a g e to the l imi t (6) in (12), we obtain the wel l -known s t a t i ona ry solut ion of the F o k k e r - P lanek equat ion:

W~(x) - - I g ( x ) I g ' ( x ) " (13)

4 . Le t us ana lyze some p a r t i c u l a r c a s e s in g r e a t deta i l . Cons ide r a dynamic s y s t e m with an addit ive ex te rna l f o r ce (g(x) = 1). In this ca se Eq. (1) d e s c r i b e s the mot ion of a pa r t i c l e in a potent ia l well ac ted upon by a r a n d o m fo rce with finite c o r r e l a t i o n t ime . The s e c o n d - a p p r o x i m a t i o n s y s t e m (11) y ie lds the fol lowing equat ion f o r the s t a t i ona ry p robab i l i ty dens i ty :

d "dx [((d-') - - [2 (x)) W(2)(x) ] = 11 [ (x) W(2i (x). (14)

Mult ip lying (14) th rough by x and in tegra t ing by p a r t s , we obtain

&-> + r~ <xf (x) > = < p (x) >, (15)

where the second and th i rd t e r m s a re a v e r a g e d with p robab i l i ty dens i ty W(2)(x). Note that if we were to use the s t a t i ona ry f o r m of the exac t chain of equat ions (9), the t e r m dW2(x)/dx would be added to the r igh t side of (14). As fol lows f r o m (9), the s t a t i ona ry value of the aux i l i a ry var iab le W2(x) has the f o r m of the der iva t ive with r e s p e c t to x of some e n s e m b l e of func t ions , and hence the p r e s e n c e of th is t e r m does not affect r e su l t (15). In o t h e r w o r d s , e x p r e s s i o n (15), obta ined on the bas i s of the s e c o n d - a p p r o x i m a t i o n probabi l i ty dens i ty , is exac t . This can a lso be e s t ab l i shed d i r e c t l y f r o m the ini t ial equat ions (1) and (2) (see the Appendix).

In the p a r t i c u l a r ca se of a l i nea r s y s t e m (f(x) = - a x ) we can obtain the exac t value of the va r i ance of the output coord ina te f r o m (15):

<x~> = a 2 (I + 2~) -x , (16)

where 2 = < a )a-2, v = II (2a) -i are, respectively, the dimensionless variance and the spectral width of random force ~ (t). The stationary second-approximation probability density has the following form here:

,V(2)(x) = a '-2~ B - ' (v; I ) ( a ' - - x ' ) ~-', x ..< ~, (17)

where ]3 (v; 1/2) is a beta function. Of course, direct integration of (17) also yields result (16). We should note, however, that in determining the higher-order moments [which have the form <x 2n ) = (2n - l)l!<x2> n in view of the Gaussian nature of probability distribution W(x)], expression (17) leads to incorrect results. Figure 1 shows the form of distribution (17) as a function of the width v of the fluctuation spectrum (for fixed value of A 2 = Cr2/2V = 1). It Can be seen that f o r v < 1 function W(2)(x) d i f fe rs e n t i r e l y f r o m a Gauss ian c u r v e ,

t,~'c~) / 0.6 ~ / .

0,4 ~ 5

�9 E

1 2 x

F ig . 1. P robab i l i ty dens i ty (17) as a function of r e l a - t i r e s p e c t r a l width v: cu rve 1) diffusion approx imat ion (v =~,) ; cu rve 2) v = 2 ; curve 3) v = l ; cu rve 4) v = 0.5; cu rve 5) exac t p robab i l i ty d is t r ibu t ion for v = 1.

655

0,8 [

t

a4 I

~2 I

i

Fig . 2. S e c o n d - a p p r o x i m a t i o n p r o b a b i l i t y d e n s i t y fo r a s y s t e m w i t h p u r e l y cub ic n o n l i n e a r i t y fo r A = 1: c u r v e 1) d i f fus ion a p p r o x i m a t i o n (v = oo); do t t ed c u r v e i s f o r v = 5 v * ; c u r v e 2) v = v * ; c u r v e 3) v = 0 . 2 v * .

a l though , a s n o t e d a b o v e , i t l e a d s to an e x a c t va lue of the v a r i a n c e . A s v i n c r e a s e s , W(2)(x) , l ike the so lu t ion of the F o k k e r - P t a n c k e q u a t i o n , r a p i d l y " c o n v e r g e s " to the e x a c t r e s u l t .

