Prenatal Development of the Eye and Its Adnexa

  • Upload
    mumunoo

  • View
    219

  • Download
    0

Embed Size (px)

Citation preview

  • 8/13/2019 Prenatal Development of the Eye and Its Adnexa

    1/71

    Prenatal Development of the Eye and Its AdnexaCYNTHIA S. COOK, VICTORIA OZANICS and FREDERICK A.

    JAKOBIEC

    Main Menu Table Of Contents

    Search

    EARLY MORPHOGENESISLENS INDUCTION AND DIFFERENTIATION

    CONNECTIVE TISSUE COATSSTRUCTURES OF THE AQUEOUS OUTFLOW PATHWAYS

    UVEA

    NEUROECTODERMAL LAYERSBRUCH'S MEMBRANE

    OPTIC NERVE AND DISC

    VITREOUS AND HYALOID SYSTEM

    ADNEXACONCLUSIONS

    ACKNOWLEDGMENTSREFERENCES

    In this text, we attempt to provide an overview of ocular embryology bydescribing essential developmental events in a concise fashion. Fine

    structural data on human and primate eye components have become available

    since the appearance of standard publications on ocular embryology byMann,

    1Barber,

    2Dejean and coworkers,

    3and Duke-Elder and associates.

    41

    These observations aid in reconfirming or reevaluating the functional

    development of ocular structures as expressed by morphologic changes. Our

    descriptions are based on mammalian tissues, including both humans andother species that serve to model human development. Comparisons have

    demonstrated that the sequence of developmental events is similar across

    species. Factors that must be taken into consideration when makinginterspecies comparisons include: duration of gestation; differences in

    anatomic endpoint (such as the absence in other species of a macula,

    Schlemm's canal, or Bowman's membrane); and when eyelid fusion breaks(during the sixth month of gestation in the human versus 2 weeks postnatally

    in the mouse. Within the limits of these species variation, mice have proven

    to be a valuable model in the study of normal and abnormal ocular

    morphogenesis. In particular, the study of effects of acute exposure to

    teratogens during development has provided valuable information about thespecific timing of events leading to malformations.

    In development of the eye, as in other organs, the multiplication of cells as

    well as directional change in shape, structure, and function of the cells

    govern growth. Gene determination decides the direction in which a changecan occur, whereas the reciprocal demands of the individual cells or parts

    determine how far that direction must be followed. Fundamentally, the

    http://www.oculist.net/downaton502/prof/ebook/duanes/index.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/index.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/contents.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/contents.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#earhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#earhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#lenhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#lenhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#conhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#conhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#strhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#strhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#uvehttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#uvehttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#neuhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#neuhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#bruhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#bruhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#opthttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#opthttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#vithttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#vithttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#adnhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#adnhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#conchttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#conchttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#ackhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#ackhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#refhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#refhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r1http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r1http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r1http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r2http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r2http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r2http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r3http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r3http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r3http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r41http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r41http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r41http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r41http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r3http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r2http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r1http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#refhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#ackhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#conchttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#adnhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#vithttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#opthttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#bruhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#neuhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#uvehttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#strhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#conhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#lenhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#earhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/contents.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/index.html
  • 8/13/2019 Prenatal Development of the Eye and Its Adnexa

    2/71

    process consists of these two activities: change in structure and shape due to

    relatively different rates of growth and also change in structure and function

    due to differentiation and functional specialization.

    Induction of one ocular tissue by another and interrelations between these

    developing tissues have been extensively reinvestigated in many laboratoriesusing various experimental techniques.

    521One example is the lens, which

    arises in direct response to induction by the optic vesicle. The developing

    lens, in turn, promotes normal morphogenesis of neural ectodermal andmesenchymal elements in the eye. It has an inducing influence on corneal

    differentiation and promotes vitreous growth. Moreover, a strong

    organogenetic connection exists between lens and iris. The reciprocal

    interactions between optic cup and lens bring about the functional adjustmentof the ocular axes.

    Although the neural retina grows and differentiates independently of the

    lens, the presence of the lens may influence the normal growth and change inshape of the pigment epithelium, choroid, and sclera. The pigment

    epithelium, however, directs the deposition of the mesenchyme around it;

    subsequently, all three layers grow in unison. The pigment epithelium alsodepends on the vitreous body for increase in its area.

    Back to Top

    EARLY MORPHOGENESIS

    Although events occurring during the first few weeks after fertilization, before the appearance of

    identifiable ocular primordia, may seem to have little significance to the clinicalophthalmologist, evidence indicates that abnormalities that originate during this period may be

    responsible for many ocular malformations that occur in humans.

    Gastrulation (formation of the mesodermal germ layer) occurs early in gestation (day 7 in mice,day 20 in humans). The primitive streak forms as a longitudinal groove within the epiblast

    (future ectoderm) of the bilaminar embryonic disc. Epiblast cells migrate medially toward theprimitive streak where they invaginate to form the mesodermal layer (Fig. 1). This forms the

    classic three germ layers: ectoderm, mesoderm, and endoderm. Gastrulation progresses in a

    cranial to caudal direction. Concurrently, cranial surface ectoderm proliferates forming bilateral

    elevations called neural folds (Fig. 2). Columnar surface ectoderm in this area now becomes

    neural ectoderm.

    http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r5http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r5http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r5http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r5http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r5http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#tophttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#tophttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/001f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/001f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/001f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/002f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/002f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/002f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/002f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/001f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#tophttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r5
  • 8/13/2019 Prenatal Development of the Eye and Its Adnexa

    3/71

    Fig. 1. A.Drawing of a 17-day-old embryo in gastrulationstage, dorsal view, with the amnion removed. B.Cross-

    section of a 17-day-old embryo through the primitive

    streak. The primitive streak represents invagination ofepiblast cells between the epiblast and hypoblast layers.

    Note that the epiblast cells filling the middle area formthe mesodermal layer. C.Cross-section of the embryo atthe end of the third week showing the three definitive

    germ layers: ectoderm, mesoderm, and endoderm. (Cook CS, Sulik KK, Wright KW:

    Embryology. In Wright KW [ed]: Pediatric Ophthalmology and Strabismus, pp 343. St Louis:

    Mosby, 1995.

