15
PREPARATION OF GEOPOLYMER BRICKS USING INDUSTRIAL WASTES By Nora Yehia ElSayed Abd ElFattah Selem A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY in Chemical Engineering FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2015

PREPARATION OF GEOPOLYMER BRICKS USING INDUSTRIAL …

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

PREPARATION OF GEOPOLYMER BRICKS

USING INDUSTRIAL WASTES

By

Nora Yehia ElSayed Abd ElFattah Selem

A Thesis Submitted to the

Faculty of Engineering at Cairo University

in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

in

Chemical Engineering

FACULTY OF ENGINEERING, CAIRO UNIVERSITY

GIZA, EGYPT

2015

PREPARATION OF GEOPOLYMER BRICKS

USING INDUSTRIAL WASTES

By

Nora Yehia ElSayed Abd ElFattah Selem

A Thesis Submitted to the

Faculty of Engineering at Cairo University

in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

in

Chemical Engineering

Under the Supervision of

Prof. Magdi Fouad Abadir

……………………………….

Prof. Mai Mohamed Kamal

……………………………….

Chemical Engineering Department

Faculty of Engineering, Cairo University

Chemical Engineering Department

Faculty of Engineering, Cairo University

Ass. Prof. Shakinaz Ali El–Sherbiny

……………………………………

Chemical Engineering Department

Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY

GIZA, EGYPT

2015

PREPARATION OF GEOPOLYMER BRICKS

USING INDUSTRIAL WASTES

By

Nora Yehia ElSayed Abd ElFattah Selem

A Thesis Submitted to the

Faculty of Engineering at Cairo University

in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

in

Chemical Engineering

Approved by the

Examining Committee

____________________________

Prof. Magdi F. Abadir, Thesis Main Advisor

Faculty of Engineering, Cairo University

____________________________

Prof. Osama Abdel Ghafour Hodhod

Faculty of Engineering, Cairo University

____________________________

Prof. Soliman Aly El Hemaly

National Research Center, Cairo

FACULTY OF ENGINEERING, CAIRO UNIVERSITY

GIZA, EGYPT

2015

Engineer: Nora Yehia EL- Sayed Abd EL- Fattah Selem

Date of Birth : 28 / 11 / 1983

Nationality : Egyption

E-mail : [email protected]

Phone. : 01285370038

Address : 10th of Ramadan City/ G9/villa 227

Registration Date : 1 / 10 / 2010

Awarding Date : / /

Degree : doctor of philosophy

Department : chemical engineer

Supervisors : Prof. Dr Magdi Fouad Abadir

Prof. Dr. Mai Mohamed Kamal

Ass. Prof. Shakinaz Ali El–Sherbiny

Examiners : Prof. Dr. Magdi F. Abadir, Thesis Main Advisor

Prof. Dr. Osama Abdel Ghafour Hodhod

Prof. Dr. Soliman Aly El Hemaly

Title of Thesis: Preparation of Geopolymer Bricks Using Industrial Wastes

Key Words: Geopolymers, inorganic polymeric materials, geopolymer bricks

Summary:

Geopolymers are inorganic polymeric materials They are conventionally

produced by reacting solid aluminosilicates with a highly concentrated aqueous alkali

hydroxide . In the present thesis ground waste produced from firing clay bricks (homra) and

slaked lime (Ca(OH)2) were used to prepare geopolymer bricks. The parameters affecting the

physicomechanical properties of produced geopolymer bricks were then studied. These are:

fired clay brick waste particle size, mixing water mass percent, amount of Ca(OH)2 and NaOH

used, used. It was found that geopolymer bricks compatible with ASTM C 62 for normal duty

building bricks could be prepared by mixing waste homra ground to 0.075 mm with 8 % solid

slaked lime, 0.5 % NaOH and 28 % water.

DEDICATION

I wish to dedicate my thesis to my husband and my daughter

i

ACKNOWLEDGMENTS

The author wishes to express her deep thanks and gratitude to her main supervisor

Prof. M. F. Abadir, Professor at the Chemical Engineering Department, Faculty of

Engineering, Cairo University, for suggesting the research point, supervising and following

the experimental work performed in the Faculty’s Laboratory, in addition to his continuous

encouragement.

I would like to express my deepest thanks to Prof. M. M. Kamal, and Ass. Prof. S.

