41
PRICING AND TRADING CREDIT DEFAULT SWAPS Tomasz R. Bielecki, Illinois Institute of Technology, USA Monique Jeanblanc, Universit´ e d’ ´ Evry Val d’Essonne, France Marek Rutkowski, University of New South Wales, Australia AMAMEF CONFERENCE BEDLEWO May, 3th, 2007 1

PRICING AND TRADING CREDIT DEFAULT SWAPS€¦ · PRICING AND TRADING CREDIT DEFAULT SWAPS Tomasz R. Bielecki, Illinois Institute of Technology, USA Monique Jeanblanc, Universit´ed’Evry

  • Upload
    others

  • View
    15

  • Download
    0

Embed Size (px)

Citation preview

Page 1: PRICING AND TRADING CREDIT DEFAULT SWAPS€¦ · PRICING AND TRADING CREDIT DEFAULT SWAPS Tomasz R. Bielecki, Illinois Institute of Technology, USA Monique Jeanblanc, Universit´ed’Evry

PRICING AND TRADING CREDIT DEFAULTSWAPS

Tomasz R. Bielecki, Illinois Institute of Technology, USAMonique Jeanblanc, Universite d’Evry Val d’Essonne, FranceMarek Rutkowski, University of New South Wales, Australia

AMAMEF CONFERENCEBEDLEWO

May, 3th, 2007

1

Page 2: PRICING AND TRADING CREDIT DEFAULT SWAPS€¦ · PRICING AND TRADING CREDIT DEFAULT SWAPS Tomasz R. Bielecki, Illinois Institute of Technology, USA Monique Jeanblanc, Universit´ed’Evry

Dynamics of Prices of Defaultable claims

Dynamics of Prices of Defaultable claims

The default time is a strictly positive random variable τ , defined on aprobability space (Ω,G, Q).The filtration generated by the jump process Ht = 1τ≤t is denoted byH.We assume that some auxiliary filtration F is given, and we writeG = H ∨ F. The filtration G is referred to as to the full filtration.We assume that any F-martingale is a continuous process.

2

Page 3: PRICING AND TRADING CREDIT DEFAULT SWAPS€¦ · PRICING AND TRADING CREDIT DEFAULT SWAPS Tomasz R. Bielecki, Illinois Institute of Technology, USA Monique Jeanblanc, Universit´ed’Evry

Dynamics of Prices of Defaultable claims

Survival Process

Gt = Q(τ > t | Ft) is the survival process assumed to satisfy G0 = 1and Gt > 0 for every t ∈ R+. We assume that G is continuous.

Then

Mt = Ht −∫ t

0

(1 − Hu)λu du,

is a G-martingale, where λ is defined via the Doob-Meyerdecomposition of the sub-martingale G.

3

Page 4: PRICING AND TRADING CREDIT DEFAULT SWAPS€¦ · PRICING AND TRADING CREDIT DEFAULT SWAPS Tomasz R. Bielecki, Illinois Institute of Technology, USA Monique Jeanblanc, Universit´ed’Evry

Dynamics of Prices of Defaultable claims

Defaultable Claims

By a defaultable claim maturing at T we mean a quadruple(X, A, Z, τ), where

• X is an FT -measurable random variable,• A = (At)t∈[0,T ] is an F-adapted process of finite variation with

A0 = 0,• Z = (Zt)t∈[0,T ] is an F-predictable process,• and τ is the default time.

4

Page 5: PRICING AND TRADING CREDIT DEFAULT SWAPS€¦ · PRICING AND TRADING CREDIT DEFAULT SWAPS Tomasz R. Bielecki, Illinois Institute of Technology, USA Monique Jeanblanc, Universit´ed’Evry

Dynamics of Prices of Defaultable claims

The total dividend process DX = (DXt )t∈R+ of a defaultable claim

maturing at T equals, for every t ∈ R+,

DXt = X1τ>T1[T,∞[(t) +

∫]0,t∧T ]

(1 − Hu) dAu +∫

]0,t∧T ]

Zu dHu.

The reduced total dividend process D of a defaultable claimmaturing at T equals, for every t ∈ R+,

Dt =∫

]0,t∧T ]

(1 − Hu) dAu +∫

]0,t∧T ]

Zu dHu.

