Presentation 2011-09-04

Embed Size (px)

Citation preview

  • 7/31/2019 Presentation 2011-09-04

    1/23

    Quasistatic approximations and Darwin modelVector Kirchhoff formula and EM field solutions in Darwin model

    Dynamics calculations in Darwin modelSummary

    i iii

    ii

    . , .

    I ii i i. ..

    i i

    i,

    c. , . , I2011, i, i iii ii

    http://find/
  • 7/31/2019 Presentation 2011-09-04

    2/23

    Quasistatic approximations and Darwin modelVector Kirchhoff formula and EM field solutions in Darwin model

    Dynamics calculations in Darwin modelSummary

    Maxwells equations and comparison of quasistatic approximationsElectric field componentsMagnetic field componentGreens functions

    Maxwells equations

    div E = 4, div B = 0,

    rot E = 1

    c

    B

    t, rot B =

    4

    cj +

    1

    c

    E

    t;

    E = EC + EF : rot EC = 0, div EF = 0;

    boundary conditions: E = 0, Bn = 0, (rot B) = 0.

    magnetoquasistatics (MQS):E

    t= 0 divj = 0;

    electroquasistatics (EQS): Bt

    = 0 t

    + divj = 0;

    Darwin model (DW):EF

    t= 0

    t+ divj = 0.

    see, e.g.,: J. Larsson, Am. J. Phys. 75, pp. 230239 (2007).

    c. , . , I2011, i, i iii ii

    http://find/
  • 7/31/2019 Presentation 2011-09-04

    3/23

    Quasistatic approximations and Darwin modelVector Kirchhoff formula and EM field solutions in Darwin model

    Dynamics calculations in Darwin modelSummary

    Maxwells equations and comparison of quasistatic approximationsElectric field componentsMagnetic field componentGreens functions

    Comparison of quasistatic approximations

    E = EC + EF : rot EC = 0, div EF = 0.Faradays law Ampere-Maxwell law

    Maxwells equations rot EF = 1

    c

    B

    trot B =

    4

    cj +

    1

    c

    E

    t

    MQS (E/t = 0) rot

    EF =

    1

    c

    B

    t rotB =

    4

    cj

    EQS (B/t = 0) rot EF = 0 rot B =4

    cj +

    1

    c

    ECt

    DW (EF/t = 0) rot EF = 1

    c

    B

    trot B =

    4

    cj +

    1

    c

    ECt

    Poyntings theorem: wt

    + div S = j E; S = c4

    E B.

    Maxwells equations MQS EQS DW

    8w E2 + B2 B2 E2CE2C +

    B2 + 2 EC EF

    c. , . , I2011, i, i iii ii

    http://find/
  • 7/31/2019 Presentation 2011-09-04

    4/23

    Quasistatic approximations and Darwin modelVector Kirchhoff formula and EM field solutions in Darwin model

    Dynamics calculations in Darwin modelSummary

    Maxwells equations and comparison of quasistatic approximationsElectric field componentsMagnetic field componentGreens functions

    Electric field components

    EDW(x, t) = EC(x, t) + EF(x, t), where

    EC|r = qGD(x; x)

    r, EC| = q

    GD(x; x)

    r, EC|z = q

    GD(x; x)

    z;

    EF(x, t) =

    EF(x, t) +

    E

    a

    F(x, t) EF(x, t) + O(a) :

    EF|r =q

    4c2

    vz(v

    ) (v (v ))

    z+

    vr

    (v )z

    z

    S

    GD(x; x)

    4rV

    GD(x,z; x)

    zGD(x; x)d3xd2x

    (v (v ))z +

    vr

    (v )

    S

    GN (x; x)

    rGN(x,z; x)d

    2x

    ,

    c. , . , I2011, i, i iii ii

    Q i i i i d D i d l M ll i d i f i i i i

    http://find/
  • 7/31/2019 Presentation 2011-09-04

    5/23

    Quasistatic approximations and Darwin modelVector Kirchhoff formula and EM field solutions in Darwin model