A. ElSherbiny, at the Chemical Engineering Department, Faculty of Engineering, Cairo

University, for their unlimited support.

Deepest gratitude is also due to Dr. Sh. K. Amin, Ass. Prof. at the Chemical

Engineering and Pilot Plant Department, Engineering Research Division, National

Research Center, for supervising the experimental research work. Her efforts in solving the

practical problems that faced the author are deeply appreciated.

The author would like to offer special thanks to Eng. Samir Abd ElAzim, the staff

of the Quality Control Laboratory, Raw Materials and Processing Department, Housing

and Building National Research Center, for helping the author in using the laboratory for

testing the samples.

Finally, the author expresses her gratitude to the Higher Technological Institute,

especially the Staff of the Chemical Engineering Department, for authorizing the author

using the Library.

ii

List of Contents

Page

vii List of Tables………………………………………………

ix List of Figures……………………………………………..

xvi List of Symbols……………………………………………

xvii Abstract…………………………………………………....

1 I. Chapter One: Introduction……………………………

4 Aim of the present work……………………………………

5 II. Chapter Two: Literature Review…………………….

6 2.1. Clay Bricks ……………………………………………

6 2.1.1. Introduction………………………………………………….

6 2.1.2. History……………………………………………………….

7 2.1.3. Definition of Clay Bricks……………………………………..

7 2.1.4. Bricks Raw Materials……………………………………….

8 2.1.5. Manufacturing Steps of Clay Masonry……………………….

14 2.2. Types and Classification of Clay Bricks………………

15 2.3. Main Clay bricks Manufacturers in Egypt…………….

15 2.4. Environmental Impact of Clay Brick Industry………...

17 2.5. Clay Brick Waste……………………………………...

17 2.6. Wastes Used in the Manufacture of Clay Bricks……...

18 2.6.1. Waste Recycling……………………………………………...

18

2.6.2. Overview of Recycled Wastes in Fired Clay Bricks

iii

Production …………………………………………………….

18 2.6.2.1. Cement and Cement Dust………………………………………………

19 2.6.2.2. Fly Ash………………………………………………………..

19 2.6.2.3. Marble…………………………………………………………………..

20 2.6.2.4. Rice Hulls / Rice Husk Ash (RHA)…………………………………………….

22 2.6.2.5. Rice Straw Ash (RSA)………………………………………………….

22 2.6.2.6. Saw Dust Ash (SDA)…………………………………………………

23 2.6.2.7. Mineral Oil……………………………………………………………...

23 2.6.2.8. Phosphogypsum………………………………………………………...

23 2.6.2.9. Foundry Sand …………………………………………………………..

24 2.6.2.10. Sewage Sludge………………………………………………………...

24 2.6.2.11. Boron…………………………………………………………………..

25 2.6.2.12. Spent Catalyst…………………………………………………………

25 2.6.2.13. Paper Pulp……………………………………………………………..

26 2.6.2.14. Other Wastes…………………………………………………………

30 2.7. Definition of a Geopolymer…………………………..

31 2.8. Geopolymers Applications…………………………….

32 2.9. Geopolymers History………………………………….

32 2.9.1. FireResistant of Geopolymers (19731976)…………….. 33 2.9.2. Ceramic Applications (19771978)………………………….. 33 2.9.3. Geopolymeric Binders (19791995)………………………… 35 2.9.4. HighStrength Geopolymer Cement (1983)…………………. 36 2.9.5. More recent applications (19942000)………………………. 37 2.10. Geopolymerisation of AluminoSilicate Mineral……

38 2.10.1. Extent of Dissolution of Minerals in Alkaline Medium…….

iv

39 2.10.2. Compressive strength of Geopolymers……………………...

40 2.11. Metakaolin as Geopolymer Cementitious Material….

43 2.11.1. Physical and Chemical properties of Metakaolin…………...

43 2.12. Geopolymer Materials for the Building Industry…….

44 2.12.1. Geopolymer Cement and Concrete………………………….

50 2.12.2. Geopolymer Bricks and Blocks……………………………..

54 III. Chapter Three: Experimental Work……………….. 55 3.1. Raw Materials…………………………………………

55 3.2. Assessment of Raw Materials…………………………

55 3.2.1. Screen Analysis………………………………………………

56 3.2.2. Chemical Analysis (XRF)…………………………………….