5

Page 6: PRICING AND TRADING CREDIT DEFAULT SWAPS€¦ · PRICING AND TRADING CREDIT DEFAULT SWAPS Tomasz R. Bielecki, Illinois Institute of Technology, USA Monique Jeanblanc, Universit´ed’Evry

Dynamics of Prices of Defaultable claims

Price Dynamics of a Defaultable Claim

The ex-dividend price process S associated with the dividend processDX equals, for every t ∈ [0, T ],

St = Bt EQ∗(B−1

T X1τ>T +∫

]t,T ]

B−1u dDu

∣∣∣Gt

).

The ex-dividend pre-default price of a defaultable claim is theunique F-adapted process S such that

St = 1t<τSt

The cumulative price process Scum associated with the dividendprocess DX is

Scumt = Bt EQ∗

(∫]0,T ]

B−1u dDX

u

∣∣∣Gt

)= St + Bt

∫]0,t]

B−1u dDu.

The discounted cumulative price B−1Scum is a G-martingale under Q∗.

6

Page 7: PRICING AND TRADING CREDIT DEFAULT SWAPS€¦ · PRICING AND TRADING CREDIT DEFAULT SWAPS Tomasz R. Bielecki, Illinois Institute of Technology, USA Monique Jeanblanc, Universit´ed’Evry

Dynamics of Prices of Defaultable claims

Let n be any F-martingale. Then the process n given by

nt = nt∧τ −∫ t∧τ

0

G−1u d〈n, µ〉u

is a continuous G-martingale.

7

Page 8: PRICING AND TRADING CREDIT DEFAULT SWAPS€¦ · PRICING AND TRADING CREDIT DEFAULT SWAPS Tomasz R. Bielecki, Illinois Institute of Technology, USA Monique Jeanblanc, Universit´ed’Evry

Dynamics of Prices of Defaultable claims

• For any Q∗-integrable and FT -measurable random variable Y we have

EQ∗(1T<τY | Gt) = 1t<τ G−1t EQ∗(GT Y | Ft).

• For any F-predictable process R such that EQ∗ |Rτ | < ∞

EQ∗(1t<τ≤TRτ | Gt) = −1t<τ1Gt

EQ∗

(∫ T

t

Ru dGu

∣∣∣Ft

)

8

Page 9: PRICING AND TRADING CREDIT DEFAULT SWAPS€¦ · PRICING AND TRADING CREDIT DEFAULT SWAPS Tomasz R. Bielecki, Illinois Institute of Technology, USA Monique Jeanblanc, Universit´ed’Evry

Dynamics of Prices of Defaultable claims

The dynamics of the cumulative price Scum on [0, T ] are

dScumt = rtS

cumt dt + (Zt − St−) dMt + G−1

t (Bt dmt − St dµt)

where

mt = EQ∗

(B−1

T GT X +∫ T

0

B−1u GuZuλu du −

∫ T

0

B−1u Gu dAu

∣∣∣Ft

).

and µ is the martingale part of the submartingale G.

9

Page 10: PRICING AND TRADING CREDIT DEFAULT SWAPS€¦ · PRICING AND TRADING CREDIT DEFAULT SWAPS Tomasz R. Bielecki, Illinois Institute of Technology, USA Monique Jeanblanc, Universit´ed’Evry

Dynamics of Prices of Defaultable claims

Proof. We derive the dynamics of the pre-default ex-dividend price S.The price S can be represented as follows

St = 1t<τSt = 1t<τBtG−1t Yt,

where Y is defined as follows

Yt = mt −∫ t

0

B−1u GuZuλu du +

∫ t

0

B−1u Gu dAu,

An application of Ito’s formula leads to the result

10

Page 11: PRICING AND TRADING CREDIT DEFAULT SWAPS€¦ · PRICING AND TRADING CREDIT DEFAULT SWAPS Tomasz R. Bielecki, Illinois Institute of Technology, USA Monique Jeanblanc, Universit´ed’Evry

Dynamics of Prices of Defaultable claims

Price Dynamics of a CDS

A credit default swap (CDS) with a constant rate κ and recoveryat default is a defaultable claim (0, A, Z, τ) where Zt = δt andAt = −κt for every t ∈ [0, T ].

The process δ : [0, T ] → R represents the default protection, and κ isthe CDS rate (also termed the spread, premium or annuity of aCDS).

