22
Preparing antihydrogen at rest for the free fall in Laurent Hilico Jean-Philippe Karr Albane Douillet Vu Tran Julien Trapateau Ferdinand Schmidt Kaler Jochen Walz Sebastian Wolf WAG 13-15 November 2013 Bern 2014 – 2017 Bescool project

Preparing antihydrogen at rest for the free fall in Laurent Hilico Jean-Philippe Karr Albane Douillet Vu Tran Julien Trapateau Ferdinand Schmidt Kaler

Embed Size (px)

Citation preview

Page 1: Preparing antihydrogen at rest for the free fall in Laurent Hilico Jean-Philippe Karr Albane Douillet Vu Tran Julien Trapateau Ferdinand Schmidt Kaler

Preparing antihydrogen at

rest for the free fall in

Laurent HilicoJean-Philippe KarrAlbane DouilletVu TranJulien Trapateau

Ferdinand Schmidt KalerJochen WalzSebastian Wolf

WAG 13-15 November 2013 Bern

2014 – 2017Bescool project

Page 2: Preparing antihydrogen at rest for the free fall in Laurent Hilico Jean-Philippe Karr Albane Douillet Vu Tran Julien Trapateau Ferdinand Schmidt Kaler

Outline

• H+ motion control requirements

• Capture and cooling challenges

• Experimental progress

Page 3: Preparing antihydrogen at rest for the free fall in Laurent Hilico Jean-Philippe Karr Albane Douillet Vu Tran Julien Trapateau Ferdinand Schmidt Kaler

GBAR overview

Page 4: Preparing antihydrogen at rest for the free fall in Laurent Hilico Jean-Philippe Karr Albane Douillet Vu Tran Julien Trapateau Ferdinand Schmidt Kaler

Last GBAR steps

Reaction chamber

H+ Capture and cooling

by laser cooled Be+ ions

Threshold Photodetachment

=1.7 µmH at rest

g

H initial velocity v0 < 0.8 m/sH+

3 neV, 20 µK

Accurate measurment of g < 1 %

H

e+

H+

30 cm 1 .. 6 keVTemperature 60 .. 300 eV

Recoil 0.23 m/s

Page 5: Preparing antihydrogen at rest for the free fall in Laurent Hilico Jean-Philippe Karr Albane Douillet Vu Tran Julien Trapateau Ferdinand Schmidt Kaler

H with v0 < 1 m/s ?

2i

aamp

Ground state quantum harmonic oscillator

mv

2

m = 1.67 10-27 kg , v0 < 0.8 m/s < 3 MHz

Cooling challengesReaction chamber

Kinetic energy 1 .. 6 keVTemperature 60 .. 300 eV 700 000 K

Trapped particuleTemperature 3 neV 20 µK

Capture + CoolingCold trapped H+

Classical world Frontiers of Quantum world

÷ 1010..11

NIST D. WinelandInnsbruck R. Blatt

Page 6: Preparing antihydrogen at rest for the free fall in Laurent Hilico Jean-Philippe Karr Albane Douillet Vu Tran Julien Trapateau Ferdinand Schmidt Kaler

> 10 000 laser cooled Be+ ions100 neV, T ~ mK

few mm

300 eV, T = 240 000 K

H+

First step

Two Cooling Steps

T÷ 3 109

Capture and sympathetic Doppler cooling by laser cooled Be+ ions

313 nm laser

in the linear capture trap (Paul trap, r0 = 3.5 mm, = 13 MHz)

Second step

Transfer and ground state cooling of a Be+/H+ ion pair in the precision trap

F. Schmidt Kaler, S. Wolf , Mainz

Page 7: Preparing antihydrogen at rest for the free fall in Laurent Hilico Jean-Philippe Karr Albane Douillet Vu Tran Julien Trapateau Ferdinand Schmidt Kaler

Capture efficiency

300 ns bunch

0

25

50

75

100

0 0,5 1 1,5t block (µs)

ion

nu

mb

er

(%)