57 3.2.3. Mineralogical Analysis (XRD)……………………………..

58 3.2.4. Thermal Analysis…………………………………………….. 58 3.2.5. Determination of the Powder Density………………………...

59 3.3. Preparation of Building Brick Specimens……………..

60 3.4. Testing of Building Brick Specimens…………………

60

3.4.1. Determination of Water Absorption and Saturation

Coefficient ……………………………………………………..

62 3.4.2. Determination of Bulk Density……………………………….

62 3.4.3. Determination of Compressive Strength……………………...

63 3.4.4.Microscopic Investigations……………………………… 64 IV. Chapter Four: Results and Discussion………………

65 4.1. Properties of Raw Materials……………………….......

v

65 4.1.1. Screen Analysis……………………………………………….

70 4.1.2. Chemical Analysis (XRF)…………………………………….

71 4.1.3. Mineralogical Analysis (XRD)……………………………….

71 4.1.4. Thermal Analysis (TGA)……………………………………..

75 4.1.5. Determination of Powder Density………………………...

75 4.2. Parameters Affecting Cold Water Absorption………...

75 4.2.1. Effect of Homra Particle Size………………………………...

76 4.2.2. Effect of Percent Sodium Hydroxide…………………………

85 4.2.3. Effect of Percent Milk of Lime……………………………….

85 4.2.4. Effect of Percent Water Added……………………………….

88 4.3. Parameters Affecting Boiling Water Absorption……...

88 4.3.1. Effect of Homra Particle Size………………………………...

88 4.3.2. Effect of Percent Sodium Hydroxide…………………………

98 4.3.3. Effect of Percent Milk of Lime……………………………….

98 4.3.4. Effect of Percent Water Added……………………………….

98 4.4. Parameters Affecting Saturation Coefficient………….

98 4.4.1. Effect of Homra Particle Size………………………………...

107 4.4.2. Effect of Percent Sodium Hydroxide…………………………

107 4.4.3. Effect of Percent Milk of Lime……………………………….

107 4.4.4. Effect of Percent Water Added……………………………….

114 4.5. Parameters Affecting Bulk Density……………………

114 4.5.1. Effect of Homra Particle Size………………………………...

vi

120 4.5.2. Effect of Percent Sodium Hydroxide…………………………

120 4.5.3. Effect of percent Milk of Lime……………………………….

120 4.5.4. Effect of Percent Water Added……………………………….

127 4.6. Parameters Affecting Compressive Strength………….

127 4.6.1. Effect of Homra Particle Size………………………………...

133 4.6.2. Effect of Percent Sodium Hydroxide…………………………

138 4.6.3. Effect of Percent Milk of Lime……………………………….

138 4.6.4. Effect of Percent Water Added……………………………….

141 4.7. Concluding Remarks…………………………………..

141 4.8. Statistical Analysis…………………………………….

142 4.8.1. Cold Water Absorption……………………………………….

142 4.8.2. Boiling Water Absorption…………………………………….

142 4.8.3. Saturation Coefficient………………………………………...

143 4.8.4. Bulk Density………………………………………………….

143 4.8.5. Compressive Strength………………………………………...

144 4.9. SEM Results……………………………………….......

145

4.10. Cost Evaluation of the Production of Geopolymer

Bricks…………………………………………………...

148 V. Chapter Five: Conclusion……………………………..

153 References……………………………………….................

163 Appendix 1………………………………………...............

171 Arabic Summary.…………………………………………

vii

List of Tables

Page

II. Chapter Two: Literature Review…………………… 5

Table (2.1): Clay Bricks Manufacturers in Egypt…………………. 15

Table (2.2): Extent of dissolution of Si and Al from minerals in

NaOH and KOH solutions…………………………………..

39

Table (2.3): Compressive strength of geopolymers formed from

Al–Si minerals……………………………………………

40

Table (2.4): Properties of kaolin………………………………….. 42

Table (2.5): Physical properties of MK…………………………... 43

Table (2.6): Requirements of MK (ASTM C 618)……………….. 43

Table (2.7): Comparison properties between geopolymer concrete

and OPC……………………………………………………..

45

Table (2.8): Oxide compositions of ashes tested, from X-ray

fluorescence…………………………………………………...