11

Page 12: PRICING AND TRADING CREDIT DEFAULT SWAPS€¦ · PRICING AND TRADING CREDIT DEFAULT SWAPS Tomasz R. Bielecki, Illinois Institute of Technology, USA Monique Jeanblanc, Universit´ed’Evry

Dynamics of Prices of Defaultable claims

The ex-dividend price of a CDS equals, for any t ∈ [0, T ],

St(κ) = 1t<τBt

GtEQ∗

(∫ T

t

B−1u Guδuλu du − κ

∫ T

t

B−1u Gu du

∣∣∣Ft

).

Define the F-martingale n by the formula

nt = EQ∗

(∫ T

0

B−1u Guδuλu du − κ

∫ T

0

B−1u Gu du

∣∣∣Ft

).

Then, the dynamics of the cumulative price Scum(κ) are

dScumt (κ) = rtS

cumt (κ) dt +

(δt −St−(κ)

)dMt + G−1

t

(Bt dnt −St(κ) dµt

)

12

Page 13: PRICING AND TRADING CREDIT DEFAULT SWAPS€¦ · PRICING AND TRADING CREDIT DEFAULT SWAPS Tomasz R. Bielecki, Illinois Institute of Technology, USA Monique Jeanblanc, Universit´ed’Evry

Replication of a Defaultable Claim

Replication of a Defaultable Claim

We now assume that k credit default swaps with maturities Ti ≥ T ,spreads κi and protection payments δi for i = 1, . . . , k are traded overthe time interval [0, T ]. The 0th traded asset is the savings account B.Our goal is to examine hedging strategies for a defaultable claim(X, A, Z, τ).

Here, we assume that immmersion property holds: any F-martingaleis a G-martingale. In that case, G is a non-increasing process.

13

Page 14: PRICING AND TRADING CREDIT DEFAULT SWAPS€¦ · PRICING AND TRADING CREDIT DEFAULT SWAPS Tomasz R. Bielecki, Illinois Institute of Technology, USA Monique Jeanblanc, Universit´ed’Evry

Replication of a Defaultable Claim

We consider a trading strategy φ = (φ0, . . . , φk) where φ0 is G-adaptedand φ1, . . . , φk are G-predictable processes. The associated wealthprocess V (φ) equals, for t ∈ [0, T ],

Vt(φ) = φ0t Bt +

k∑i=1

φitS

it(κi)

14

Page 15: PRICING AND TRADING CREDIT DEFAULT SWAPS€¦ · PRICING AND TRADING CREDIT DEFAULT SWAPS Tomasz R. Bielecki, Illinois Institute of Technology, USA Monique Jeanblanc, Universit´ed’Evry

Replication of a Defaultable Claim

A strategy φ is said to be self-financing if

dVt(φ) = φ0t dBt +

k∑i=1

φit dSc,i

t (κi)

where Sc,i(κi) is the cumulative price process of the ith traded CDS.

15

Page 16: PRICING AND TRADING CREDIT DEFAULT SWAPS€¦ · PRICING AND TRADING CREDIT DEFAULT SWAPS Tomasz R. Bielecki, Illinois Institute of Technology, USA Monique Jeanblanc, Universit´ed’Evry

Replication of a Defaultable Claim

We consider a defaultable claim (X, A, Z, τ) such that the price processS for this claim is well defined:

Scumt = 1t<τ

Bt

Gt

(−∫ t

0

B−1u GuZuλu du +

∫ t

0

B−1u Gu dAu + mt

)with

mt = EQ∗

(B−1

T GT X +∫ T

0

B−1u GuZuλu du −

∫ T

0

B−1u Gu dAu

∣∣∣Ft

).

We say that a self-financing strategy φ = (φ0, . . . , φk) replicates adefaultable claim (X, A, Z, τ) if its wealth process V (φ) is equal to theprice S of the claim t ∈ [0, T ].In particular, the equality Vt∧τ (φ) = St∧τ holds for every t ∈ [0, T ].

16

Page 17: PRICING AND TRADING CREDIT DEFAULT SWAPS€¦ · PRICING AND TRADING CREDIT DEFAULT SWAPS Tomasz R. Bielecki, Illinois Institute of Technology, USA Monique Jeanblanc, Universit´ed’Evry

Replication of a Defaultable Claim

For any t ∈ [0, T ],

dVt(φ) = rtVt(φ) dt +k∑

i=1

φit

((δit − Si

t(κi))dMt + (1 − Ht)BtG

−1t dni

t

)where

nit = EQ∗

(∫ Ti

0

B−1u Guδi

uλu du − κi

∫ Ti

0

B−1u Gu du

∣∣∣Ft

).