F o r a s y s t e m wi th p u r e l y cub ic n o n l i n e a r i t y if(x) = - a x a ) , e x p r e s s i o n (15) l e a d s to an equa t ion tha t l inks the fou r th and s ix th m o m e n t s :

( x 6 ) + 2 ~ ( x 4 ) = & (18)

In the c a s e of a d e l t a - c o r r e l a t e d f o r c e (0-2 = 2vA2, v --* 0o), we ob ta in f r o m th i s the fou r th m o m e n t (X4)d = A 2, whi le in the c a s e of a q u a s i s t a t i c a c t i on (0 -2 = c o n s t , v ~ 0) we ob ta in the e x a c t va lue of the s ix th m o m e n t (x6)lv=o = 0-2. H e r e the s e c 0 n d - a p p r o x i m a t i o n p r o b a b i l i t y d e n s i t y has the f o r m

C (p _ x 2) ,/6p exp arctg p W(2)(x) = P a-x6 P~'q-PX2+ x4 pV3- p V 3 ' (19)

1 x l < g p - , p = ~/3.

It can be s een f r o m t h i s tha t t h e r e e x i s t s s o m e c r i t i c a l va lue of the f luc tua t ion band v* = 3p (which depends on the n o i s e in t ens i ty ) such tha t f o r v > u* p r o b a b i l i t y d e n s i t y (19) has a f o r m tha t i s q u a l i t a t i v e l y s i m i l a r to d i f - fus ion d e n s i t y (13), w h e r e g(x) = 1, f(x) = - a x 3. T h e s e c u r v e s a r e e n t i r e l y d i f f e r e n t in shape fo r v < v*, s i n c e d i s t r i b u t i o n ( 1 9 ) b e c o m e s unbounded a t the ends of the r e g i o n of e x i s t e n c e Ixl = pq-pT. F i g u r e 2 shows the t r a n s - f o r m a t i o n of the shape of p r o b a b i l i t y d i s t r i b u t i o n (19) a s a funct ion of the r e l a t i v e s p e c t r a l width v. It should b e n o t e d t h a t , even f o r v = 5v*, W(2)(x) v i r t u a l l y c o i n c i d e s wi th Wd(X).

F o r the c a s e of a q u a s i s t a t i c ac t ion (v --* 0) the s e c o n d - a p p r o x i m a t i o n m o m e n t s can be d e t e r m i n e d a n a - l y t i c a l l y . In p a r t i c u l a r ,

( x~)~2~ = p, ( x~}(~, -=- p~.

The c o r r e s p o n d i n g e x a c t v a l u e s can b e o b t a i n e d b y a v e r a g i n g the q u a s i s t a t i c so lu t ion of i n i t i a l equa t ion (1) wi th r e s p e c t to the GaussiarL d i s t r i b u t i o n a :

(x2)=2~/a~-~laF(5)p~O.8Op,

(x4> = 22/a~_l12r pZ~. 0.83p2.

L e t us a l so g ive the r e s u l t s of G a u s s i a n a p p r o x i m a t i o n , which we ob t a in b y s e t t i n g v = 0 in (18), and a l so (X 2n) = (211 - 1) I ! (x2)n:

<x~>r ~ 0,40 p, <x 4 )r ~ 0.49 pL

656

Thi s e x a m p l e shows tha t the a g r e e m e n t wi th the e x a c t v a l u e s of the m o m e n t s o b t a i n e d by i n t e g r a t i o n of the s e c o n d - a p p r o x i m a t i o n p r o b a b i l i t y d e n s i t y i s s a t i s f a c t o r y even in the c a s e of a m a x i m a l l y s low ac t ion (and the a g r e e m e n t i s b e t t e r than tha t y i e l d e d b y the G a u s s i a n a p p r o x i m a t i o n ) . S ince in the o t h e r l i m i t i n g c a s e of a d e l t a - c o r r e l a t e d ac t i on the s e c o n d a p p r o x i m a t i o n goes o v e r into a M a r k o v a p p r o x i m a t i o n and b e c o m e s e x a c t , t h e r e i s r e a s o n to a s s u m e tha t i t can be s u c c e s s f u l l y u s e d a t l e a s t to d e t e r m i n e the f i r s t few m o m e n t s of the output c o o r d i n a t e o f n o n l i n e a r s t o c h a s t i c s y s t e m s .