    Dynamics calculations in Darwin modelSummary

    Maxwells equations and comparison of quasistatic approximationsElectric field componentsMagnetic field componentGreens functions

    Electric field components (continued)

    EF| =q

    4c2

    vz(v

    ) (v (v ))

    z

    + v

    r(v )z

    z

    S

    GD(x; x)

    4r

    V

    GD(x,z; x)

    zGD(x; x)d3xd2x+

    +

    (v (v ))z +

    vr

    (v )

    S

    GN (x; x)

    rGN(x,z; x)d

    2x

    ,

    EF|z =q

    4c2vz(v ) (v (v ))

    z+

    vr

    (v )z

    z

    V

    GD(x; x)GD(x; x)d3x; where

    t (v );

    x = (r(t)cos (t), r(t)sin (t), z(t)); vr =dr(t)

    dt, v = r(t)

    d(t)

    dt, vz =

    dz(t)

    dt.

    c. , . , I2011, i, i iii ii

    Q asistatic a ro imations and Dar in model Ma ells eq ations and com arison of q asistatic a ro imations

    http://find/http://goback/
  • 7/31/2019 Presentation 2011-09-04

    6/23

    Quasistatic approximations and Darwin modelVector Kirchhoff formula and EM field solutions in Darwin model

    Dynamics calculations in Darwin modelSummary

    Maxwell s equations and comparison of quasistatic approximationsElectric field componentsMagnetic field componentGreens functions

    Electric field components (final)

    EaF|r = qc2

    [az (a ) z

    ]S

    GD(x; x

    )

    4r

    V

    GD

    (x, z; x

    )4z

    GD(x; x)d3xd2x (a)z

    S

    GN (x; x)

    4rGN(x, z; x)d

    2x

    ,

    EaF| =q

    c2

    [az (a

    )

    z]

    S

    GD(x; x)

    4r

    V

    GD(x, z; x)

    4z

    GD(x; x)d3xd2x+ (a)z

    S

    GN (x; x)

    4rGN(x, z; x)d

    2x,EaF|z =

    q

    c2[az (a

    )

    z]

    V

    GD(x; x)

    4GD(x; x)d3x;

    where ar =dvr(t)

    dt

    v2(t)

    r(t), a =

    dv(t)

    dt+

    vr(t)v(t)

    r(t), az =

    dvz(t)

    dt.

    c. , . , I2011, i, i iii ii

    Quasistatic approximations and Darwin model Maxwells equations and comparison of quasistatic approximations

    http://find/
  • 7/31/2019 Presentation 2011-09-04

    7/23

    Quasistatic approximations and Darwin modelVector Kirchhoff formula and EM field solutions in Darwin model

    Dynamics calculations in Darwin modelSummary

    Maxwell s equations and comparison of quasistatic approximationsElectric field componentsMagnetic field componentGreens functions

    Magnetic field components

    BDW|r = q4c

    [vz (v )

    z]S

    GD(x; x

    )

    rGD(x, z; x)d2x

    +

    +(v)z

    z

    S

    GN (x; x)

    rGN(x, z; x)d

    2x

    ,

    BDW| =q

    4c

    [vz (v

    )

    z]

    S

    GD(x; x)

    rGD(x, z; x)d

    2x

    (v)z

    zS

    GN (x; x)

    r

    GN(x, z; x)d2x,

    BDW|z =q

    c(v)zG

    N(x; x); where for u = (u, z) it is defined

    u = ur

    r+ u

    r, (u)z = ur

    r u

    r.

    c. , . , I2011, i, i iii ii

    Quasistatic approximations and Darwin model Maxwells equations and comparison of quasistatic approximations

    http://find/
  • 7/31/2019 Presentation 2011-09-04

    8/23

    Quasistatic approximations and Darwin modelVector Kirchhoff formula and EM field solutions in Darwin model

    Dynamics calculations in Darwin modelSummary

    Maxwell s equations and comparison of quasistatic approximationsElectric field componentsMagnetic field componentGreens functions

    Greens functions

    GD(x;x) = 4a+q=1

    exp[0q||]

    20qJ0(0q)J0(0q

    )

