19
Pressure; Pascal’s Principle

Pressure; Pascal’s Principle. PRESSURE OF A FLUID Barometer air pressure pressure = height of mercury column

Embed Size (px)

Citation preview

Pressure Pascalrsquos Principle

PRESSURE OF A FLUID

Barometer

air pressure pressure = height of mercury column

Gauge pressure ndash pressure above the atmospheric pressure

absolute (total) pressure =gauge pressure + atmospheric press

Pressure is produced by the weight of the fluid above the surface

forcepressure = ------ area

weight of fluid= ---------------- area

mg= ----- area

density volume g= ------------------------- area

density (area height) g= -------------------------------- area

pressure = density height g

P = ρhg gauge pressure

SI units

pressure Nm2 = Pascals (Pa)

density kgm3

height (depth) m

P = ρhg + P0 absolute pressure

Standard atmospheric pressure

760 mm Hg asymp 30 in Hg

Calculate 1 atm in Pascals

P = ρgh

ρHg = 136 x 103 kgm3

g = 98 Nkg h = 0760 mP = 1013 x 105 Pa

Why does a barometer use mercuryand not water

If p = 1 atmosphere = 1013 x 105 Paρ = 100 gcm3 = 100 x 103 kgm3

Find height

103 m

Pressure of fluid depends on depth

ldquoWater seeks its own levelrdquo

Pressure does not depend on volumeonly on height (depth)

More pressure at greater depth

Measure blood pressure at upper arm

same height as heart

Pascalrsquos Principle ndash The pressure in an enclosed fluid is constant throughout the fluid

p1 = p2

F1 F2

--- = ---A1 A2

A = 1 cm2A = 50 cm2

1 N

p1 = p2

1 N F2

------- = ------ 1 cm2 50 cm2

50 N

If piston on left moves 10 cmwhat distance does piston on rightmove

work1 = work2

F1 d1 = F2 d2

(1) (10) = (50) d2

02 cm

Hydraulic lift

Area of brake cylinder gt area of brake line

force of brake cylinder gt force of brake pedal

hydrostatic pressure

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19

PRESSURE OF A FLUID

Barometer

air pressure pressure = height of mercury column

Gauge pressure ndash pressure above the atmospheric pressure

absolute (total) pressure =gauge pressure + atmospheric press

Pressure is produced by the weight of the fluid above the surface

forcepressure = ------ area

weight of fluid= ---------------- area

mg= ----- area

density volume g= ------------------------- area

density (area height) g= -------------------------------- area

pressure = density height g

P = ρhg gauge pressure

SI units

pressure Nm2 = Pascals (Pa)

density kgm3

height (depth) m

P = ρhg + P0 absolute pressure

Standard atmospheric pressure

760 mm Hg asymp 30 in Hg

Calculate 1 atm in Pascals

P = ρgh

ρHg = 136 x 103 kgm3

g = 98 Nkg h = 0760 mP = 1013 x 105 Pa

Why does a barometer use mercuryand not water

If p = 1 atmosphere = 1013 x 105 Paρ = 100 gcm3 = 100 x 103 kgm3

Find height

103 m

Pressure of fluid depends on depth

ldquoWater seeks its own levelrdquo

Pressure does not depend on volumeonly on height (depth)

More pressure at greater depth

Measure blood pressure at upper arm

same height as heart

Pascalrsquos Principle ndash The pressure in an enclosed fluid is constant throughout the fluid

p1 = p2

F1 F2

--- = ---A1 A2

A = 1 cm2A = 50 cm2

1 N

p1 = p2

1 N F2

------- = ------ 1 cm2 50 cm2

50 N

If piston on left moves 10 cmwhat distance does piston on rightmove

work1 = work2

F1 d1 = F2 d2

(1) (10) = (50) d2

02 cm

Hydraulic lift

Area of brake cylinder gt area of brake line

force of brake cylinder gt force of brake pedal

hydrostatic pressure

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19

Gauge pressure ndash pressure above the atmospheric pressure

absolute (total) pressure =gauge pressure + atmospheric press

Pressure is produced by the weight of the fluid above the surface

forcepressure = ------ area

weight of fluid= ---------------- area

mg= ----- area

density volume g= ------------------------- area

density (area height) g= -------------------------------- area

pressure = density height g

P = ρhg gauge pressure

SI units

pressure Nm2 = Pascals (Pa)