    Fig. 2. A.Drawing of dorsal view of a

    human embryo at 19 to 20 days'

    gestation. The neural plate transforms

    into two neural folds on each side ofthe neural groove. The neural groove

    in the middle of the embryo isshaded

    to represent neural ectoderm; the

    unshadedsurface of the embryo issurface ectoderm. B.Cross-section of same embryo through the neural plate. Ectoderm in the

    area of the neural groove (shaded cells) has differentiated into neural ectoderm, whereas the

    ectoderm on each side of the neural groove is surface ectoderm (clear white cells) (Cook CS,Sulik KK, Wright KW: Embryology. In Wright KW (ed): Pediatric Ophthalmology and

    Strabismus pp 343. St Louis: Mosby, 1995.)

    Experimental studies in mice using acute exposure to teratogens have demonstrated the

    significance of the period of gastrulation to later ocular development. Exposure to ethanol orretinoic acid during a short period equivalent to the third week of human gestation causes

    primary damage to the forebrain neural ectoderm.2224

    This results in a spectrum ofmalformations including microphthalmia, anterior segment dysgenesis (Peters' anomaly), iris and

    optic nerve colobomas, and persistent hyperplastic primary vitreous.25,26

    As the neural folds elevate and approach each other (neurulation), a specialized population of

    mesenchymal cells, the neural crest, emigrates from the neural ectoderm at its junction with the

    surface ectoderm. In the development of the eye, the neural ectoderm(deriving from the neuralplate and neural folds), thesurface ectoderm, the neural crest, and, to a lesser extent, the

    mesodermare of importance (Table 1).

    TABLE 1. Embryonic Origins of Ocular Tissues

    Neural ectoderm (optic cup)

    Neural retina

    http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r22http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r22http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r22http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r22http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r22http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r25http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r25http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r26http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r26http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r26http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#t1http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#t1http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#t1http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/002f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/001f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/002f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/001f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#t1http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r26http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r25http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r22
  • 8/13/2019 Prenatal Development of the Eye and Its Adnexa

    4/71

    Retinal pigment epithelium

    Pupillary sphincter and dilator muscles

    Posterior iris epithelium

    Ciliary body epitheliumOptic nerve

    Neural crest (connective tissue)

    Corneal endotheliumTrabecular meshwork

    Stroma of cornea, iris, and ciliary body

    Ciliary muscleChoroid and sclera

    Perivascular connective tissue and smooth muscle cells

    Meninges of optic nerve

    Orbital cartilage and boneConnective tissue of the extrinsic ocular muscles

    Secondary vitreous

    Zonules

    Surface ectoderm (epithelium)

    Corneal and conjunctival epitheliumLens

    Lacrimal gland

    Eyelid epidermisEyelid cilia

    Epithelium of adnexa glands

    Epithelium of nasolacrimal duct

    Mesoderm (muscle and vascular endothelium)

    Extraocular muscle cells

    Vascular endothelia

    Schlemm's canal endothelium

    Blood

    The cranial neural crest contributes most of the connective tissues of the eye and its adnexal

    structures.14,19,2741

    The hyaluronic acid-rich extracellular matrix influences migration and

    http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r14http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r14http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r19http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r19http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r27http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r27http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r27http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r27http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r27http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r27http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r19http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r14
  • 8/13/2019 Prenatal Development of the Eye and Its Adnexa

    5/71

    differentiation of the neural crest cells. This acellular matrix is secreted by the surface epithelium

    as well as the neural crest cells and forms a space through which crest cells migrate. Fibronectin

    secreted by the noncrest cells forms the limits of the mesenchymal migration. Interactions

    between the migrating neural crest and the associated mesoderm appear to be essential fornormal crest differentiation. Many congenital malformations of the anterior segment and cornea

    probably arise from derangements in the axial migration of ocular neural crest.

    Experimental embryologic studies have shown that the mesoderm actually contributes little to

    head and neck mesenchyme. The cranial correlates to the paired paraxial somites are called

    somitomeres.Seven pairs of cranial somitomeres have been identified in the mouse .33,40,4251

    In

    the eye, the mesoderm contributes only to the striated extraocular muscles and vascular

    endothelia. To these limited primary mesodermal elements come associated neural crest satellite

    cells (surrounding the striated muscles) and pericytes (surrounding the vascular endothelium).Circulating blood elements originate from mesoderm. The term mesenchyme broadly refers to

    any embryonic connective tissue and should not be confused with mesoderm. With respect to the

    head and neck, most of this connective tissue derives from the cranial neural crest, with the

    exceptions mentioned.

    The optic primordium is a thickened zone in the differentiating central nervous system that forms

    the neural folds of the early embryo. Some of the neuroepithelium composing the opticprimordium becomes the future optic cup and stalk; some cells may delaminate to contribute to

    the neural crest.27

    The optic sulcus or groove arises in the primordium at the time when the

    neural folds are still open in the forebrain (8 to 15 somite pairs, approximately 2 to 3.5 mm)(Figs. 3and4A). With enlargement of the sulcus, the optic evaginations and, later, the optic pits

    appear in the region of the future forebrain (seeFig. 4B). The portion of the evaginations

    adjacent to the midbrain contacts the mesencephalic neural crest cells, which will form the

    mesenchymal envelope isolating neural from surface ectoderm (seeFig. 4C).

    Fig. 3. Drawing of 23-day-old embryo, dorsal view, showing partial fusion of

    the neural folds. Brain vesicles have divided into three regions: forebrain,midbrain, and hindbrain. Facing surfaces of the forebrain are lined with neural

    ectoderm (shaded cells), but the most of the embryo is now lined with surface

    ectoderm (clear white) because the neural groove has closed. On the inside ofboth forebrain vesicles is the site of the optic sulci. (Cook CS, Sulik KK,

    Wright KW: Embryology. In Wright KW [ed]: Pediatric Ophthalmology and

    Strabismus, pp 343. St Louis: Mosby, 1995.)

    http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r33http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r33http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r40http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r40http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r42http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r42http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r42http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r42http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r42http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r27http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r27http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r27http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/003f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/003f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/003f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/004f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/004f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/004f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/004f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/004f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/004f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/004f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/004f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/004f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/004f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/004f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/004f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/003f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/004f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/004f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/004f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/003f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r27http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r42http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r40http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r33
  • 8/13/2019 Prenatal Development of the Eye and Its Adnexa