H i g h e r a p p r o x i m a t i o n s shou ld be e m p l o y e d when i t i s n e c e s s a r y to a t t a in g r e a t e r a c c u r a c y ; in s o m e c a s e s the "d i f fu s ion" c l o s u r e in the e q u a t i o n s f o r <$s> (or Ws) , s = 2, 3 . . . . . can y i e l d b e t t e r r e s u l t s than s i m p l y d i s c a r d i n g v a r i a b l e s wi th a g r e a t e r n u m b e r [6 ,101. S y s t e m s (5), (9) s p e c i f y a r e l a t i v e l y s i m p l e and e o m p u t e r - i m p l e m e n t a b l e a l g o r i t h m f o r c o n s t r u c t i n g the h i g h e r a p p r o x i m a t i o n s .

5. L e t us c o n s i d e r one n o n - G a u s s i a n m o d e l of a r a n d o m ac t ion a (t) tha t a d m i t s a s i m i l a r s t a t i s t i c a l d e s c r i p t i o n of a s y s t e m . A s s u m e tha t a (t) = ~ 2(0, whi le ~ (t) i s G a u s s i a n n o i s e s p e c i f i e d b y the a u x i l i a r y s t o - c h a s t i c equa t ion

.d~ + H ~ = ~ ( t ) , (2a) dt 2

w h e r e 77(t), a s b e f o r e , i s whi te G a u s s i a n n o i s e . A f t e r some m a n i p u l a t i o n s s i m i l a r to t h o s e in Sec . 2, we can ob t a in the fo l lowing cha in s y s t e m of k i n e t i c e q u a t i o n s * :

= a x / + ( ~ ) ' at \ ax / �9 �9 . . . . * * �9 , , �9 . , �9 �9 �9 . . �9 ; , . �9 �9 ,

(20)

<,(o), , +2s(2s--l)<~2>2 g-ox ~z,-~ + < ~ + 2 > , s - - - - l , 2 . . . . .

H e r e we have i n t r o d u c e d the a u x i l i a r y v a r i a b l e

< ~ , ( x , t) > \~[2sl

which p r o c e s s e s z e r o i n i t i a l c o n d i t i o n s ( l ike t h o s e u s e d above) . F o r the c a s e of a l i n e a r s t o c h a s t i c s y s t e m , E q s . (20) e n a b l e us to f ind an e x a c t so lu t ion fo r the m o m e n t s of the output c o o r d i n a t e s in the f o r m of a c o n - t i n u e d f r a c t i o n [10] a s i n t h e e a s e of a G a u s s i a n a c t i on . To a n a l y z e a n o n l i n e a r s y s t e m , we should change o v e r f r o m (20) to the c o r r e s p o n d i n g cha in of e q u a t i o n s fo r the p r o b a b i l i t y d e n s i t y . P e r f o r m i n g m a n i p u l a t i o n s a n a l o - gous to t h o s e in the A p p e n d i x , we ob ta in the fo l lowing s y s t e m of k ine t i c e q u a t i o n s :

a w + 0__ a e ~ , at ox (f + < ~> g) w = Ox

. . . . . . . . . . . . . . . . . . . . . . . �9 (21)

(o ) o o ~ + sn ~/~, + "~x ( /+ (4s + l) < ~,> g) ~'2s - - -~x e ( ~ + 2 + 2 s ( 2 s - ~) < ~ > - ~ _ ~ ) , s = 1, 2 . . . . .

w h e r e , a s b e f o r e , the v a r i a b l e s W2s(X, t) a r e de f ined by (I0) fo r even v a l u e s of the n u m b e r s in (.10). When the i n i t i a l d y n a m i c equa t ion c o n t a i n s no t the s q u a r e of the G a u s s i a n p r o c e s s o~ = g2(t) bu t only f l uc tua t i ons of t h i s quan t i t y , ~ = ~ 2 _ <~2>, t e r m s con ta in ing the v a r i a n c e <~2) in the f i r s t d e g r e e in (21) shoutd be s e t equa l to z e r o . In t h i s e a s e , in any equa t ion of (21) b e g i n n i n g wi th the s e c o n d , we can f o r m a l l y change o v e r to "whi te" n o i s e ~ (t) b y m a k i n g the p a s s a g e to the l i m i t