    J21(0q)

    +

    ++

    n,q=1

    exp[nq||]

    nq

    Jn(nq)Jn(nq)

    J2n+1

    (nq)cos[n()]

    ,

    GN (x;x) =4a

    +

    q=1

    exp[0q||]

    20q

    J0(0q)J0(

    0q

    )

    J20(0q

    )+

    ++

    n,q=1

    nq exp[nq||]

    2nqn2

    Jn(nq)Jn(

    nq

    )

    J2n(nq)

    cos[n()]

    ;

    GD(x;x) = 8

    +

    q=1

    J0(0q)J0(0q)

    220qJ21 (0q)

    ++

    n,q=1

    Jn(nq)Jn(nq)

    2nqJ2n+1

    (nq)cos[n()]

    ,

    GN (x;x) = 8+

    q=1

    J0(0q)J0(

    0q

    )

    22

    0qJ2

    0(

    0q)

    ++

    n,q=1

    Jn(nq)Jn(

    nq

    )

    (2

    nqn2)J2

    n(

    nq)

    cos[n()];where =

    x2 + y2/a, = arcsin[y/r] and = z/a are dimensionless coordinates, a

    is drift-tube radius; nq and nq are qs roots to equations Jn(x) = 0 and Jn(x) = 0.

    G. Gorbik, K. Ilyenko, T. Yatsenko, Telecomm. Radio Eng. 67, pp. 11771188 (2008).

    c. , . , I2011, i, i iii ii

    Quasistatic approximations and Darwin modelV l f G f l

    http://find/
  • 7/31/2019 Presentation 2011-09-04

    9/23

    Quasistatic approximations and Darwin modelVector Kirchhoff formula and EM field solutions in Darwin model

    Dynamics calculations in Darwin modelSummary

    Vector analogue of Greens formulaEM fields in Darwin modelExample of induced charge and current densities

    Vector analogue of Greens formula

    Using vector identityV

    [ Grotrot F Frotrot G]dV =

    S

    [ Frot G Grot F]ndS,

    where n is internal normal to drift-tube surface S V, G = G(x; x)a[G(x; x) := 1/|x x| is scalar Greens function of free space ],

    F = EDW EC + EF [ or F = BDW ], and a is arbitrary constantvector, one gets

    EDW(t, x) = EinDW(t, x) +

    EscDW(t, x),

    BDW(t, x) = BinDW(t, x) +

    BscDW(t, x);

    EinDW(t, x) andBinDW(t, x) are fields induced by point-like charge in free

    space, and EscDW(t, x) andBscDW(t, x) can be deduced with aid ofknown

    solutions of Darwin model equations presented in preceding slides.

    see, e.g.,: J.A. Stratton, L.J. Chu, Phys. Rev. 56, pp. 99107 (1939).

    c. , . , I2011, i, i iii ii

    Quasistatic approximations and Darwin modelVe to n lo e of G een fo m l

    http://find/
  • 7/31/2019 Presentation 2011-09-04

    10/23

    Q ppVector Kirchhoff formula and EM field solutions in Darwin model

    Dynamics calculations in Darwin modelSummary

    Vector analogue of Greens formulaEM fields in Darwin modelExample of induced charge and current densities

    Proof Kirchhoff formula

    Fig. 1.

    Sphere with radius r0 withcenter in point x is threw out

    Denoted V = V, S = S.

    V

    [G(x; x)a rotx

    rotx

    EF

    (t, x)

    EF(t, x) rot xrot x(G(x; x

    )a)]dV =

    =

    S

    ([ EF(t, x) rot x(G(x; x

    )a)]

    [(G(x; x)a) rot x EF(t, x)]) ndS.

    rot xrot x(G(x; x)a) = x(xG(x; x

    ) a)

    EF(t, x) x(xG(x; x

    ) a) =

    = div x [EF(t, x)(a xG(x; x))].