density kgm3

height (depth) m

P = ρhg + P0 absolute pressure

Standard atmospheric pressure

760 mm Hg asymp 30 in Hg

Calculate 1 atm in Pascals

P = ρgh

ρHg = 136 x 103 kgm3

g = 98 Nkg h = 0760 mP = 1013 x 105 Pa

Why does a barometer use mercuryand not water

If p = 1 atmosphere = 1013 x 105 Paρ = 100 gcm3 = 100 x 103 kgm3

Find height

103 m

Pressure of fluid depends on depth

ldquoWater seeks its own levelrdquo

Pressure does not depend on volumeonly on height (depth)

More pressure at greater depth

Measure blood pressure at upper arm

same height as heart

Pascalrsquos Principle ndash The pressure in an enclosed fluid is constant throughout the fluid

p1 = p2

F1 F2

--- = ---A1 A2

A = 1 cm2A = 50 cm2

1 N

p1 = p2

1 N F2

------- = ------ 1 cm2 50 cm2

50 N

If piston on left moves 10 cmwhat distance does piston on rightmove

work1 = work2

F1 d1 = F2 d2

(1) (10) = (50) d2

02 cm

Hydraulic lift

Area of brake cylinder gt area of brake line

force of brake cylinder gt force of brake pedal

hydrostatic pressure

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19

Pressure is produced by the weight of the fluid above the surface

forcepressure = ------ area

weight of fluid= ---------------- area

mg= ----- area

density volume g= ------------------------- area

density (area height) g= -------------------------------- area

pressure = density height g

P = ρhg gauge pressure

SI units

pressure Nm2 = Pascals (Pa)

density kgm3

height (depth) m

P = ρhg + P0 absolute pressure

Standard atmospheric pressure

760 mm Hg asymp 30 in Hg

Calculate 1 atm in Pascals

P = ρgh

ρHg = 136 x 103 kgm3

g = 98 Nkg h = 0760 mP = 1013 x 105 Pa

Why does a barometer use mercuryand not water

If p = 1 atmosphere = 1013 x 105 Paρ = 100 gcm3 = 100 x 103 kgm3

Find height

103 m

Pressure of fluid depends on depth

ldquoWater seeks its own levelrdquo

Pressure does not depend on volumeonly on height (depth)

More pressure at greater depth

Measure blood pressure at upper arm

same height as heart

Pascalrsquos Principle ndash The pressure in an enclosed fluid is constant throughout the fluid

p1 = p2

F1 F2

--- = ---A1 A2

A = 1 cm2A = 50 cm2

1 N

p1 = p2

1 N F2

------- = ------ 1 cm2 50 cm2

50 N

If piston on left moves 10 cmwhat distance does piston on rightmove

work1 = work2

F1 d1 = F2 d2

(1) (10) = (50) d2

02 cm

Hydraulic lift

Area of brake cylinder gt area of brake line

force of brake cylinder gt force of brake pedal

hydrostatic pressure

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19

forcepressure = ------ area

weight of fluid= ---------------- area

mg= ----- area

density volume g= ------------------------- area

density (area height) g= -------------------------------- area

pressure = density height g

P = ρhg gauge pressure

SI units

pressure Nm2 = Pascals (Pa)

density kgm3

height (depth) m

P = ρhg + P0 absolute pressure

Standard atmospheric pressure

760 mm Hg asymp 30 in Hg

Calculate 1 atm in Pascals

P = ρgh

ρHg = 136 x 103 kgm3

g = 98 Nkg h = 0760 mP = 1013 x 105 Pa

Why does a barometer use mercuryand not water

If p = 1 atmosphere = 1013 x 105 Paρ = 100 gcm3 = 100 x 103 kgm3

Find height

103 m

Pressure of fluid depends on depth

ldquoWater seeks its own levelrdquo

Pressure does not depend on volumeonly on height (depth)