H -+ oo, 2 < "~2 >/1I = 4 < ~ >2/II = D = const

and can construct higher diffusion approximations for the probability density W(x; t). If the initial equation contains ~ 2(I;) (as is the case in a number of applications, e .g. , in analyzing noise self-compensation systems with correlational feedback [12]), this passage to the limit makes no physical sense. In this case, in order to obtain the n-th approximation for the probability density we should omit the function W2n in the equation for

* S i m i l a r k ine t i c e q u a t i o n s fo r a s t o c h a s t i c l i n e a r s y s t e m w e r e d e r i v e d in [10].

657

W2n_ 2 [in complete a g r e e m e n t with the construct ion of higher approximat ions in the case of a Gaussian action a(t)] . We should note , however , that this b reak ing of chains (20) and (21) does not co r r e spond to r ep l acemen t of a rea l Gaussian action ~ (t) [or ~2(t)] by a superposi t ion of t e legraph p r o c e s s e s , as was the case for Gaus- sian p r o c e s s c~(t).

As in the case of a Gaussian act ion ~ (t), it is poss ib le to obtain the s ta t ionary probabi l i ty densi ty of the second approximat ion W(2)(x) (if it exis ts ) f rom (21). Setting 0 /a t = 0 in (21) and confining ou r se lves to the f i r s t two equat ions, we a r r i v e at the express ion

= S h (x) h (x) (22)

h (x) = p (x) + 6 < }~ > ~ (x) g (x) + 3 < ~2 >~ g"(x),

which somewhat r e ca l l s (12).*

As an example , let us cons ider the s tochas t ic equation

dx + bx + ~" (t) x = a ~2 (t), (23)

dt

which d e s c r i b e s , under ce r ta in condit ions, the re laxat ion of the control voltage (x) in a noise s e l f - c o m p e n s a - tion s y s t e m with co r re la t iona l feedback [12]. Gaussian noise ~ (t) (the envelope of the in te r fe rence) is spec i - fied by auxi l ia ry equation (2a). On the b a s i s of (22) we can de te rmine the s ta t ionary probabi l i ty density of f luctuations of the contro l vol tage, but we will cons ider only the second momen t <x 2> = <x2(t)> I t . - . oo. Setting r = x 2 in (20) and confining ou r se lves to the second-approx imat ion s y s t e m , we can readi ly obtain the follow- ing equations for the s ta t ionary value <x2):

(1 + 8) < x2 ) + ~tx 2= a~ (<x) + :q), (24)

4~ <x~> + 2(1 + �9 + 5~) x2 = 2a~(3 < x > -- a) + a(1 + 2~ + 15,~)x,,

where n l = <f, ~, x><~2>-1, n2 = (~, ~, x2) <}2)-t a re aux i l i a ry va r i ab l e s , r ep re sen t ing joint cumulants ; ~ = <~ 2>b-1, t, = II(2b) - t a r e d imens ion less p a r a m e t e r s that c h a r a c t e r i z e the power and spec t r a l width of the noise

(t). The values of <x) and ~1 can be readi ly de te rmined in advance f rom the s i m i l a r s y s t e m of equations [for which we need to se t r = x in (20)1:

a~ I + ~ < X > = l + ~ + 2 ~ ( 1 + 3~ + 2~)_x, x , = a + ~ < x > . (25)

It is e x t r e m e l y difficult to find the exact value of <x 2) fo r a r b i t r a r y v and/3, but Eq. (23) yie lds the quasis ta t ic probabi l i ty density

W(x)['=~ = (2~x)-'/~(a " x)-3/~ exp ( 2~(aX x) ' (26)

0 < x < a ,

which enables us to obtain <x2) by d i rec t integrat ion.