    6/71

  • 8/13/2019 Prenatal Development of the Eye and Its Adnexa

    7/71

    Fig. 5. A.Drawing of a cross-section through forebrainand optic sulci of 24-day-old embryo. Note that the neural

    tube is still open. The optic sulci are lined by neural

    ectoderm (shaded cells), while the surface of the forebrainis covered with surface ectoderm (clear white cells). As

    the optic sulci (neural ectoderm) evaginate toward thesurface ectoderm (hollow arrows), the edges of the brainvesicles move together to fuse, thus closing the neural

    tube (solid arrows). B.Drawing of a cross-section

    through a 26-day-old embryo at the level of the optic

    vesicle. Note that neural tube is closed, the surfaceectoderm now lines the surface of the forebrain, and the

    neural ectoderm is completely internalized. The surface

    ectoderm cells overlying the optic vesicles enlarge to

    form the early lens placode. (Cook CS, Sulik KK, WrightKW: Embryology. In Wright KW [ed]: Pediatric Ophthalmology and Strabismus, pp 343. St

    Louis: Mosby, 1995.)

    The optic vesicles become sheathed with cells of neural crest origin27

    that, except for a small

    region in the center of the bulge, separate them from the surface ectoderm (seeFig. 4E). The

    future primordium of the retina is present before closure of the neural tube, when the neuralectoderm is still open to the amniotic cavity. The optic stalk is formed by a constriction of the

    area between the vesicles and the future forebrain. At this time, all cells lining the inner surface

    of the vesicle's cavity are ciliated, and its outer surface, as well as the inner aspect of the surface

    ectoderm overlying it, is covered by a thin basal lamina.

    The next event is invagination of the optic vesicles by differential growth and buckling to form

    the optic cup (Figs. 6to9). The temporal and lower walls move inward against the upper andposterior walls. This process also involves the optic stalk so that the optic

    (choroid/embryonic/retinal) fissure is formed where the two laterally growing edges of the cup

    and stalk meet. Mesenchyme (primarily neural crest) penetrates immediately into the cup byfilling up the fissure.

    Fig. 6. Drawing of a transection through a 28-day-old embryoshowing invaginating lens placode that is pushing into the optic

    vesicle (arrows), thus creating the optic cup. Note the

    orientation of the eyes 180 degrees from each other. This is also

    illustrated inFigures 9BandC.(Cook CS, Sulik KK, WrightKW: Embryology. In Wright KW [ed]: Pediatric

    Ophthalmology and Strabismus, pp 343. St Louis: Mosby,

    1995.)

    http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r27http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r27http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/004f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/004f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/004f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/004f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/006f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/006f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/006f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/009f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/009f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/009f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/009f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/009f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/009f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/009f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/009f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/009f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/009f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/006f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/005f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/006f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/005f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/009f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/009f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/009f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/006f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/004f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r27
  • 8/13/2019 Prenatal Development of the Eye and Its Adnexa

    8/71

    Fig. 7. Drawing shows formation of the lens vesicle andoptic cup. Note that the optic fissure is present because

    the optic cup is not fused inferiorly. Mesenchyme (M)

    surrounds the invaginating lens vesicle. Note that theoptic cup and optic stalk are made of neural ectoderm.

    (Cook CS, Sulik KK, Wright KW: Embryology. InWright KW [ed]: Pediatric Ophthalmology andStrabismus, pp 343. St Louis: Mosby, 1995.)

    Fig. 8. Drawing of cross-section at approximately 5 weeks'gestation through optic cup and optic fissure. The lens vesicle isseparated from the surface ectoderm. Mesenchyme (M)

    surrounds the developing lens vesicle and the hyaloid artery is

    seen with the optic fissure. See alsoFigure 9F.(Cook CS, Sulik

    KK, Wright KW: Embryology. In Wright KW [ed]: PediatricOphthalmology and Strabismus, pp 343. St Louis: Mosby,

    1995.)

    Fig. 9. Invagination

    of the optic cup andlens vesicle. Mouse

    embryos areillustrated. A.Embryo of somite

    pairs (fifth week in a

    human). On external

    examination, theinvaginating lensplacode can be seen

    (arrow). Note its

    position relative tothe maxillary (Mx)

    and mandibular (Mn)prominences of the

    first visceral arch ( 106). B.Embryo of the same age as inFigure 3A.Frontal fracture through

    the lens placode (arrow) illustrates the associated thickening of the surface ectoderm (E).

    Mesenchyme (M) of neural crest origin is present adjacent to the lens placode. Distal portion of

    the optic vesicle thickens concurrently, as the precursor of the neural retina (NR), whereas theproximal optic vesicle becomes a shorter, cuboidal layer that is the anlage of the retinal

    http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/009f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/009f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/009f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/009f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/003f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/003f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/003f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/003f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/009f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/008f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/007f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/009f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/008f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/007f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/009f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/008f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/007f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/003f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/009f.html
  • 8/13/2019 Prenatal Development of the Eye and Its Adnexa

    9/71

    pigmented epithelium (PE). The cavity of the optic vesicle (V) becomes progressively smaller( 367). C.Epithelium of the lens placode continues to invaginate (L). There is an abrupt

    transition between the thicker epithelium of the placode and the adjacent surface ectoderm,

    which is not unlike the transition between the future neural retina (NR) and the futurepigmented epithelium (PE). (Periodic acid-Schiff's stain; 443) D.As the lens vesicle enlarges

    during the eleventh day, the external opening, or lens pore (arrow), becomes progressivelysmaller. The lens epithelial cells at the posterior pole of the lens elongate to form the primarylens fibers (L). NR, anlage of the neural retina; PE, the anlage of the pigmented epithelium

    (now a very short cuboidal layer) ( 300). E.External view of the lens pore (arrow) and its

    relationship to the maxillary prominence (Mx)32 somite pairs ( 260). F.Frontal fracture

    reveals the optic fissure (*) where the two sides of the invaginating optic cup meet. This formsan opening in the cup allowing access to the hyaloid artery (H), which ramifies around the

    invaginating lens vesicle (L). The former cavity of the optic vesicle is obliterated except in the

    marginal sinus (S), at the transition between the neural retina (NR) and the pigmented

    epithelium. E, surface ectoderm ( 307).