17

Page 18: PRICING AND TRADING CREDIT DEFAULT SWAPS€¦ · PRICING AND TRADING CREDIT DEFAULT SWAPS Tomasz R. Bielecki, Illinois Institute of Technology, USA Monique Jeanblanc, Universit´ed’Evry

Replication of a Defaultable Claim

We assume from now on that the filtration F is generated by a (possiblymulti-dimensional) Brownian motion W under Q∗ and Hypothesis (H)holds (so that W is also a Brownian motion with respect to G).

In view of the predictable representation property of a Brownianmotion, there exist F-predictable processes ζ and ζi, i = 1, . . . , k suchthat dmt = ζt dWt and dni

t = ζit dWt

18

Page 19: PRICING AND TRADING CREDIT DEFAULT SWAPS€¦ · PRICING AND TRADING CREDIT DEFAULT SWAPS Tomasz R. Bielecki, Illinois Institute of Technology, USA Monique Jeanblanc, Universit´ed’Evry

Replication of a Defaultable Claim

Assume that there exist F-predictable processes φ1, . . . , φk such that,for any t ∈ [0, T ],

k∑i=1

φit

(δit − Si

t(κi))

= Zt − St,

k∑i=1

φitζ

it = ζt.

Let

dVt(φ) = rtVt(φ) dt +k∑

i=1

φit

((δit − Si

t(κi))dMt + (1 − Ht)BtG

−1t dni

t

)with the initial condition V0(φ) = Scum

0 . Then the self-financing tradingstrategy (B−1(V (φ) − φ · Si), φ1, . . . , φk) replicates the defaultableclaim (X, A, Z, τ).

19

Page 20: PRICING AND TRADING CREDIT DEFAULT SWAPS€¦ · PRICING AND TRADING CREDIT DEFAULT SWAPS Tomasz R. Bielecki, Illinois Institute of Technology, USA Monique Jeanblanc, Universit´ed’Evry

Enlargement of filtration formula

Enlargement of filtration formula

Let τ be a unique random time. In general, it is not an honest time.However, it is possible to prove that any F-martingale is aG = F ∨ F-semi-martingale. If X is a F martingale, if

P(τ > u|Ft) =∫ ∞

u

f(v; t)dv

then

Xt = Xt +∫ t∧τ

0

d〈X, Mτ 〉sSs−

+∫ t

t∧τ

ϕ(τ, ds) ,

= Xt +∫ t∧τ

0

∫ ∞

s

η(dv)d 〈X, fv〉s

Ss−+∫ t

t∧τ

ϕ(τ, ds)

where X is a G-martingale and

ϕ(u, ds) =d〈f(u; ·), X〉s

f(u; s)

20

Page 21: PRICING AND TRADING CREDIT DEFAULT SWAPS€¦ · PRICING AND TRADING CREDIT DEFAULT SWAPS Tomasz R. Bielecki, Illinois Institute of Technology, USA Monique Jeanblanc, Universit´ed’Evry

Hedging of Credit Spreads and Default Correlations

Hedging of Credit Spreads and Default Correlations

In this section, we assume that F is a Brownian filtration and that theinterest rate is null. Our aim is to obtain the dynamics of a CDS in thesimple case where two different credit names are considered.

21

Page 22: PRICING AND TRADING CREDIT DEFAULT SWAPS€¦ · PRICING AND TRADING CREDIT DEFAULT SWAPS Tomasz R. Bielecki, Illinois Institute of Technology, USA Monique Jeanblanc, Universit´ed’Evry

Hedging of Credit Spreads and Default Correlations

Joint Survival Process

Hence we assume that we are given two strictly positive random timesτ1 and τ2. We introduce the conditional joint survival processG(u, v; t)

G(u, v; t) = Q∗(τ1 > u, τ2 > v | Ft).

We write

∂1G(u, v; t) =∂

∂uG(u, v; t), ∂12G(u, v; t) =

∂2

∂u∂vG(u, v; t).