0

25

50

75

100

0 25 50 75 100

First stepBe+ laser cooled ions

1 keV H+ ions

1000… 0 VInput end-caps

Output end-caps

timeUbiais=980 V

H+ intake

0 V

Versus intake delay Versus initial temperature (eV)

eV

Biased linear RF Paul trap

Page 8: Preparing antihydrogen at rest for the free fall in Laurent Hilico Jean-Philippe Karr Albane Douillet Vu Tran Julien Trapateau Ferdinand Schmidt Kaler

Sympathetic cooling time First step

Ec= 2 meV313 nm laser

vt = 0 s

t = 8 ms

• Numerical simulation 500 Be+ and 20 H+

• Hotter H+ ions and larger ion clouds numerical challenge

Work plan : Experimental tests with matter ions H2

+ or H+

Page 9: Preparing antihydrogen at rest for the free fall in Laurent Hilico Jean-Philippe Karr Albane Douillet Vu Tran Julien Trapateau Ferdinand Schmidt Kaler

Precision trap – motional couplings

z

x,y

Be+H+

Two coupled oscillators in an external potential

T. Hasegawa, Phys. Rev. A 83, 053407 (2011)J. B. Wübbena, S. Amairi, O. Mandel, P.O. Schmidt, Phys. Rev. A 85, 043412 (2012)

1D3D

normal modes

)cos(/

)sin(/

)(

)cos()sin()(

12

1

12

22

211

outoutout

ininin

outoutoutininin

tmm

zbt

mm

zbtq

tzbtzbtq

in phase modeout of phase mode

individual ion modesx, y, z

122

21 bb

• z trapping DC potentials• x,y trapping RF effective potentials• Coulomb interaction coupling

Newton equations equilibrium positions small oscillations

Second step

Page 10: Preparing antihydrogen at rest for the free fall in Laurent Hilico Jean-Philippe Karr Albane Douillet Vu Tran Julien Trapateau Ferdinand Schmidt Kaler

mlc/msc

b12

z motionx,y motion

3,1.2,5.1~

,1

,1 z

x

Precision trap – motional couplings Second step

mLC/mSC 1 b1 = 50 % b2 = 50 %

mLC/mSC = 9/1 b1 = 99.996 % b2 = 0.872 %

Efficient sympathetic cooling

?

Page 11: Preparing antihydrogen at rest for the free fall in Laurent Hilico Jean-Philippe Karr Albane Douillet Vu Tran Julien Trapateau Ferdinand Schmidt Kaler

Doppler cooling in precision trap

>> 20 µK

Page 12: Preparing antihydrogen at rest for the free fall in Laurent Hilico Jean-Philippe Karr Albane Douillet Vu Tran Julien Trapateau Ferdinand Schmidt Kaler

Raman side band cooling

313.13 nm

2S1/2

2P1/2

2P3/2 F=0, 1, 2, 3

F=1, 2

Stimulated Raman transition

Spontaneous Raman transitions

n=3

n=2

n=2

hfs- i

3 laser freq.2 beams

hfs= 1.25 GHz

~ tens of GHz

Be+H+

vibr

Page 13: Preparing antihydrogen at rest for the free fall in Laurent Hilico Jean-Philippe Karr Albane Douillet Vu Tran Julien Trapateau Ferdinand Schmidt Kaler

Raman side band cooling

Stimulated Raman transition no spontaneous emission coherent process

n=3

n=2

n=2

)(sin)23( 2,32 tnnP Population transfert probability

nen aainn

)(21,' '

ukk

.21 Lamb Dicke parameter

For n → n-1, 22121

1, bnnnn

pulse duration 221

11

2 bn

Single ion b1 = 1 3 modes ~ 100 µs /n/mode

Be+/H+ b1z = 0.18 2 modes x 5

b1x,y = 0.0872 4 modes x 15

~ 10 ms

< 1s

Rabi oscillation

Second step

Page 14: Preparing antihydrogen at rest for the free fall in Laurent Hilico Jean-Philippe Karr Albane Douillet Vu Tran Julien Trapateau Ferdinand Schmidt Kaler