    The optic vesicle and optic stalk invaginate through differential growth and infolding. Localapical contraction

    52and physiologic cell death

    53have been identified during invagination. This

    process progresses from inferior to superior so that the sides of the optic cup and stalk meet

    inferiorly in the optic fissure. The two lips of the optic fissure meet and initially fuse anterior to

    the optic stalk with fusion progressing anteriorly and posteriorly. Failure of normal closure ofthis fissure may result in inferiorly located defects (colobomas) in the iris, choroid, or optic

    nerve.

    Closure of the optic cup through fusion of the optic fissure allows establishment of intraocular

    pressure. Studies have demonstrated that, in the chick, the protein in the embryonic vitreous

    humor is derived from plasma proteins entering the eye by diffusion out of permeable vessels in

    the anterior segment.54After optic fissure closure, protein content in the vitreous decreases,possibly through dilution by aqueous humor produced by developing ciliary epithelium.

    Table 2lists the chronologic sequence of ocular development and comparative body-eye

    measurements in relationship to embryonic time intervals.

    TABLE TWO. Revised Sequence of Human Ocular Development

    http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r52http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r52http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r53http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r53http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r54http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r54http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r54http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#t2http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#t2http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#t2http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r54http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r53http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r52
  • 8/13/2019 Prenatal Development of the Eye and Its Adnexa

    10/71

    Mont

    h

    Week(s

    )

    Day(s

    )

    CR

    Lengt

    h

    (mm)

    Neuroectoderm

    al Derivatives

    Posterior iris

    epithelium,

    ciliary body

    epithelium,

    pupillary

    muscles, neural

    retina, retinal

    pigment

    epithelium

    (RPE),

    secondary

    vitreous, and

    optic nerve

    Neural Crest

    Derivatives

    Corneal

    endothelium,

    stroma of

    cornea, iris,

    and ciliary

    body, ciliary

    muscle,

    trabecular

    meshwork,

    choroid,

    sclera,

    secondary

    vitreous, and

    orbit

    Surface

    Ectoderm

    Derivatives

    Corneal

    and

    conjunctiva

    l

    epithelium,

    lens, eyelid

    epidermis,

    eyelid cilia

    and glands,

    lacrimal

    gland,

    nasolacrim

    al duct

    Mesoderma

    l

    Derivatives

    Endotheliu

    m of

    Schlemm's

    canal,

    vascular

    (hyaloid,

    tunica

    vascula

    lentis

    (TVL)

    endotheliu

    m,

    extraocular

    muscles

    1 3 20 12 Neural platethickens

    Gastrulation(formation

    of

    mesoderm)

    4 22 23.5 Optic sulci

    present in

    forebrain

    24 23 Neural tube

    closed Opticstalk formed

    25 34 Optic sulci

    converted into

    optic vesicles

    Mesenchyme

    surrounds optic

    vesicle

    27 45 Optic vesicle

    contacts surface

    ectoderm

    Lens

    placode

    begins to

    thicken

    Eyelidterritory

    determined

    2 5 29 57 Optic vesicle

    begins toinvaginate

    forming optic

    cup with opticfissure

    Lens pit

    forms aslens placode

    invaginates

    Cord ofectoderm

    Hyaloid

    artery entersthrough the

    optic fissure

  • 8/13/2019 Prenatal Development of the Eye and Its Adnexa

    11/71

    buried by

    maxillaryprocesses to

    later form

    nasolacrima

    l duct

    33 79 Optic fissure

    closed Pigment

    in outer layer ofoptic cup (future

    RPE)

    Oculomotor

    nerve presentTrochlear and

    abducens nerves

    appear

    Lens pit

    closed

    forminglens vesicle

    surrounded

    by intact

    basementmembrane

    (lens

    capsule)Corneal

    epithelium

    formed

    6 37 811 Ciliary ganglionpresent

    Choriocapillarisformed around

    the optic cup

    Primarylens fibers

    fill lens

    vesicle

    formingembryonal

    nucleus

    40 11

    14

    Retina consists

    of: externallimiting

    membrane (with

    zonulaadherens),

    proliferative

    zone, primitive

    zone, marginalzone, and

    internal limiting

    membrane

    Corneal

    endotheliumformed

    Secondary

    lens fibersform Lid

    folds

    present

    7 4245

    1317

    Retina consistsof: inner

    neuroblastic

    layer, transient

    fiber layer of

  • 8/13/2019 Prenatal Development of the Eye and Its Adnexa

    12/71

  • 8/13/2019 Prenatal Development of the Eye and Its Adnexa

    13/71

    developmen

    t

    11 7177

    505 Inner plexiform

    layer formed

    Cilia withindeveloping innersegments

    Conjunctiva

    l goblet

    cells present

    1214 78

    90

    60

    80

    Outer plexiform

    layer separates

    horizontal andbipolar nuclei

    from

    rudimentary

    rods and conesSynapses

    develop betweenphotoreceptors,ganglion cells,

    and bipolar cells

    in central retinaFirst indication

    of ciliary

    processes

    Lamina

    cribrosa

    formationbegins

    Marginal

    bundle of

    Drualt/vitreousbase present

    Glands of

    Moll,

    meibomianglands

    present

    Rectus

    muscle

    tendons fusewith sclera

    Branches of

    ophthalmic

    arteryaccompany

    hyaloidartery Iridalmajor

    arterial

    circleformed

    4 15 90

    100

    Orbital axis 105 Ciliary muscle

    appears

    Glands of

    Zeisspresent

    16 100

    120

    Mitosis ceases in

    the neural retina

    Corneal

    endothelium

    exhibitszonulae

    occludentes

    Aqueous humorformation

    begins

    Regression of

    corneal

    endotheliumcovering

    iridocornealangle recess

    Schlemm's

    canal

    presentTunica

    vasculosa

    lentis beginsto atrophy

    120

    130

    Pupillary

    sphincter

    develops

    Scleral spur

    developing

    Bowman's

    Short

    eyelashes

    appear

    Hyaloid

    artery

    begins to

  • 8/13/2019 Prenatal Development of the Eye and Its Adnexa

    14/71

    membrane

    present

    atrophy to

    the disc;branches of

    the central

    retinal artery

    form

    5 120

    180

    Outer segments

    formation begins

    Differentiationof macula begins

    Layers of the

    choroid

    completeCloquet's canal

    formed

    6 175

    230

    Pupillary dilator

    muscle develops

    Ora serratadistinct nasally

    Pupillary

    membrane

    begins toatrophy axially

    Capsulohyaloidal ligamentpresent

    Eyelids

    begin to

    open, lightperception

    7 220

    260

    Iris

    pigmentation

    present Laminacribrosa mature

    Myelination

    begins at the

    chiasm andprogresses to

    the lamina

    cribrosa

    8 240280

    Retinal layersdeveloped

    except at macula

    Regression ofpupillary

    membrane

    nearly complete

    Retinalvessels

    reach the

    ora serrata

    9term

    310350

    Orbital axis 71 Lacrimalduct

    canalized

    Back to Top

    LENS INDUCTION AND DIFFERENTIATION

    As the optic vesicles enlarges, it contacts the overlying surface ectoderm.The first manifestation of lens induction is the appearance of a disc-shaped

    http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#tophttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#tophttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#top
  • 8/13/2019 Prenatal Development of the Eye and Its Adnexa