Figure 3 shows the quas is ta t ic values of the second momen t <x2>lt,=0 as a function of the noise power/~. Curve 1 is the exact solution, obtained by numer i ca l integrat ion of probabi l i ty density (26). Curve 2 is the r e su l t of the second approximat ion , obtained f rom (24) and (25) for v = 0. Curve 3 co r re sponds to the "f i rs t approximat ion ," i . e . , to d i rec t opening of the mixed momen t s <xk~ 2> ~ <xk><~ 2>, k = 1, 2. Thus, even for a quas is ta t ic act ion, the second approximat ion vi r tual ly coincides with the exact r e su l t in the region of modera te noise /~ ~ 1.

6. The above approach is fully appticabte to the s ta t i s t ica l descr ip t ion of mul t iva r i a t e dynamic s y s t e m s with one random force :

dxk fk(x) + a (t) gk (x), k = 1, N, (27) dt

* The probabi l i ty density (22) of the second approximat ion , like the cor responding density for a Gaussian action, is finite; in the region h(x) -< 0 we have W(2)(x) - 0.

658

0.4

o21 0,1

,hZ"

J 0,4 4

F i g . 3

w h e r e x = (xi, x2, . . . . x N) i s the N - d i m e n s i o n a l s t a t e v e c t o r of the s y s t e m , whi le p r o c e s s ~(t) i s s p e c i f i e d by a u x i l i a r y s t o c h a s t i c equa t ion (2). The chain of k i n e t i c equa t ions fo r the a v e r a g e va lue of a r b i t r a r y funct ion $(x) now has the f o r m

o <q~> ot (~ f ~ \ + ( ~k>,

Ox /

s ~ I, 2 ..... (28)

w h e r e fo r b r e v i t y we have put

f O ~ f ~ ( x ) 0 ( 0 )2 0 g](x) c)

S u m m a t i o n i s p e r f o r m e d o v e r r e p e a t i n g i n d i c e s f r o m 1 to N. The a u x i l i a r y func t ions e m p l o y e d h e r e a r e d e - f ined by c u m u l a n t b r a c k e t s of the f o r m

~k . . . . n (x , t ) = ( / ~ m ( t ) , gk(x) 0 O~ n ~.,~ \ ~ ... g.(x) ~(x) , s = 1, 2 . . . . .

The s y s t e m of equa t i ons c o r r e s p o n d i n g to (9) f o r d e t e r m i n i n g the N - d i m e n s i o n a l o n e - p o i n t p r o b a b i l i t y d e n s i t y W{x; t) i s

OW (x; t) 0 0 Ot -t- ~ f~(x) W(x; t) = ~ g~(x) Wx(x, t),

�9 o . . . . ~ �9 o ~ ~ o , . . . . . . . . . . . . .

--~- + s n ~s(x, 0 + /k(x)~/Ax, 0 = g,(x)(W~+l(x, O + s ( ~ l~'~_~(x, 0),

w h e r e the func t ions Ws(x , t) p o s s e s s z e r o i n i t i a l cond i t ions and a r e de f ined by e x p r e s s i o n (10) to wi th in the s u b s t i t u t i o n x ~ x. C l o s u r e of s y s t e m s of k ine t i c equa t i ons (28) and (29) can be e f f e c t e d as in the o n e - d i m e n - s i o n a l e a s e c o n s i d e r e d above . In p a r t i c u l a r , m a k i n g the p a s s a g e in the l i m i t to whi te n o i s e ~ (t) in t h e equa t ion f o r the funct ion Wl(x, t ) , we ob ta in an e x p r e s s i o n fo r the l a t t e r in t e r m s of the unknown p r o b a b i l i t y d e n s i t y :

D 0 lV,Cx, t) - - g . ( x ) tV,(x; t). (30)

2 Ox~

Subs t i t u t i ng (30) into the f i r s t equa t ion in (29), we a r r i v e at an N - d i m e n s i o n a l F o k k e r - P i a n c k equa t ion :

(0 0 ) o 0 --g/- + ~ f~(x) v~J~(x; 0 = 2 o,,, g,(x) g.(x) tV~(x; t).

If the r a n d o m f o r c e in (27) i s the s q u a r e of a G a u s s i a n p r o c e s s ~ (t), then it i s a l so no t d i f f i cu l t to g e n e r - a l i z e the c o r r e s p o n d i n g r e s u l t s of See . 5. We shou ld n o t e , h o w e v e r , tha t i t is not p o s s i b l e to ob ta in in the g e n e r a l c a s e an a n a l y t i c so lu t ion fo r the s e c o n d - a p p r o x i m a t i o n p r o b a b i l i t y d e n s i t y s i m i l a r to (12) o r (22) f o r the m u l t i d i m e n s i o n a l problem.