22

Page 23: PRICING AND TRADING CREDIT DEFAULT SWAPS€¦ · PRICING AND TRADING CREDIT DEFAULT SWAPS Tomasz R. Bielecki, Illinois Institute of Technology, USA Monique Jeanblanc, Universit´ed’Evry

Hedging of Credit Spreads and Default Correlations

We assume that the density f(u, v; t) = ∂12G(u, v; t) with respect to u

and v exists, so that

G(u, v; t) =∫ ∞

u

(∫ ∞

v

f(x, y; t) dy)

dx.

For any fixed (u, v) ∈ R2+, the F-martingale

G(u, v; t) = Q∗(τ1 > u, τ2 > v | Ft) admits the integral representation

G(u, v; t) = Q∗(τ1 > u, τ2 > v) +∫ t

0

g(u, v; s) dWs

where g(u, v; s) is some F-predictable process (in fact an F-martingaleunder Q∗).

23

Page 24: PRICING AND TRADING CREDIT DEFAULT SWAPS€¦ · PRICING AND TRADING CREDIT DEFAULT SWAPS Tomasz R. Bielecki, Illinois Institute of Technology, USA Monique Jeanblanc, Universit´ed’Evry

Hedging of Credit Spreads and Default Correlations

Let us introduce the filtrations Hi, H, Gi and G associated with defaulttimes by setting

Hit = σ(Hi

s; s ∈ [0, t]), Ht = H1t ∨H2

t , Git = Ft ∨Hi

t, Gt = Ft ∨Ht,

where Hit = 1τi≤t. We assume that the usual conditions of

completeness and right-continuity are satisfied by these filtrations.

24

Page 25: PRICING AND TRADING CREDIT DEFAULT SWAPS€¦ · PRICING AND TRADING CREDIT DEFAULT SWAPS Tomasz R. Bielecki, Illinois Institute of Technology, USA Monique Jeanblanc, Universit´ed’Evry

Hedging of Credit Spreads and Default Correlations

We assume that immersion hypothesis holds between F and G. Inparticular, any F-martingale is also a Gi-martingale for i = 1, 2.

25

Page 26: PRICING AND TRADING CREDIT DEFAULT SWAPS€¦ · PRICING AND TRADING CREDIT DEFAULT SWAPS Tomasz R. Bielecki, Illinois Institute of Technology, USA Monique Jeanblanc, Universit´ed’Evry

Hedging of Credit Spreads and Default Correlations

In general, there is no reason that any Gi-martingale is a G-martingale.Indeed, when F is a trivial filtration, denoting by G

1|2t = Q∗(τ1 > t |H2

t )and G(u, v) = Q(τ1 > u, τ2 > v),

dG1|2t =

(∂2G(t, t)∂2G(0, t)

− G(t, t)G(0, t)

)dM2

t +(

H2t ∂1h(t, τ2) + (1 − H2

t )∂1G(t, t)G(0, t)

)dt

where M2 is the H2-martingale given by

M2t = H2

t +∫ t∧τ2

0

∂2G(0, s)G(0, s)

ds

and h(t, s) = ∂2G(t,s)∂2G(0,s) . Hence immersion hypothesis is not always valid

between H2 and H1 ∨ H2, since ∂2G(t,t)∂2G(0,t) − G(t,t)

G(0,t) is not always null.

26

Page 27: PRICING AND TRADING CREDIT DEFAULT SWAPS€¦ · PRICING AND TRADING CREDIT DEFAULT SWAPS Tomasz R. Bielecki, Illinois Institute of Technology, USA Monique Jeanblanc, Universit´ed’Evry

Hedging of Credit Spreads and Default Correlations

Valuation of Single-Name CDSs

Let us now examine the valuation of single-name CDSs under theassumption that the interest rate equals zero.

We consider the CDS• with the constant spread κ1,• which delivers δ1(τ1) at time τ1 if τ1 < T1, where δ1 is a

deterministic function.

The value S1(κ1) of this CDS, computed in the filtration G, i.e., takingcare on the information on the second default contained in thatfiltration, is computed in two successive steps.