    15/71

    thickening of surface epithelial cells (27 days' gestation) (seeFigs. 5B,6,and

    9AandB). A tight, extracellular matrix-mediated adhesion between the optic

    vesicle and the surface ectoderm has been described. This anchoring effect

    on the mitotically active ectoderm results in cell crowding and elongationand formation of a thickened placode. Adhesion between the optic vesicle

    and lens placode serves to ensure alignment of the lens and retina in thevisual axis. Although adhesion between the optic vesicle and surfaceectoderm exists, the respective basement membranes remain separate and

    intact throughout the contact period (seeFig. 4F). Inductors for lens

    formation may act on the regulation of structural genes, or they may actdirectly on the cell cytoplasm. Lens induction thus may involve transfer of

    inductor substances from the optic cup to the surface cells across both

    basement membranes. Invagination of the lens placode (29 days) is

    accomplished by a synergistic elongation of the placode cells withcontraction of their apical cytoplasm and terminal bar system (seeFigs. 7

    and9C). The processes of differentiation into a lens pit, cup, and then a

    vesicle have been studied in detail.6171

    As the lens placode invaginates, it forms a hollow vesicle (seeFigs. 8and

    9D). The area of contact of the optic vesicle and the surface ectodermdetermines the size of the lens vesicle, orbit, and palpebral fissure. The lens

    separates from the surface epithelium at about 33 days' gestation (7 to 9 mm;

    see Fig. 9D). The vesicle consists of a single layer of cells, covered by abasal lamina. Through appositional growth to its epithelial surface, the basal

    lamina acquires more layers that become the lens capsule. At first, the

    posterior capsule is more prominent than the anterior; the outer layers may

    have components from the mesodermal tissues forming the hyaloid vascular

    network.72

    A zone of necrosis develops, displacing the lens placode from thesurface ectoderm (seeFig. 9EandF). The process of lens vesicle detachment

    is accompanied by active migration of epithelial cells out of thekeratolenticular stalk, cellular necrosis, and basement membrane

    breakdown.73,74

    Cup formation is achieved by contraction of the apical

    filaments. The process of induction is thus localized.

    PRIMARY LENS FIBERS

    The hollow lens vesicle consists of a single layer of epithelial cells with cell

    apices directed toward the center. Following detachment from the surface

    ectoderm, the lens vesicle is surrounded by a basal lamina, the future lenscapsule. The cells lengthen (Figs. 10and11A)until the lumen of the vesicleis filled (45 days, 17 mm). These constitute the primary lens fibers. The

    apical ends of the newly formed fibers become firmly attached to the apical

    surface of the anterior lens epithelium.

    http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/005f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/005f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/005f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/005f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/006f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/006f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/006f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/009f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/009f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/009f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/009f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/009f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/004f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/004f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/004f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/004f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/007f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/007f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/007f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/009f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/009f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/009f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/009f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r61http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r61http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r61http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r61http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r61http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/008f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/008f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/008f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/009f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/009f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/009f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/009f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/009f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/009f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r72http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r72http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r72http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/009f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/009f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/009f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/009f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/009f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/009f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r73http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r73http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r74http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r74http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r74http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/010f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/010f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/010f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/011f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/011f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/011f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/011f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/011f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/010f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r74http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r73http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/009f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/009f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r72http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/009f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/009f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/008f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r61http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/009f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/007f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/004f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/009f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/009f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/006f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/005f.html
  • 8/13/2019 Prenatal Development of the Eye and Its Adnexa

    16/71

    Fig. 10. Drawing showing formation ofthe embryonic lens nucleus and primary

    lens fibers at approximately 6 weeks.

    Neural crest mesenchyme (M) surroundsthe optic cup. The posterior lens

    epithelial cells (located nearest thedeveloping retina) elongate to form theprimary lens fibers. The anterior

    epithelium remains cuboidal and becomes the anterior epithelium in the

    adult. The optic fissure is now closed. The hyaloid vessels are seen between

    the lens and retina. (Cook CS, Sulik KK, Wright KW: Embryology. InWright KW [ed]: Pediatric Ophthalmology and Strabismus, pp 343. St

    Louis: Mosby, 1995.)

    Fig.

    11.Form

    ation

    of the

    lensfibers

    ;

    earlyretina

    l

    differ

    entiation.

    A.Elon

    gation of the lens fibers located nearest to the neural retina forms the

    embryonal lens nucleus (L) and obliterates the lens vesicle cavity. The

    endothelial cells that form the tunica vasculosa lentis are indicated byarrows ( 392). B.Formation of the secondary lens fibers is apparent as

    elongation of the epithelial cells at the equatorial lens bow. C, cornea; NR,

    neural retina; L, lens ( 270). C.Electron micrograph evaluation of the

    developing lens (L). LE, anterior lens epithelium, E, surface ectoderm (298). D.Corneal endothelium (open arrow) and stroma (C) are completely

    formed but the anterior iridial stroma and iridocorneal angle (*) structures

    are still immature and covered by the endothelium. The outer, pigmented

    layer of the optic cup (O), which forms the pupillary sphincter and dilatormuscles, is in apposition to the cornea in the area of the future aqueous

    outflow pathways (*). The arrowhead indicates the capillaries of the

    anterior tunica vasculosa lentis. L, lens ( 407). Eand F.The retina hassegregated into an inner neuroblastic layer (IN) containing the primitive

    ganglion cells the axons of which form the nerve fiber layer (arrow), and an

    http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/011f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/010f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/011f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/010f.html
  • 8/13/2019 Prenatal Development of the Eye and Its Adnexa

    17/71

    outer neuroblastic layer (ON) containing the primordia of thephotoreceptors, retinal interneurons, and glial cells (E, 430; F, 316).