More pressure at greater depth

Measure blood pressure at upper arm

same height as heart

Pascalrsquos Principle ndash The pressure in an enclosed fluid is constant throughout the fluid

p1 = p2

F1 F2

--- = ---A1 A2

A = 1 cm2A = 50 cm2

1 N

p1 = p2

1 N F2

------- = ------ 1 cm2 50 cm2

50 N

If piston on left moves 10 cmwhat distance does piston on rightmove

work1 = work2

F1 d1 = F2 d2

(1) (10) = (50) d2

02 cm

Hydraulic lift

Area of brake cylinder gt area of brake line

force of brake cylinder gt force of brake pedal

hydrostatic pressure

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19

pressure = density height g

P = ρhg gauge pressure

SI units

pressure Nm2 = Pascals (Pa)

density kgm3

height (depth) m

P = ρhg + P0 absolute pressure

Standard atmospheric pressure

760 mm Hg asymp 30 in Hg

Calculate 1 atm in Pascals

P = ρgh

ρHg = 136 x 103 kgm3

g = 98 Nkg h = 0760 mP = 1013 x 105 Pa

Why does a barometer use mercuryand not water

If p = 1 atmosphere = 1013 x 105 Paρ = 100 gcm3 = 100 x 103 kgm3

Find height

103 m

Pressure of fluid depends on depth

ldquoWater seeks its own levelrdquo

Pressure does not depend on volumeonly on height (depth)

More pressure at greater depth

Measure blood pressure at upper arm

same height as heart

Pascalrsquos Principle ndash The pressure in an enclosed fluid is constant throughout the fluid

p1 = p2

F1 F2

--- = ---A1 A2

A = 1 cm2A = 50 cm2

1 N

p1 = p2

1 N F2

------- = ------ 1 cm2 50 cm2

50 N

If piston on left moves 10 cmwhat distance does piston on rightmove

work1 = work2

F1 d1 = F2 d2

(1) (10) = (50) d2

02 cm

Hydraulic lift

Area of brake cylinder gt area of brake line

force of brake cylinder gt force of brake pedal

hydrostatic pressure

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19

Standard atmospheric pressure

760 mm Hg asymp 30 in Hg

Calculate 1 atm in Pascals

P = ρgh

ρHg = 136 x 103 kgm3

g = 98 Nkg h = 0760 mP = 1013 x 105 Pa

Why does a barometer use mercuryand not water

If p = 1 atmosphere = 1013 x 105 Paρ = 100 gcm3 = 100 x 103 kgm3

Find height

103 m

Pressure of fluid depends on depth

ldquoWater seeks its own levelrdquo

Pressure does not depend on volumeonly on height (depth)

More pressure at greater depth

Measure blood pressure at upper arm

same height as heart

Pascalrsquos Principle ndash The pressure in an enclosed fluid is constant throughout the fluid

p1 = p2

F1 F2

--- = ---A1 A2

A = 1 cm2A = 50 cm2

1 N

p1 = p2

1 N F2

------- = ------ 1 cm2 50 cm2

50 N

If piston on left moves 10 cmwhat distance does piston on rightmove

work1 = work2

F1 d1 = F2 d2

(1) (10) = (50) d2

02 cm

Hydraulic lift

Area of brake cylinder gt area of brake line

force of brake cylinder gt force of brake pedal

hydrostatic pressure

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19

Why does a barometer use mercuryand not water

If p = 1 atmosphere = 1013 x 105 Paρ = 100 gcm3 = 100 x 103 kgm3

Find height

103 m

Pressure of fluid depends on depth

ldquoWater seeks its own levelrdquo

Pressure does not depend on volumeonly on height (depth)

More pressure at greater depth

Measure blood pressure at upper arm

same height as heart

Pascalrsquos Principle ndash The pressure in an enclosed fluid is constant throughout the fluid

p1 = p2

F1 F2

--- = ---A1 A2

A = 1 cm2A = 50 cm2

1 N

p1 = p2

1 N F2

------- = ------ 1 cm2 50 cm2

50 N

If piston on left moves 10 cmwhat distance does piston on rightmove

work1 = work2

F1 d1 = F2 d2

(1) (10) = (50) d2

02 cm

Hydraulic lift

Area of brake cylinder gt area of brake line

force of brake cylinder gt force of brake pedal

hydrostatic pressure

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19

Pressure of fluid depends on depth

ldquoWater seeks its own levelrdquo

Pressure does not depend on volumeonly on height (depth)