    V

    div x [ EF(t, x)(a xG(x; x

    ))]dV =

    = a

    S

    (n EF(t, x))xG(x; x

    )dS

    .

    c. , . , I2011, i, i iii ii

    Quasistatic approximations and Darwin modelVector analogue of Greens formula

    http://find/
  • 7/31/2019 Presentation 2011-09-04

    11/23

    Vector Kirchhoff formula and EM field solutions in Darwin modelDynamics calculations in Darwin model

    Summary

    Vector analogue of Green s formulaEM fields in Darwin modelExample of induced charge and current densities

    Proof Kirchhoff formula (continued)

    S

    [(G(x; x)a) rot xrot x EF(t, x) EF(t, x) rot xrot x(G(x; x)a)]dV =

    = a

    V

    4

    c2G(x; x)

    jr(t, x)

    tdV + a

    S

    (n EF(t, x))xG(x; x

    )dS.

    Because

    [ EF(t, x) rot x(g(x; x

    )a)] n = [[n EF(t, x)] xG(x; x

    )] a,

    [a rot x EF(t, x)] n =

    1

    c[a

    B(t, x)

    t] n =

    1

    ca [n

    B(t, x)

    t].

    and a is arbitrary vector

    V

    4

    c2G(x; x)

    jr(t, x)

    tdV =

    S

    1

    cG(x; x)[n

    B(t, x)

    t]

    [[n EF(t, x)] xG(x; x

    )] (n EF(t, x))xG(x; x

    )dS.

    c. , . , I2011, i, i iii ii

    Quasistatic approximations and Darwin modelVector analogue of Greens formula

    http://find/http://goback/
  • 7/31/2019 Presentation 2011-09-04

    12/23

    Vector Kirchhoff formula and EM field solutions in Darwin modelDynamics calculations in Darwin model

    Summary

    Vector analogue of Green s formulaEM fields in Darwin modelExample of induced charge and current densities

    Proof Kirchhoff formula (continued)

    1

    c

    G(x; x)[nB(t, x)

    t

    ]+[[n EF(t, x)]xG(x; x

    )]+(n E(t, x))xG(x; x

    )dS =

    =

    V

    4

    c2g(x; x)

    jr(t, x)

    tdV +

    S

    1

    cG(x; x)[n

    B(t, x)

    t]+

    +[[n EF(t, x)]xG(x; x

    )]+(n EF(t, x))xG(x; x

    )dS, xG(x; x

    )| = 1

    r20

    n.

    1

    cG(x; x)[n

    B(t, x)

    t]+[[n EF(t, x

    )] xG(x; x)]+(n EF(t, x

    ))xG(x; x)

    dS

    =

    r20

    1

    c

    1

    r0[n

    B(t, x)

    t]

    1

    r20[[n EF(t, x

    )] n] 1

    r20(n EF(t, x

    ))n

    d =

    =

    r20

    1

    c

    1

    r0[n

    B(t, x)

    t]

    1

    r20

    EF(t, x)

    d =

    =

    r0

    c[n

    B(t, x)

    t] EF(t, x

    )

    d = 4

    r0

    c[n

    B(t, x)

    t] EF(t, x)

    ,

    is averaging on sphere.c. , . , I2011, i, i iii ii

    Quasistatic approximations and Darwin modelV Ki hh ff f l d EM fi ld l i i D i d l

    Vector analogue of Greens formula

    http://find/http://goback/
  • 7/31/2019 Presentation 2011-09-04

    13/23

    Vector Kirchhoff formula and EM field solutions in Darwin modelDynamics calculations in Darwin model

    Summary

    Vector analogue of Green s formulaEM fields in Darwin modelExample of induced charge and current densities

    Proof Kirchhoff formula (final)

    limr00

    1

    c G(x; x)[n

    jr(t, x)

    t ]+

    +[[n EF(t, x)]xG(x; x

    )]+(n EF(t, x))xG(x; x

    )

    dS = 4 EF(t, x)