    PE, retinal pigmented epithelium.

    The retinal anlage promotes primary lens fiber formation in the adjacent lens

    epithelial cells. Surgical rotation of the lens vesicle in the chick's eye by 180

    degrees results in elongation of the lens epithelial cells nearest thepresumptive retina, regardless of the orientation of the transplanted lens.

    56

    The retina thus develops independently from the lens, while the lens appears

    to rely on the retina for cytodifferentiation. This transformation of primarylens fibers is accompanied by ultrastructural changes in the nucleus and

    cytoplasm, decreased numbers of organelles, and increased numbers of

    fibrillar materials composed of the characteristic lens proteins.71

    The

    primitive lens filled with primary lens fibers forms the embryonal nucleus,visible in the adult. This portion of the lens lacks sutures.

    SECONDARY LENS FIBERS

    The cells nearest the corneal primordium remain cuboidal and become the

    lens epithelium, which remains mitotic throughout life, giving rise to futurelens fiber cells. Production of the secondary lens fibers is initiated by

    migration of the anterior epithelial cells toward the equator and their

    elongation at various degrees with a shift in their nuclear distribution, thusresulting in the lens bow (Fig. 12B,C,andF,and13;seeFigs. 11BandC).

    The basal ends of the fibers remain tightly attached to the basal lamina; their

    apical ends extend anteriorly to the center, thus forming the anterior suture.

    The tips of these secondary fibers are not yet tapered. A corresponding

    increase in cell volume and decrease in intercellular space within the lensaccompany lens fiber elongation.

    61The lens fibers exhibit surface

    interdigitations. They extend around the primary fibers beneath the capsuleand meet in planes, the lens sutures, arranged essentially vertically to the

    surface. The basic anatomy of the lens is established after the first layer of

    secondary fibers has been placed (seventh week of gestation).75

    http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r56http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r56http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r56http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r71http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r71http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r71http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/012f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/012f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/012f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/012f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/012f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/012f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/012f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/012f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/012f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/013f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/013f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/013f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/011f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/011f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/011f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/011f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/011f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/011f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/011f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r61http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r61http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r61http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r75http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r75http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r75http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r75http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r61http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/011f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/011f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/013f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/012f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/012f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/012f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r71http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r56
  • 8/13/2019 Prenatal Development of the Eye and Its Adnexa

    18/71

    Fig.12.

    Form

    ationof

    thelensand

    irido

    corne

    alangle

    . A.

    Ante

    riorsegm

    ent at8week

    s'

    gestation.

    The

    corne

    al stroma (C) and endothelium have formed. The dense pupillary membrane(arrow) fills much of the space within the anterior chamber. L, lens ( 100).

    B.Fractured lens at 7 weeks' gestation. Note embryonic nucleus (N) and

    anterior lens epithelium (arrow) ( 102). C.Higher magnification of (B) toillustrate secondary lens fibers and lens bow ( 376). D.Longitudinal view

    of lens fibers illustrating interdigitations ( 706). E.Cross-section of lens

    fibers illustrating tightly apposed hexagonal arrangement ( 1012). F.Light

    microscopic view of lens bow and close proximity of lens equator withanterior margin of optic cup. Note the hyaloid vasculature surrounding the

    lens (arrows) ( 220). G.At 8 weeks' gestation, following removal of the

    lens and the pupillary membrane, the anterior chamber can be visualized (103). H.Higher magnification of (G). The edge of the pupillary membrane

    can be seen (arrow) as well as the anterior margin of the optic cup (O) and

    the developing outflow pathways. The clefts visible in the limbal region

    canalize to form Schlemm's canal. C, cornea ( 220). I.At 13 weeks'gestation, there are immature ciliary processes located in the region of the

    future posterior iris (arrow). Differential growth with relative posterior

    movement of the inner optic cup, results in the ultimate matureconformations coinciding with exposure of the trabecular meshwork as

    described by Anderson ( 95). C, cornea; (B-E,courtesy of Dr. Kathy

    Sulik.)

    http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/012f.html
  • 8/13/2019 Prenatal Development of the Eye and Its Adnexa

    19/71

    Fig. 13. Lens at 65 mm (12-week fetus) intransverse section. Posterior suture (arrow) extends

    from the surface to the central, primary lens fibers

    (location of the embryonic nucleus). The triangularanterior suture (thick arrow) is indicated by an

    assembly of transversely cut fibers at the anteriorpole. Posterior vascular lens capsule is indicated byhollow arrow. The nucleated area is the location of

    the secondary lens fibers. Lens bow (Lb) is formed by anteriorly migrating

    nuclei of newly formed lens fibers. pm, vessels of the pupillary membrane;

    V, vitreous ( 40).

    LENS SUTURES

    Succeeding generations of cells extend anteriorly and posteriorly from the

    equator beneath the capsule. The anterior suture line is shaped like a Y that is

    inverted in the posterior aspect. The posterior suture is formed when theposterior central cells lose their nuclei, become separated from their basal

    lamina, and migrate inward.66

    Curved lens fibers result, with the superficial

    ones being the longest. Linear and triradiate sutures form, representingdifferent stages in lens development.

    MATURATION

    The shape of the lens and its orientation with respect to the optic axis

    continually adjust to the developing eye. This is partly regulated by theneural retina and peripheral mesenchyme.

    10Through the third month of

    gestation, the anteroposterior diameter is greater than the equatorial. Mainlybecause of the continued generation of secondary fibers, the equatorialdiameter increases rapidly, thus making the lens more and more ellipsoid.

    The lens, still somewhat spherical at birth, grows throughout life.

    A general structural densification occurs progressively during maturation.

    Fibrillar material is increased within the cytoplasm and cell organelles are

    decreased. The successive parallel layers of interdigitating, elongated lensfibers become tightly apposed (seeFig. 12DandE). Deeper nuclei become

    homogenous and dense. By the end of the third month, the innermost cells

    have lost their nuclei and simultaneously show disintegration of the

    chromatin and the ribosomes, leaving a finely filamentous cytoplasm.