46

Table (2.9): Mix proportion of geopolymer mortars……………... 48

III. Chapter Three: Experimental Work………………. 54

Table (3.1): Set of sieves used for screen analysis test……………. 56

IV. Chapter Four: Results and Discussion…………….. 64

Table (4.1): XRF for homra………………………………………... 70

Table (4.2): Comparison of the properties of geopolymer bricks

with standards…………………………………………………

141

Table (4.3): Correlation table for cold water absorption…………... 142

viii

Table (4.4): Correlation table for boiling water absorption………... 142

Table (4.5): Correlation table for saturation coefficient…………… 143

Table (4.6): Correlation table for bulk density…………………… 143

Table (4.7): Correlation table for compressive strength…………… 143

Table (4.8): Raw material and utilities cost use in geopolymer

bricks manufacture…………………………………………….

146

Table (4.9): Raw material amount and cost in geopolymer bricks

manufacture……………………………………………………

146

Table (4.10): Working cost in geopolymer bricks manufacture…… 147

Appendix 1……………………………………………….. 163

Table (A.1): Specifications for bricks……………………………... 165

Table (A.2): Physical properties in brick specifications…………… 166

Table (A.3): Appearance classifications…………………………… 167

Table (A.4): Dimensional tolerances……………………………… 168

Table (A.5): Distortion tolerances…………………………………. 168

Table (A.6): Maximum permissible range of chippage……………. 169

Table (A.7): Requirements for void areas…………………………. 170

ix

List of Figures

page

5 II. Chapter Two: Literature Review……………………

8

Figure (2.1): Diagrammatic representation of the manufacturing

process…………………………………………………………

9 Figure (2.2): Pug milling operation………………………………...

10 Figure (2.3): A pug mill (Vacuum auger)…………………………..

11 Figure (2.4): Stiff – Mud Process…………………………………..

12 Figure (2.5): Elimination of water during drying…………………..

13

Figure (2.6):Tunnel kiln with schematic operation and temperature

profile…………………………………………………………

14 Figure (2.7): Packaging of clay masonry…………………………...

32

Figure (2.8): Comparison of existing materials to those based on

geopolymers…………………………………………………...

33

Figure (2.9): Manufacture of fire-resistant woodchipboards faced

with geopolymer (NaPoly (sialate))………………………….

34

Figure (2.10): Decorative items made of (K)Poly (sialatesiloxo)

geopolymer binder……………………………………………

34

Figure (2.11): Foamed geopolymer (Na, K)Poly (sialatesiloxo)

resin…………………………………………………………….

36

Figure (2.12): Highearly strength of (K, Ca)Poly(sialatesiloxo)

cement…………………………………………………………

Figure (2.13): Geopolymer types involved in successful

x

37 applications…………………………………………………….

41 Figure (2.14): Kaolin……………………………………………….

41 Figure (2.15): Schematic structure of kaolinite……………………

42 Figure (2.16): Kaolin plates and stacks…………………………….

47

Figure (2.17): Compressive strengths (after 7 days, curing at 40

°C) of geopolymer mortars derived from ashes, activator

composition (SiO2/K2O = 1.0) and with equal workability.

Samples plotted as zero strength had failed to harden in this

curing regime………………………………………………….

47

Figure (2.18): Dilatometric data for geopolymer pastes of the same

compositions as in Figure (2.14)………………………………

51

Figure (2.19): Manufacture of LTGS geopolymeric crosslinking

bricks…………………………………………………………

54 III. Chapter Three: Experimental Work……………….

56 Figure (3.1): Set of sieves used for screen analysis test……………

57

Figure (3.2): AXIOS, panalytical 2005, Wavelength Dispersive

(WD – XRF) Sequential Spectrometer………………………..

63 Figure (3.3): Compressive strength testing machine……………….

64 IV. Chapter Four: Results and Discussion……………..

66 Figure (4.1): Differential analysis of the asreceived homra………

67 Figure (4.2): Cumulative analysis of the asrecived homra……..

68

Figure (4.3): Cumulative analysis of homra, (a) Coarse fraction,

(b) Fine fraction……………………………………………….

69 Figure (4.4): Cumulative analysis of milk of lime…………………

72 Figure (4.5): XRD pattern of coarse homra………………………...