Experimental progress

Page 15: Preparing antihydrogen at rest for the free fall in Laurent Hilico Jean-Philippe Karr Albane Douillet Vu Tran Julien Trapateau Ferdinand Schmidt Kaler

RF

DC O V DC

Hot H+

313 nm cooling laserQuadrupole guide

RF 250 V at 13.3 MHz, r0 = 3.5 mmDC’s 2 .. 10 V

Capture trap design Jean-Philippe Karr

12 mm

Page 16: Preparing antihydrogen at rest for the free fall in Laurent Hilico Jean-Philippe Karr Albane Douillet Vu Tran Julien Trapateau Ferdinand Schmidt Kaler

Design: Sebastian Wolf, MainzTransfer to precision trap

= 313 nm

= 1.64 µm

Cooling

Photodetachment

Mainz implantation trap

Capture trap

~2 mm

Page 17: Preparing antihydrogen at rest for the free fall in Laurent Hilico Jean-Philippe Karr Albane Douillet Vu Tran Julien Trapateau Ferdinand Schmidt Kaler

Vacuum vesselH+

Capture trapPrecision trap

with cryopumping

Page 18: Preparing antihydrogen at rest for the free fall in Laurent Hilico Jean-Philippe Karr Albane Douillet Vu Tran Julien Trapateau Ferdinand Schmidt Kaler

Evaluate sympathetic cooling timesnumerically & experimentally

Work plan11/2013

Achieve the design

12/2013

Setup the cooling lasers

Capture trap implementation

03/2014

Test with H2+ and H+ matter ions

from the REMPI source

12/2014

2013

2014

201506/2015

Test with Be+ and Ca+ ionsPrecision trap implementation

Transfer of precision trap to Paris,

12/2015

201603/2016 12/2016

Be+ and H2+ transfered in precision trap

Be+/H2+ ground state cooling

Page 19: Preparing antihydrogen at rest for the free fall in Laurent Hilico Jean-Philippe Karr Albane Douillet Vu Tran Julien Trapateau Ferdinand Schmidt Kaler

Tests with a H2+ / H+ REMPI source

P=10-6 mbIon creation

P=10-8 mbIon optics

P=10-10 mbInjection into the quadrupole guide

H2

303 nm pulsed laser3-4 mJ

H2+ ions

Ec = 50 eVE ~ 10 meV

H2+ ions

Ec = 0 eVE ~ 200 meV

Synergies H+ GbarH2

+ metrology projectHCI highly charged ions 40Ar13+, P. Indelicato, C. Szabo

100 %

efficiency

Page 20: Preparing antihydrogen at rest for the free fall in Laurent Hilico Jean-Philippe Karr Albane Douillet Vu Tran Julien Trapateau Ferdinand Schmidt Kaler

Conclusion

Capture of > 10 eV H+ and Doppler cooling in a linear Paul trap

Transfer to precision trap

Doppler and ground state cooling in precision trap OK

OK

• ANR BESCOOL• ITN ComiQ

Page 21: Preparing antihydrogen at rest for the free fall in Laurent Hilico Jean-Philippe Karr Albane Douillet Vu Tran Julien Trapateau Ferdinand Schmidt Kaler
Page 22: Preparing antihydrogen at rest for the free fall in Laurent Hilico Jean-Philippe Karr Albane Douillet Vu Tran Julien Trapateau Ferdinand Schmidt Kaler

Can we improve the motional couplings ?Idea

Efficient coupling

Coulomb coupling

Coul 21

3120

2

4

2

eqCoul z

q

m

Trapped ions 1 ~ 2 ~ 1.0 MHz Coul ~ 100 kHz

z12eq < 40 µm z12eq

with m1 = 9, m2 =1

Double well structure with very small electrodes

12

coul

Single well z 2 ~ 3 z1 poor couplings

Possible solution

x 2 ~ 9 x1

?