    Back to Top

    CONNECTIVE TISSUE COATS

    CORNEA

    Among the many publications on the morphogenesis of the cornea (Fig. 14)

    http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r66http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r66http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r66http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r10http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r10http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r10http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/012f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/012f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/012f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/012f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/012f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/012f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/012f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#tophttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#tophttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/014f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/014f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/014f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/013f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/014f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#tophttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/012f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/012f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r10http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r66
  • 8/13/2019 Prenatal Development of the Eye and Its Adnexa

    20/71

    and the development of its constituents in various vertebrates, only a few can

    be cited in this general review.

    Fig.

    14.

    Schema

    tic

    diag

    ramof

    the

    dev

    eloping corneacentral region. A.At 39 days, the two-layered epitheliumrests on a basal lamina. It is separated from a two-to three-layered

    endothelium by a narrow, cellular space. B.At 7 weeks, mesenchyme

    from the periphery migrates into the space between epithelium andendothelium. It is the precursor of the future corneal stroma. C.The

    mesenchyme (fibroblasts) is arranged in four to five incomplete layers by

    7 weeks and a few collagen fibrils appear among them. D.By 3 months,the epithelium has 2 to 3 layers of cells and the stroma about 25 to 30 layers

    of fibroblasts (keratoblasts) that are more regularly arranged in its posterior

    half. There is a thin, uneven Descemet's membrane between the most

    posterior keratoblasts and the monolayered endothelium. E.By midterm(4.5 months) some wing cells are forming above the basal epithelial cells

    and an indefinite, acellular Bowman's membrane emerges beneath the basal

    lamina. About one third of the anterior portion of the multilayered stroma

    has its keratoblasts ina disorganized formation. Descemet's membrane iswell developed. F.At 7 months the cornea has its adult structure

    established. A few mostly superficial keratoblasts are still randomly

    oriented with respect to the corneal surface. The collagenous lamellae in therest of the stroma are in parallel array with only a few spaces in the matrix

    lacking collagen fibrils. Breaks (near the bottom of Eand F) indicate that

    the central portion of the stroma is not represented.

    Epithelium

    When the lens cup separates from the surface ectoderm in embryos at about

    33 days' postfertilization (7 to 9 mm in length), development of the corneacan be said to have begun. The surface ectoderm becomes continuous

    covering the optic cup and lens vesicle and later develops into the cornealepithelium.

    Descemet's Membrane and Endothelium

    http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/014f.html
  • 8/13/2019 Prenatal Development of the Eye and Its Adnexa

    21/71

    During the next week, mesenchymal cells grow centrally between the basal

    laminae of the lens and corneal epithelium (Fig. 15;see14A-C). Posterior to

    the basal lamina of the corneal epithelium, the mesenchyme has produced a

    double row of flattened cells, the future corneal endothelium (seeFig. 14A).

    Fig. 15. Corneal epithelium (Ep) andmesenchymal cells (Me) beneath the

    basal lamina are destined to form the

    endothelium. Section is from a

    monkey embryo at 34 days,comparable with that of a human at

    approximately 5.5 weeks ( 480). Le,

    lens.

    Descemet's membrane first appears at 8 weeks as a patchy accumulationresembling basement membrane material.

    91,92The patches become confluent

    and thickened owing to the synthetic activity of the endothelial cells.Evidence of organization is seen early during the fourth month, when four or

    five superimposed lamellae interspersed with collagen fibrils appear on the

    stromal side of the endothelial basal lamina. The endothelium has zonulaeoccludentes at the cell apices by the middle of the fourth month of

    development. Their appearance corresponds to the onset of aqueous humor

    formation.

    Stroma

    Following formation of the corneal endothelium, mesenchyme (neural crest)

    continues to migrate axially over the rim of the optic cup during the seventhweek (17 to 18 mm) (Fig. 16). At 8 weeks (18 to 22 mm), migratingmesenchymal cells from the periphery invade the space between epithelium

    and endothelium. This mesenchyme, as well as that which will give rise to

    the sclera and iris stroma, is of neural crest origin.30

    The central portion ofthe future stroma is still acellular (seeFig. 14B). The endothelium merges

    with the stratified cells at the periphery over the lips of the optic cup. This

    mass of cells, in turn, is continuous with the cellular scleral condensation

    extending to the equator of the globe. The developing keratocytes begin to

    produce glycosaminoglycans.104

    http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/015f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/015f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/015f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/014f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/014f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/014f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/014f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/014f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/014f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/014f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r91http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r91http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r92http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r92http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r92http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/016f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/016f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/016f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r30http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r30http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r30http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/014f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/014f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/014f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/014f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r104http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r104http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r104http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/015f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r104http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/014f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r30http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/016f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r92http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r91http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/014f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/014f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/015f.html
  • 8/13/2019 Prenatal Development of the Eye and Its Adnexa

    22/71

    Fig. 16. Embryo at 22 mm (approximately 7 weeks)showing relation of the anterior segment components (

    260). The two arrowsindicate blood channels in the

    mesenchyme around the rim of the cup. Peripheral part ofthe pupillary membrane running from the mesenchyme in

    front of the optic cup (mes) to the anterior lens capsuleoutlines the incipient anterior chamber lying between itand the posterior surface of the cornea (hollow arrows).

    Asterisk is placed at the peripheral limit of the anterior chamber. Curved

    arrows point to capsula perilenticularis fibrosa. C, cornea; LE, lens

    epithelium; V, primary vitreous; ov, tip of the neuroectodermal optic cup.

    In the early 8-week-old embryo, about 22 mm in length, the mesenchymal

    stroma consists centrally of five to eight rows of cells (Fig. 14C), within afibrillar matrix containing collagen. Nerves have been identified within the

    corneal stroma and between epithelial cells at 3 months.105107

    The most posterior layers of the corneal stroma are confluent peripherally

    with a condensed band of mesenchyme that is gradually spreading backward

    to enclose the eye. The mesenchyme destined to form the sclera is notdistinct from that which will form the four oculomotor muscles.

    The cornea at 2 months (about 20 mm) consists of an epithelium of outersquamous and basal columnar cells. The middle polygonal or wing cells of

    the adult do not appear until the fourth or fifth month. The stroma has about

    15 layers of cells with rapidly developing collagen fibrils, most in the

    posterior portion. At 3 months, the endothelium of the central area consists

    of a single row of flattened cells that seem to rest on an interrupted basallamina, the first indication of a thin Descemet's membrane. With the

    exception of Bowman's membrane, all corneal components are present (seeFig. 14D).