    Perfect metal n E = 0 and n B = 0,

    EF(t, x) =1

    4

    V

    4

    c2G(x; x)

    jr(t, x)

    t

    dV+

    1

    4

    S

    1

    cG(x; x)[n

    B(t, x)

    t]+

    +[[n EF(t, x)] xG(x; x

    )] + (n EF(t, x))xG(x; x

    )dS,EF(t, x) =

    V

    1

    c2g(x; x)

    jr(t, x)

    t

    dV+

    S

    1

    c2

    t+ Fx

    G(x; x)dS,

    where =c

    4[n B]|S F =

    1

    4(n EF)|S .

    c. , . , I2011, i, i iii ii

    Quasistatic approximations and Darwin modelVe tor Kir hhoff form l nd EM field ol tion in D r in model

    Vector analogue of Greens formula

    http://find/
  • 7/31/2019 Presentation 2011-09-04

    14/23

    Vector Kirchhoff formula and EM field solutions in Darwin modelDynamics calculations in Darwin model

    Summary

    gEM fields in Darwin modelExample of induced charge and current densities

    EM fields in free space

    Ein

    DW(t, x) Ein

    C (t, x) + Ein

    F (t, x) :

    div EinC = 4, rotrotBinDW =

    4

    crotj,

    rotrot EinF =4

    c2

    tj +1

    4

    EinCt ;

    EinC (t, x) =

    V

    (t, x)G(x; x)d3x, where G(x; x) =1

    |x x|,

    EinF (t, x) = 1

    c2V

    j(t, x)t +

    (x x)

    2

    2(t, x)

    t2G(x; x)d3x,

    BinDW(t, x) = 1

    c

    V

    j(t, x) G(x; x)d3x.

    c. , . , I2011, i, i iii ii

    Quasistatic approximations and Darwin modelVector Kirchhoff formula and EM field solutions in Darwin model

    Vector analogue of Greens formula

    http://find/http://goback/
  • 7/31/2019 Presentation 2011-09-04

    15/23

    Vector Kirchhoff formula and EM field solutions in Darwin modelDynamics calculations in Darwin model

    Summary

    gEM fields in Darwin modelExample of induced charge and current densities

    EM fields in free space: point-like charge

    For point-like charge of value q(t, x) = q(x x(t)) j(t, x) = qv(t)(x x(t))

    [x(t) and v(t) = dx(t)/dt are its trajectory and instantaneous velocity].

    Ein

    DW(t, x) =Ein

    DW(t, x) +Ea

    DW(t, x) Ein

    C (t, x) +Ein

    F (t, x) + O(a) :

    EinDW(t, x) =q

    R2

    R

    R

    1

    v2(t)

    c2+

    3

    2

    v2(t)c2

    v(t)

    c

    R

    R

    2,

    BinDW(t, x) =q

    R2v(t)

    c

    R

    R and R(t, x) = x x(t),EaDW(t, x) =

    q

    2c2R

    a(t) +

    a(t)

    R

    R

    RR

    .

    It is important that, although acceleration is present, asymptotic of Poyntingsvector is O(R3) for large values ofR, i.e. these EM fields are non-propagating.

    c. , . , I2011, i, i iii ii

    Quasistatic approximations and Darwin modelVector Kirchhoff formula and EM field solutions in Darwin model

    Vector analogue of Greens formula

    http://find/http://goback/
  • 7/31/2019 Presentation 2011-09-04

    16/23

    Vector Kirchhoff formula and EM field solutions in Darwin modelDynamics calculations in Darwin model

    Summary

    EM fields in Darwin modelExample of induced charge and current densities

    EM fields of induced charge and current densities

    EM fieldsEscDW(t, x) = EscC (t, x) +

    EscF (t, x) and BscDW(t, x) are

    produced by charges and currents induced on drift-tube wall bycharged-particles moving inside the tube

    EscDW(t, x) = [C(t, x

    ) + F(t, x

    )]

    (x x)

    2c2

    2C(t, x)

    t2+

    +1

    c2

    (t, x)

    t

    G(x; x)d

    2x,

    BscDW(t, x) = 1

    c

    (t, x)G(x; x)d

    2x; where

    C(t, x) =

    1

    4n EC(t, x)

    x=x

    , F(t, x) =

    1

    4n EF(t, x)

    x=x

    ,

    (t, x) =c

    4n BDW(t, x)

    x=x

    ;

    n = er and x = (a cos

    , a sin , z).