27

Page 28: PRICING AND TRADING CREDIT DEFAULT SWAPS€¦ · PRICING AND TRADING CREDIT DEFAULT SWAPS Tomasz R. Bielecki, Illinois Institute of Technology, USA Monique Jeanblanc, Universit´ed’Evry

Hedging of Credit Spreads and Default Correlations

On the set t < τ(1) = τ1 ∧ τ2, the ex-dividend price of the CDS equals,on the event t < τ(1),

S1t (κ1) = S1

t (κ1) =1

G(t, t; t)

(−∫ T1

t

δ1(u)∂1G(u, t; t) du − κ1

∫ T1

t

G(u, t; t) du

).

28

Page 29: PRICING AND TRADING CREDIT DEFAULT SWAPS€¦ · PRICING AND TRADING CREDIT DEFAULT SWAPS Tomasz R. Bielecki, Illinois Institute of Technology, USA Monique Jeanblanc, Universit´ed’Evry

Hedging of Credit Spreads and Default Correlations

On the event τ2 ≤ t < τ1, we have that

S1t (κ1) =

1∂2G(t, τ2; t)

(−∫ T1

t

δ1(u)f(u, τ2; t) du − κ1

∫ T1

t

∂2G(u, τ2; t) du

).

29

Page 30: PRICING AND TRADING CREDIT DEFAULT SWAPS€¦ · PRICING AND TRADING CREDIT DEFAULT SWAPS Tomasz R. Bielecki, Illinois Institute of Technology, USA Monique Jeanblanc, Universit´ed’Evry

Hedging of Credit Spreads and Default Correlations

Price Dynamics of Single-Name CDSs

Let us return to the study of a general case. By applying theIto-Wentzell theorem, we get

G(u, t; t) = G(u, 0; 0) +∫ t

0

g(u, s; s) dWs +∫ t

0

∂2G(u, s; s) ds

G(t, t; t) = G(0, 0; 0) +∫ t

0

g(s, s; s) dWs +∫ t

0

(∂1G(s, s; s) + ∂2G(s, s; s)) ds.

30

Page 31: PRICING AND TRADING CREDIT DEFAULT SWAPS€¦ · PRICING AND TRADING CREDIT DEFAULT SWAPS Tomasz R. Bielecki, Illinois Institute of Technology, USA Monique Jeanblanc, Universit´ed’Evry

Hedging of Credit Spreads and Default Correlations

The cumulative price Sc,1(κ1) satisfies, on [0, T ∧ τ(1)],

dSc,1t (κ1) = (δ1(t) − S1

t (κ1)) dM1t + (S1

t|2(κ1) − S1t (κ1)) dM2

t

− 1G(t, t; t)

(∫ T1

t

δ1(u)∂1g(u, t; t) du + κ1

∫ T1

t

g(u, t; t) du)dWt .

Here

M it = Hi

t∧τ(1)−∫ t∧τ(1)

0

λiu du,

is a G-martingale, where λit = −∂iG(t,t;t)

G(t,t;t) is the pre-default intensityfor the ith name

31

Page 32: PRICING AND TRADING CREDIT DEFAULT SWAPS€¦ · PRICING AND TRADING CREDIT DEFAULT SWAPS Tomasz R. Bielecki, Illinois Institute of Technology, USA Monique Jeanblanc, Universit´ed’Evry

Hedging of Credit Spreads and Default Correlations

Replication of a First-to-Default Claim

A first-to-default claim with maturity T is a defaultable claim(X, A, Z, τ(1)) where X is an FT -measurable amount payable atmaturity if no default occurs, a continuous process of finite variationA : [0, T ] → R with A0 = 0 represents the dividend stream up to τ(1),and Z = (Z1, Z2, . . . , Zn) is the vector of F-predictable, real-valuedprocesses, where Zi

τ(1)specifies the recovery received at time τ(1) if the

ith name is the first defaulted name, that is, on the eventτi = τ(1) ≤ T.

32

Page 33: PRICING AND TRADING CREDIT DEFAULT SWAPS€¦ · PRICING AND TRADING CREDIT DEFAULT SWAPS Tomasz R. Bielecki, Illinois Institute of Technology, USA Monique Jeanblanc, Universit´ed’Evry

Hedging of Credit Spreads and Default Correlations

The cumulative price Scum is given by

dScumt = rtS

cumt dt+

n∑i=1

(Zit −St−) dM i

t +(1−H(1)t )Bt(G(1)(t; t))−1 dmt,

where the F-martingale m is given by the formula

mt = EQ∗

(B−1

T G(1)(T ; T )X +n∑

i=1

∫ T

0

B−1u G(1)(u; u)Zi

uλiu du

−∫ T

0

B−1u G(1)(u; u) dAu

∣∣∣Ft

).