More pressure at greater depth

Measure blood pressure at upper arm

same height as heart

Pascalrsquos Principle ndash The pressure in an enclosed fluid is constant throughout the fluid

p1 = p2

F1 F2

--- = ---A1 A2

A = 1 cm2A = 50 cm2

1 N

p1 = p2

1 N F2

------- = ------ 1 cm2 50 cm2

50 N

If piston on left moves 10 cmwhat distance does piston on rightmove

work1 = work2

F1 d1 = F2 d2

(1) (10) = (50) d2

02 cm

Hydraulic lift

Area of brake cylinder gt area of brake line

force of brake cylinder gt force of brake pedal

hydrostatic pressure

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19

ldquoWater seeks its own levelrdquo

Pressure does not depend on volumeonly on height (depth)

More pressure at greater depth

Measure blood pressure at upper arm

same height as heart

Pascalrsquos Principle ndash The pressure in an enclosed fluid is constant throughout the fluid

p1 = p2

F1 F2

--- = ---A1 A2

A = 1 cm2A = 50 cm2

1 N

p1 = p2

1 N F2

------- = ------ 1 cm2 50 cm2

50 N

If piston on left moves 10 cmwhat distance does piston on rightmove

work1 = work2

F1 d1 = F2 d2

(1) (10) = (50) d2

02 cm

Hydraulic lift

Area of brake cylinder gt area of brake line

force of brake cylinder gt force of brake pedal

hydrostatic pressure

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19

More pressure at greater depth

Measure blood pressure at upper arm

same height as heart

Pascalrsquos Principle ndash The pressure in an enclosed fluid is constant throughout the fluid

p1 = p2

F1 F2

--- = ---A1 A2

A = 1 cm2A = 50 cm2

1 N

p1 = p2

1 N F2

------- = ------ 1 cm2 50 cm2

50 N

If piston on left moves 10 cmwhat distance does piston on rightmove

work1 = work2

F1 d1 = F2 d2

(1) (10) = (50) d2

02 cm

Hydraulic lift

Area of brake cylinder gt area of brake line

force of brake cylinder gt force of brake pedal

hydrostatic pressure

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19

Measure blood pressure at upper arm

same height as heart

Pascalrsquos Principle ndash The pressure in an enclosed fluid is constant throughout the fluid

p1 = p2

F1 F2

--- = ---A1 A2

A = 1 cm2A = 50 cm2

1 N

p1 = p2

1 N F2

------- = ------ 1 cm2 50 cm2

50 N

If piston on left moves 10 cmwhat distance does piston on rightmove

work1 = work2

F1 d1 = F2 d2

(1) (10) = (50) d2

02 cm

Hydraulic lift

Area of brake cylinder gt area of brake line

force of brake cylinder gt force of brake pedal

hydrostatic pressure

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19

Pascalrsquos Principle ndash The pressure in an enclosed fluid is constant throughout the fluid

p1 = p2

F1 F2

--- = ---A1 A2

A = 1 cm2A = 50 cm2

1 N

p1 = p2

1 N F2

------- = ------ 1 cm2 50 cm2

50 N

If piston on left moves 10 cmwhat distance does piston on rightmove

work1 = work2

F1 d1 = F2 d2

(1) (10) = (50) d2

02 cm

Hydraulic lift

Area of brake cylinder gt area of brake line

force of brake cylinder gt force of brake pedal

hydrostatic pressure

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19

A = 1 cm2A = 50 cm2

1 N

p1 = p2

1 N F2

------- = ------ 1 cm2 50 cm2

50 N

If piston on left moves 10 cmwhat distance does piston on rightmove

work1 = work2

F1 d1 = F2 d2

(1) (10) = (50) d2

02 cm

Hydraulic lift

Area of brake cylinder gt area of brake line

force of brake cylinder gt force of brake pedal

hydrostatic pressure

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19

If piston on left moves 10 cmwhat distance does piston on rightmove

work1 = work2

F1 d1 = F2 d2

(1) (10) = (50) d2

02 cm

Hydraulic lift

Area of brake cylinder gt area of brake line

force of brake cylinder gt force of brake pedal

hydrostatic pressure

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19

Hydraulic lift

Area of brake cylinder gt area of brake line

force of brake cylinder gt force of brake pedal

hydrostatic pressure

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19

Area of brake cylinder gt area of brake line

force of brake cylinder gt force of brake pedal

hydrostatic pressure

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19

hydrostatic pressure

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19