    c. , . , I2011, i, i iii ii

    Quasistatic approximations and Darwin modelVector Kirchhoff formula and EM field solutions in Darwin model

    Vector analogue of Greens formulaEM fi ld i D i d l

    http://find/
  • 7/31/2019 Presentation 2011-09-04

    17/23

    Vector Kirchhoff formula and EM field solutions in Darwin modelDynamics calculations in Darwin model

    Summary

    EM fields in Darwin modelExample of induced charge and current densities

    Induced charge and current densities: point-like charge

    C(t, x) = q4

    GD

    (x; x)r

    x=x

    , F(t, x) = q162c2

    S

    GD

    (x; x)

    4r

    V

    GD(x , z; x)

    z

    vz(v

    )(v(v))

    z+

    vr

    (v)z

    z

    GD(x ; x)d3x

    GN (x; x )

    r

    (v(v))z+

    vr

    (v)

    GN(x , z; x)

    d2x

    (x,z)=x

    ;

    r(t, x) = 0, (t, x) =q

    4(v )zG

    N(x; x),

    z(t, x) = q162

    vz(v)

    z S

    GD

    (x; x

    )r

    GD(x, z; x)d2x

    (v )z

    z

    S

    GN (x; x)

    rGN(x, z; x)d

    2x

    (x,z)=x

    .

    c. , . , I2011, i, i iii ii

    Quasistatic approximations and Darwin modelVector Kirchhoff formula and EM field solutions in Darwin model

    Vector analogue of Greens formulaEM fi ld i D i od l

    http://find/http://goback/
  • 7/31/2019 Presentation 2011-09-04

    18/23

    Dynamics calculations in Darwin modelSummary

    EM fields in Darwin modelExample of induced charge and current densities

    Remaining moderately relativistic contributions to EM fields

    2C(t, x)

    t2=

    q

    4

    (v (v ))

    vr

    (v )z

    GD(x; x)

    r

    x=x

    ,

    (t, x)

    t

    =q

    4(v (v ))z +

    v

    r

    (v )GN(x; x),

    z(t, x)

    t=

    q

    162

    vz(v

    )

    (v (v

    ))vr

    (v )z

    z

    S

    GD(x; x)

    r

    GD(x,z; x)d2x

    (v (v ))z +

    vr

    (v )

    z

    S

    GN(x; x)

    rGN(x,z; x)d

    2x

    (x,z)=x

    .

    c. , . , I2011, i, i iii ii

    Quasistatic approximations and Darwin modelVector Kirchhoff formula and EM field solutions in Darwin model

    Vector analogue of Greens formulaEM fields in Darwin model

    http://find/http://goback/
  • 7/31/2019 Presentation 2011-09-04

    19/23

    Dynamics calculations in Darwin modelSummary

    EM fields in Darwin modelExample of induced charge and current densities

    Contributions to induced surface-charge density

    Non-Relativistic Contribution

    Fig. 1. Normalized surface-charge density(2a2C/q) as a function of and .Blue, green, and red surfaces (represented bynumbers 1, 2 and 3) are plotted for the normali-zed radial distance (r0/a) equal to 0.3, 0.4, and0.5, respectively (a is the drift-tube radius).

    Charged-Particle in Helical Motion

    r(t) r0 = a0,(t) = 0 + vt/r0,z(t) = z0 + vt;

    vr(t) = 0,v(t) v = c,

    vz(t) v = c.