33

Page 34: PRICING AND TRADING CREDIT DEFAULT SWAPS€¦ · PRICING AND TRADING CREDIT DEFAULT SWAPS Tomasz R. Bielecki, Illinois Institute of Technology, USA Monique Jeanblanc, Universit´ed’Evry

Hedging of Credit Spreads and Default Correlations

The pre-default ex-dividend price satisfies

dSt = (rt + λt)St dt −n∑

i=1

λitZ

it dt + dAt + Bt(G(t, t; t))−1 dmt.

Since F is generated by a Brownian motion, there exists anF-predictable process ζ such that

dSt = (rt + λt)St dt −n∑

i=1

λitZ

it dt + dAt + Bt(G(t, t; t))−1ζt dWt.

34

Page 35: PRICING AND TRADING CREDIT DEFAULT SWAPS€¦ · PRICING AND TRADING CREDIT DEFAULT SWAPS Tomasz R. Bielecki, Illinois Institute of Technology, USA Monique Jeanblanc, Universit´ed’Evry

Hedging of Credit Spreads and Default Correlations

We say that a self-financing strategy φ = (φ0, φ1, . . . , φk) replicates afirst-to-default claim (X, A, Z, τ(1)) if its wealth process V (φ) satisfiesthe equality Vt∧τ(1)(φ) = St∧τ(1) for any t ∈ [0, T ].

We have, for any t ∈ [0, T ],

dVt(φ) = rtVt(φ) dt +n∑

i=1

φit

((δit − Si

t(κi))dM i

t +n∑

j=1 ,j =i

(Si

t|j − Sit(κi)

)dM j

t

+ (1 − Ht)Bt(G(t, t; t))−1 dnit

)where

nit = EQ∗

⎛⎝∫ Ti

0

G(u, u; u)Bu

(δiuλi

u +n∑

j=1,j =i

Siu|j λ

ju

)du − κi

∫ Ti

0

G(u, u; u)Bu

du∣∣∣Ft

⎞⎠ .

35

Page 36: PRICING AND TRADING CREDIT DEFAULT SWAPS€¦ · PRICING AND TRADING CREDIT DEFAULT SWAPS Tomasz R. Bielecki, Illinois Institute of Technology, USA Monique Jeanblanc, Universit´ed’Evry

Hedging of Credit Spreads and Default Correlations

Let φt = (φ1t , φ

2t , . . . , φ

nt ) be a solution to the following equations

φit

(δit − Si

t(κi))

+n∑

j=1, j =i

φjt

(Sj

t|i(κj) − Sjt (κj)

)= Zi

t − St

and∑n

i=1 φitζ

it = ζt. Let us set φi

t = φi(τ(1) ∧ t) for i = 1, 2, . . . , n andt ∈ [0, T ]. Then the self-financing trading strategyφ = (B−1(V (φ) − φ · S), . . . , φk) replicates the first-to-default claim(X, A, Z, τ(1)).

36

Page 37: PRICING AND TRADING CREDIT DEFAULT SWAPS€¦ · PRICING AND TRADING CREDIT DEFAULT SWAPS Tomasz R. Bielecki, Illinois Institute of Technology, USA Monique Jeanblanc, Universit´ed’Evry

REFERENCES Hedging of Credit Spreads and Default Correlations

References

[1] A. Belanger, S.E. Shreve and D. Wong (2004) A general frameworkfor pricing credit risk. Mathematical Finance 14, 317–350.

[2] H. Ben-Ameur, D. Brigo and E. Errais (2004) Pricing CDSBermudan options: an approximate dynamic programmingapproach. Working paper.

[3] T.R. Bielecki and M. Rutkowski (2002) Credit Risk: Modeling,Valuation and Hedging. Springer-Verlag, Berlin Heidelberg NewYork.

[4] T.R. Bielecki, M. Jeanblanc and M. Rutkowski (2004) Hedging ofdefaultable claims. In: Paris-Princeton Lectures onMathematical Finance 2003, R. Carmona et al., eds.Springer-Verlag, pp. 1-132.