659

A P P E N D I X

1. Taking r in (4) and (5) to be a del ta function

9(x) = ~ (x' - x) - - ~ (x)~, x = x ( t ) ,

we t r a n s f o r m the s t a t i s t i ca l a v e r a g e (4). We in t roduce the s o - c a l l e d incomple te cumulan t b r a c k e t s (paren- theses ) [9]. By def ini t ion, b r a c k e t (x, y . . . . . z) c is some function of r andom va r i ab l e s and the i r s t a t i s t i ca l a v e r a g e s , w h i e h b e e o m e s a e u m u l a n t b r a e k e t a f t e r a v e r a g i n g , e . g . ,

(x, y), = xy - <x> y,

<(x, Y),> = <xy> - <x> <y> - - <x, y>.

Using this no ta t ion , we wr i t e the s t a t i s t i ca l mean < Ss(X)6 > ill the f o r m

rs <~(x , t)~ > = -~ w..(~', x'; 0 ct~l(O, g ~ x ' ~(x'--x) ~ acax',

where W~x (o~', x ' ; t) is the joknt p robab i l i ty dens i ty of p r o c e s s e s c~ (t) and x(t). In tegra t ing by pa r t s with r e - speet to x ' , we have

�9 <%(x, t)~ > = ( ' 1 ) ~ 0 g (r x; t) de .

- -OO

Since the t w o - d i m e n s i o n a l p robabi l i ty dens i ty is r e l a t ed to the condit ional densi ty (~V) and to the o n e - d i m e n - s ional densi ty by the e x p r e s s i o n

w ~ . (~, x; t ) = w(~, /x; t) W ( x ; t);

we finally obtain

where

)s < 9s (x, t)~ > = ( - - 1). -bTx g(x) Ws(x, t) , CA .1)

W~(x, t) = W(x; t) < r (t), >x,

< ~[~] (t), >. = ~ (~ '%)c W (~,'/x;t) d e . - - o o

CA .2)

Thus , the aux i l i a ry va r i ab l e s Ws(X, t) a re p roduc t s of the o n e - d i m e n s i o n a l probabi l i ty densi ty and the condi t ional cumulan t s of p r o c e s s ~ (t) [the incomple te cumulan t b r a c k e t in CA.2) is a v e r a g e d with the condit ional probabi l i ty dens i ty] .

S i m i l a r l y , it is not diff icult to e s t ab l i sh that the fol lowing re la t ions a re val id:

/ = - -~-x g(X) -~x f (X) w~(x, O, CA .3)

",\((g (x)-~-x 2 q,,_,(x,, t)~ >= / o~...~_x g(X)),~+~ tv~_,(x, t).

Subst i tut ing the r e s u l t s into s y s t e m (5) and "eanee l ing" by the o p e r a t o r g we a r r i v e at (9).

2. Cons ide r initial s y s t e m (1) with an addit ive ac t ion , se t t ing g(x) = 1. We mul t ip ly (1) th rough by x s and a v e r a g e . If f(x) is such that the re ex i s t s a s t a t i ona ry probabi l i ty d i s t r ibu t ion , then, let t ing t - - oo, we obtain

<x s f ( x ) > = - < r s>, s~-~0, 1 .... (A.4)

It a lso fol lows f r o m (1) and (2) that as t - - 0o we have

O= d <~x>=<~f(x)>+<~>_ii<~x>. dt

CA .5)

We wri te f(x) as a power s e r i e s , f(x) = ak xk (summat ion being p e r f o r m e d o v e r r e c e i v i n g indices) . Then, on the b a s i s of CA.4),

660

- <~x'> = <xsf(x)> =a~<x~+'>.

We mult iply this last equation through by a s and sum o v e r the index s:

- - a s < ~ x s ) = a k a s < x k + s ) ,

o r

- < ~ / ( x ) > = < p ( x ) ) .