    Fig. 2. Normalized correction (2a2F/q) tosurface-charge density of point-like charge inmoderately relativistic motion (v = 0.1c,v

    = 0.5c) as function of and .

    c. , . , I2011, i, i iii ii

    Quasistatic approximations and Darwin modelVector Kirchhoff formula and EM field solutions in Darwin model

    Vector analogue of Greens formulaEM fields in Darwin model

    http://find/
  • 7/31/2019 Presentation 2011-09-04

    20/23

    Dynamics calculations in Darwin modelSummary

    EM fields in Darwin modelExample of induced charge and current densities

    Components of induced surface-current density

    Fig. 3. Normalized components, 2a2/(cq) and 2a2z/(cq), of surface-current

    density of point-like charge in moderately relativistic helical motion (v = 0.1c,v = 0.5c) as a function of and (c is the speed of light). The blue, green,and red surfaces (represented by numbers 1, 2 and 3) are plotted for the normalizedradial distance (r0/a) equal to 0.3, 0.4, and 0.5, respectively (a is the drift-tube

    radius).c. , . , I2011, i, i iii ii

    Quasistatic approximations and Darwin modelVector Kirchhoff formula and EM field solutions in Darwin model

    D i l l i i D i d lRelativistic equations of motionFi N i i i

    http://find/
  • 7/31/2019 Presentation 2011-09-04

    21/23

    Dynamics calculations in Darwin modelSummary

    First post-Newtonian approximation

    Relativistic equations of motion

    mqid(ivi)

    dt= qi

    Ei(t, xi) +

    vic Bi(t, xi)

    ,

    dxidt

    = vi;

    dvidt

    =qi

    mqi1i

    Ei(t, xi)+

    vic Bi(t, xi)

    vi

    c2(vi E

    i(t, xi))

    ,

    where i = 1/

    1 v2i /c2;

    Ei(t, xi) EiQS(t, xi) +

    Ecohrad(t, xi) +Eext(t, xi),

    Bi(t, xi) BiQS(t, xi) +

    Bcohrad(t, xi) +Bext(t, xi).

    Fig. 4. Problem geometry.

    c. , . , I2011, i, i iii ii

    Quasistatic approximations and Darwin modelVector Kirchhoff formula and EM field solutions in Darwin model

    D i l l ti i D i d lRelativistic equations of motionFi t t N t i i ti

    http://find/
  • 7/31/2019 Presentation 2011-09-04

    22/23

    Dynamics calculations in Darwin modelSummary

    First post-Newtonian approximation

    First post-Newtonian approximation

    Neglecting completely the radiation field and for no external fields, we

    finally obtain the system of equations, which describe dynamics of intense(high-current) charged-particle beams in the Darwin model:

    dxidt

    = vi,

    dvidt

    qimqi

    1

    v2i2c2

    EiC(t, xi)

    vic2 (vi E

    iC(t, xi))+

    EiF(t, xi)+

    vic B

    iDW(t, xi)

    ;

    EiC(t, xi) =EscCi(t, xi) +

    Nk=i,k=1

    EinCk(t, xi) +

    EscCk(t, xi)

    ,

    EiF(t, xi) =EscFi(t, xi) +

    Nk=i,k=1

    EinFk(t, xi) +

    EscFk(t, xi)

    ,

    BiDW(t, xi) =BscDWi(t, xi) +

    Nk=i,k=1

    BinDWk(t, xi) +

    BscDWk(t, xi)

    .

    c. , . , I2011, i, i iii ii

    Quasistatic approximations and Darwin modelVector Kirchhoff formula and EM field solutions in Darwin model

    Dynamics calculations in Darwin model

    http://find/
  • 7/31/2019 Presentation 2011-09-04

    23/23

    Dynamics calculations in Darwin modelSummary

    Summary

    In the moderately relativistic the first post-Newtonian approximation (the Darwin model), we worked out a procedure forobtaining electric and magnetic fields that are induced by a point-likecharged-particle moving arbitrarily in a cylindrical drift-tube

    Applying the vector Kirchhoff formula in the Darwin model, we showhow to calculate electromagnetic field of surface-charge andsurface-current densities, which are induced by charged-particles thatmove arbitrarily in the cylindrical drift-tube, in the net forceexpressions defining self-consistent particle dynamics in the drift-tube

    In the first post-Newtonian (moderately relativistic) approximation,we formulate the equations of motion for point-like charged-particlesin the cylindrical drift-tube that account for not only potential butalso rotational space-charge field of these charged-particles

    c. , . , I2011, i, i iii ii

    http://find/