37

Page 38: PRICING AND TRADING CREDIT DEFAULT SWAPS€¦ · PRICING AND TRADING CREDIT DEFAULT SWAPS Tomasz R. Bielecki, Illinois Institute of Technology, USA Monique Jeanblanc, Universit´ed’Evry

REFERENCES Hedging of Credit Spreads and Default Correlations

[5] T.R. Bielecki, M. Jeanblanc and M. Rutkowski (2005) Hedging ofcredit derivatives in models with totally unexpected default. In:Stochastic Processes and Applications to MathematicalFinance, J. Akahori et al., eds., World Scientific, Singapore, 2006,pp. 35-100.

[6] T.R. Bielecki, M. Jeanblanc and M. Rutkowski (2007) Hedging ofbasket credit derivatives in credit default swap market. Journal ofCredit Risk 3.

[7] C. Blanchet-Scalliet and M. Jeanblanc (2004) Hazard rate forcredit risk and hedging defaultable contingent claims. Financeand Stochastics 8, 145–159.

[8] D. Brigo (2004) Constant maturity credit default pricing andmarket models. Working paper, Banca IMI.

38

Page 39: PRICING AND TRADING CREDIT DEFAULT SWAPS€¦ · PRICING AND TRADING CREDIT DEFAULT SWAPS Tomasz R. Bielecki, Illinois Institute of Technology, USA Monique Jeanblanc, Universit´ed’Evry

REFERENCES Hedging of Credit Spreads and Default Correlations

[9] D. Brigo (2004) Candidate market models and the calibratedCIR++ stochastic intensity model for credit default swap optionsand callable floaters. In: Proceedings of the 4th ICSConference, Tokyo, March 18-19, 2004.

[10] D. Brigo and A. Alfonsi (2005) Credit default swaps calibrationand option pricing with the SSRD stochastic intensity andinterest-rate model. Finance and Stochastics 9, 29–42.

[11] D. Brigo and L. Cousot (2003) A comparison between the SSRDmodel and a market model for CDS options pricing. Workingpaper.

[12] D. Brigo and M. Morini (2005) CDS market formulas and models.Working paper, Banca IMI.

[13] P. Ehlers and P. Schonbucher (2006) Background filtrations andcanonical loss processes for top-down models of portfolio creditrisk. Working paper, ETH Zurich.

39

Page 40: PRICING AND TRADING CREDIT DEFAULT SWAPS€¦ · PRICING AND TRADING CREDIT DEFAULT SWAPS Tomasz R. Bielecki, Illinois Institute of Technology, USA Monique Jeanblanc, Universit´ed’Evry

REFERENCES Hedging of Credit Spreads and Default Correlations

[14] J. Hull and A. White (2003) The valuation of credit default swapoptions. Journal of Derivatives 10(3), 40–50.

[15] F. Jamshidian (1997) LIBOR and swap market models andmeasures. Finance and Stochastics 1, 293–330.

[16] F. Jamshidian (2004) Valuation of credit default swaps andswaptions. Finance and Stochastics 8, 343–371.

[17] M. Jeanblanc and M. Rutkowski (2002) Default risk and hazardprocesses. In: Mathematical Finance – Bachelier Congress2000, H. Geman, D. Madan, S.R. Pliska and T. Vorst, editors,Springer-Verlag, Berlin Heidelberg New York, pp. 281–312.

[18] H. Kunita (1990) Stochastic Flows and StochasticDifferential Equations. Cambridge University Press, Cambridge.

[19] D. Kurtz and G. Riboulet (2003) Dynamic hedging of creditderivative: a first approach. Working paper.

[20] P. Schonbucher (1999) A Libor market model with credit risk.

40

Page 41: PRICING AND TRADING CREDIT DEFAULT SWAPS€¦ · PRICING AND TRADING CREDIT DEFAULT SWAPS Tomasz R. Bielecki, Illinois Institute of Technology, USA Monique Jeanblanc, Universit´ed’Evry

REFERENCES Hedging of Credit Spreads and Default Correlations

Working paper.

[21] P. Schonbucher (2003) A note on survival measures and the pricingof options on credit default swaps. Working paper.

[22] P. Schonbucher and D. Schubert (2001) Copula-dependent defaultrisk intensity models. Working paper.

[23] Wu, L. (2005) Consistent pricing in credit markets. Working paper.

41