30
Presented by: Salim Berrada 19/03/2013 Team Meeting 1 Graphene NanoMesh Field Effect Transistors (GNM- FETs)

Presented by: Salim Berrada

  • Upload
    vinny

  • View
    42

  • Download
    0

Embed Size (px)

DESCRIPTION

Graphene NanoMesh Field Effect Transistors (GNM-FETs). Presented by: Salim Berrada. What’s a GNM?. Elementary ribbon. W. Transistor Model. I D -V GS For all GNM at V DS =0,2V. I D -V G at V DS = 0.2V . Effective masses comparison. E G =553. E G =508. E G =268. - PowerPoint PPT Presentation

Citation preview

Page 1: Presented by: Salim Berrada

1

Presented by:Salim Berrada

19/03/2013 Team Meeting

Graphene NanoMesh Field Effect Transistors (GNM-FETs)

Page 2: Presented by: Salim Berrada

http://computational-electronics.ief.u-psud.fr/

2

What’s a GNM?

W

Elementary ribbon

31/01/2013

Page 3: Presented by: Salim Berrada

http://computational-electronics.ief.u-psud.fr/

3

Transistor Model

31/01/2013

Undoped GNM Pristine G(ND = 1013 cm-2)

BN substrate

BN

source

gate

drainWy

Wx(a) (b)

xyUndoped GNM Pristine G

(ND = 1013 cm-2)

BN substrate

BN

source

gate

drainWy

Wx(a) (b)

xy

Page 4: Presented by: Salim Berrada

ID-VGS For all GNM at VDS=0,2V

Page 5: Presented by: Salim Berrada

10-1

100

101

102

103

104

-0.5 0 0.5 1 1.5

Cur

rent

(µA

/µm

)

Gate Voltage (V)

pristine

EG = 268 meV

EG = 508 meV

EG = 553 meV

VDS = 0.2 V

ID-VG at VDS = 0.2V

Page 6: Presented by: Salim Berrada

Effective masses comparison

EG=553EG=508EG=268

EG m*

268 0,064

508 0,074

268 0,113

Page 7: Presented by: Salim Berrada
Page 8: Presented by: Salim Berrada

GNM with EG=508meV

Page 9: Presented by: Salim Berrada

ID-VGS

0.1

1

10

100

1000

-0.5 0 0.5 1 1.5

VDS = 0.1 VVDS = 0.2 VVDS = 0.3 VVDS = 0.4 VD

rain

Cur

rent

(µA

/µm

)

Gate Voltage (V)

T = 300 K

100

1000

104

-0.5 0 0.5 1 1.5

VDS = 0.1 VVDS = 0.2 VVDS = 0.3 VVDS = 0.4 VD

rain

Cur

rent

(µA

/µm

)

Gate Voltage (V)

Page 10: Presented by: Salim Berrada

10 20 30 40 50 60Source-to-Drain Distance x (nm)

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

-1.0

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

-1.0

0.5

0.4

0.3

0.2

0.1

0

Ene

rgy

(eV

)

Ene

rgy

(eV

)

0 0.5 1 1.5 2Transmission Function

EfsEfd

10 20 30 40 50 60Source-to-Drain Distance x (nm)

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

-1.0

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

-1.0

0.5

0.4

0.3

0.2

0.1

0

Ene

rgy

(eV

)

Ene

rgy

(eV

)

0 0.5 1 1.5 2Transmission Function

10 20 30 40 50 6010 20 30 40 50 60Source-to-Drain Distance x (nm)

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

-1.0

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

-1.0

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

-1.0

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

-1.0

0.5

0.4

0.3

0.2

0.1

0

0.5

0.4

0.3

0.2

0.1

0

Ene

rgy

(eV

)

Ene

rgy

(eV

)

0 0.5 1 1.5 20 0.5 1 1.5 2Transmission Function

EfsEfd

10

100

1000

104

-0.5 0 0.5 1

Pristine Graphene ; V DS = 0.2V

Klein Tunneling

Thermionic

Total CurrentD

rain

Cur

rent

(µA

/µm

)

Gate Potential (V)

Page 11: Presented by: Salim Berrada

Contribution of Different Currents

Page 12: Presented by: Salim Berrada

Current Spectra at Dirac Point (VGS=0,2V) for VDS=0,2V

10-8 10-6 0.0001 0.01 1-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

Ndim = 12 ; EG = 508 meV ; V GS = 0.20

Vds = 0.3VVds = 0.4VVds = 0.2VVds = 0.1V

Current (µA/µm)

Ener

gy (e

V)

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0 100 200 300 400 500 600 700

Vds = 0.1vVds = 0.2VVds = 0.3VVds = 0.4V

Neu

tralit

y Po

int P

rofil

e (e

V)

Source-to-Drain Distance x(nm)

Page 13: Presented by: Salim Berrada

Results Analysis

Page 14: Presented by: Salim Berrada
Page 15: Presented by: Salim Berrada
Page 16: Presented by: Salim Berrada

Graphene Band structure

Page 17: Presented by: Salim Berrada

Dirac Point 0y yy

K QL

UGUSUD

Page 18: Presented by: Salim Berrada

Recall the band structure…

Page 19: Presented by: Salim Berrada

Qy= 0.02

UGUSUD

Page 20: Presented by: Salim Berrada

Qy= 0.04

UGUSUD

Page 21: Presented by: Salim Berrada

Comparision with Viet-Hung’s Code

Page 22: Presented by: Salim Berrada
Page 23: Presented by: Salim Berrada
Page 24: Presented by: Salim Berrada
Page 25: Presented by: Salim Berrada

APPENDIX

Page 26: Presented by: Salim Berrada

Pristine Graphene

Page 27: Presented by: Salim Berrada

Pristine Graphene ID-VGS

100

1000

104

-0.5 0 0.5 1 1.5

VDS = 0.1 VVDS = 0.2 VVDS = 0.3 VVDS = 0.4 VD

rain

Cur

rent

(µA

/µm

)

Gate Voltage (V)

Page 28: Presented by: Salim Berrada

Pristine Graphene: Currents Contrubution Analysis

10

100

1000

104

-0.5 0 0.5 1

Pristine Graphene ; V DS = 0.2V

Klein Tunneling

Thermionic

Total Current

Dra

in C

urre

nt (µ

A/µ

m)

Gate Potential (V)

101

102

103

104

-1 -0.5 0 0.5 1 1.5 2

Pristine Graphene ; V DS = 0.3V

Klein TunnelingThermoionicTotal current

Dra

in c

urre

nt (µ

A/µ

m)

Gate Volatge(V)

Page 29: Presented by: Salim Berrada

GNM 1 et 3

Page 30: Presented by: Salim Berrada

1

10

100

1000

-0.8 -0.4 0 0.4 0.8 1.2 1.6

Vds = 0.1VVds = 0.2V

Dra

in C

urre

nt(µ

A/µ

m)

Gate Voltage(V)

EG=268 meV

0.1

1

10

100

1000

-1.5 -1 -0.5 0 0.5 1 1.5 2

Vds = 0.1VVds = 0.2V

Dra

in C

urre

nt (µ

A/µ

m)

Gate Voltage (V)

EG=553 meV