On the basis o f ( A . 4 ) - ( A . 6 ) w e finally obtain

< ~ > + • < x f ( x ) > = < f ( x ) >.

Thus, express ion (15) is an exact co ro l l a ry of (1) and (2).

(A .6)

L I T E R A T U R E C I T E D

1. R . L . Stratonovich, Selected Topics in the Theory of Fluctuat ions in Radio Engineer ing [in Russian], Soy. Radio, Moscow (1961).

2. V. I. Klyatskin , Stat is t ical Descr ip t ion of Dynamic Sys tems with Fluctuating P a r a m e t e r s [in Russian] , Nauka, Moscow (1975).

3. N . G . Van Kampen, Phys. Rep. , 24, No. 3, 171 (1974). 4. A. B r i s s a u d and V. F r i s h , J . Math. Phys . , 15, No. 5, 524 (1974). 5. Yu. E . K u z o v l e v a n d G. N. Bochkov, Izv. Vyssh . Uchebn. Zaved. , Radiofiz. , 20, No. 10, 1505 (1977). 6. A . N . Malakhov, 0 . V. Muzychuk, and I. E. Pozumentov, Izv. Vyssh. Uchebn. Zaved. , Radiofiz. ,

2_!1, No. 9, 1279 (1978). R. B o u r r e t , V. F r i s h , and A. Pouquet, Phys ica , 6._~5, 303 (1973). 7.

8. V . I . Klyatskin , Izv. Vyssh. Uchebn. Zaved. , Radiofiz. , 20, No. 4, 562 (1977). 9. A . N . Malakhov, Cumutant Analys is of Non-Gauss ian Random P r o c e s s e s and Thei r T rans fo rma t ions

[in Russian] , Soy. Radio, Moscow (1978). 10. O . V . Muzychuk, Izv. Vyssh. Uchebn. Zaved. , Radiofiz. , 2_~2, No. 10, 1246 (1979). 11. V . I . Klyatskin, Izv. Vyssh. Uchebn. Zaved. , Radiofiz. , 2__22, No. 6, 716 (1979). 12. A . A . Ma l ' t s ev , 0 . V. Muzychuk, and I. E. Pozumentov , Radiotekh. Elek t ron . , 23, No. 7, 1401 (1978). 13. A . A . Mal ' t sev and A. I. Saichev, Radiotekh. Elekt ron. , 23, No. 12, 2543 (1978).

RADIATIG'N OF A CHARGE UPON CONVERSION OF AN

ISOTROPIC MEDIUM INTO A UNIAXIAL CRYSTAL

V. A. Davydov UDC539.12

The a r t i c le cons ide r s radiat ion of a charge that moves uniformly in a nonsta t ionary medium with i so t ropy that va r i e s in t ime. The fields and the radiat ion energy of the ord inary and e x t r a o r d i - n a r y waves a re calcula ted for the case of instantaneous convers ion of the isotropic medium into a uniaxial c ry s t a l .

The appearance of paper s [1, 2] has s t imulated fur ther in te res t in radiation of sources in nonsta t ionary med ia . P a p e r s [3, 4] calcula ted the radiat ion c h a r a c t e r i s t i c s of a charge in media with step and smooth non- s ta t ionary p rope r t i e s . In many c a s e s , var ia t ion of the e lec t romagne t ic p rope r t i e s of the medimn in t ime is also accompanied by violation of i so t ropy . It was shown in [5] that in media with varying anisot ropy it is pos - sible to have radiat ion of even a fixed charge ; the c h a r a c t e r i s t i c s were computed for the case of instantaneous convers ion of an i so t ropic med ium into a uniaxial c rys t a l . In what follows we will investigate the radiation of a uniformly moving charge upon convers ion of an i so t ropic medium into a uniaxial c rys ta l for the ease of a r b i t r a r y mutual or ientat ion of the optical axis and of the direct ion of motion of the charge .

Moscow State Univers i ty . Trans la ted f rom Izves t iya Vysshikh Uchebnykh Zavedenii , Radiofizika, Vol. 23, No. 8, pp. 982-987, August , 1980. Original a r t ic le submit ted June 28, 1979; revis ion submit ted F e b r u a r y 1, 1980.

0033-8443/80/2308-0661507.50 �9 1981 Plenum Publishing Corpora t ion 661