    Bowman's Membrane

    Arising relatively late in gestation (seeFig. 14EandF), Bowman'smembrane is observed by light microscopy during the fifth month, but

    somewhat earlier by electron microscopy. It is always acellular, presumably

    formed by the most anterior fibroblasts of the stroma, which move

    posteriorly as Bowman's fibers and the ground substance are synthesize. Theepithelium may play a partial role in the local polymerization of the collagen

    precursors presumably produced by the most anterior stromal fibroblasts.108

    Transparency

    Perhaps the most important and unique corneal characteristic is its

    http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/014f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/014f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/014f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/014f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r105http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r105http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r105http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r105http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r105http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/014f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/014f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/014f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/014f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/014f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/014f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/014f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/014f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/014f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/014f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r108http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r108http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r108http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/016f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r108http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/014f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/014f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/014f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r105http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/014f.html
  • 8/13/2019 Prenatal Development of the Eye and Its Adnexa

    23/71

    transparency, which also develops during fetal life. The early embryonic and

    fetal cornea is translucent rather than transparent and is more hydrated than

    in the adult.94

    Condensation begins in the posterior stroma during fetal

    maturation.95

    At about the time that the most anterior stromal lamellae areformed, corneal transparency reaches adult quality. During this development,

    the water content of the cornea is being reduced so that the adult level ofcorneal hydration is attained at the same time as transparency.

    SCLERA

    The sclera forms first anteriorly, by mesenchymal condensation at the limbus

    near the future insertion of the rectus muscles and grows gradually

    posteriorly. Fibrocytes are involved in the synthesis of the elastic foci in thesclera.

    109In contrast, the cornea lacks elastic components.

    Inspection of the sclera at 60 to 65 mm or 12 weeks reveals it as a

    mesenchymal condensation that has reached the posterior pole of the eye andsurrounds the optic nerve. Some cells have entered among the optic nerve

    fibers and are arranged transversely, forming the first stages of theconnective tissue lamina cribrosa. The scleral spur appears at 4 months as

    circularly oriented fibers; at 5 months, it is visible behind the anterior

    chamber. At this time the sclera is well differentiated all around the eye.

    Although the corneal and scleral cells are derived from the same mass of

    mesenchyme surrounding the anterior part of the optic cup, they behavedifferently when in their definitive position. Corneal fibroblasts form

    collagen faster than the scleral cells and differ in the rate and amount of

    noncollagenous protein that they synthesize.110

    Back to Top

    STRUCTURES OF THE AQUEOUS OUTFLOW PATHWAYS

    IRIDOCORNEAL ANGLE

    Light and scanning electron-microscopic studies reveal the anterior chamberangle of the human eye to have a continuous endothelial lining during the

    third and fourth months (Figs. 17and18). The tissues in the angle later

    differentiate into a loose reticulum with large enclosed spaces near the iris

    and ciliary body; outside of this trabecular tissue, a tighter aggregation of

    cells is oriented toward the sclera.111115With the growth of surroundingstructures, Schlemm's canal comes to lie at the level of the apex of the angle.

    Descemet's membrane and the corneal endothelium still cover a portion of

    the trabecular meshwork, but the endothelial lining of the chamber hasbecome discontinuous (Figs. 19and20). The loose reticular tissue of the

    earlier stages now occurs only in the deepest part of the angle, where it has

    http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r94http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r94http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r94http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r95http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r95http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r95http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r109http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r109http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r109http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r110http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r110http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r110http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#tophttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#tophttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/017f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/017f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/017f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/018f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/018f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/018f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r111http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r111http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r111http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r111http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/019f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/019f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/019f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/020f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/020f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/020f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/020f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/019f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r111http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/018f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/017f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#tophttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r110http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r109http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r95http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/v7c002.html#r94
  • 8/13/2019 Prenatal Development of the Eye and Its Adnexa

    24/71

    large intercellular spaces (seeFigs. 17Cand20).

    Fig. 17. Schematic diagram of theprogressive deepening of the angle;

    its relation to the neighboring tissues.

    A.At 3 months, corneal endotheliumextends nearly to the angle recess: an

    incipient Schlemm's canal

    (arrowhead) and a more posterior

    scleral spur condensation (hollowarrow) appear to its left. Pigment

    epithelium of the forward growing

    ectodermal optic is indented by blood

    vessels. The secondary vitreous fibrilsrun parallel to its surface (arrow).

    This is the faisceau isthmique or

    marginal bundle of Druault. B.At 4months, the angle recess has deepened and the endothelial lining has

    receded somewhat. There is a small aggregate of differentiating sphincter

    muscle fibers near the tip of the optic cup. Arrowhead points to Schlemm'scanal. The condensed tissue just posterior to Schlemm's canal is the

    developing scleral spur (hollow arrow). Arrow points to the developing

    tertiary vitreous or zonular fibers. They originate from the nonpigmented

    ciliary epithelium and pass at right angles through Druault's bundle towardthe lens capsule. C.The iris has grown and only its ciliary portion is

    presented. The angle recess has deepened and is occupied by loose

    connective tissue separated by many spaces. The dilator muscle of the iris

    has reached its root, which is still thick.Arrowheadpoints to the majorarterial circle. D.Sphincter muscle is fully developed and is separated by

    connective tissue septa into several groups of cells. The collarette is

    represented as a surface stromal bulge containing two blood vessels (curvedhollow arrow). E.Schematic diagram of the developing iris dilator muscle

    at 6 months. During the sixth month, dilator muscle fibers (Dil. M) start to

    differentiate from extensions of the anterior epithelial cells (AE) into thestroma (ST). These cells are located peripherally to the developing von

    Michel's spur (MS), which itself is a pigmented projection of the anteriorepithelium, demarcating the posterior limit of the sphincter muscle (SP). In

    the developing dilator muscle, myofilaments within the elongating

    processes become arranged parallel to the stromal axis. Someundifferentiated anterior epithelial cells (UN) are present. In the sphincter,

    which had originated earlier from the same layer of anterior epithelial cells,

    connective tissue septa and a capillary (CA) start to grow between clumpsof cells, but connective tissue has not yet invaded between the muscle cells

    and the anterior pigment epithelium beneath it. Eventually, the sphincter

    muscle bundles become completely separated from the anterior epithelium,

    http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/017f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/017f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/017f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/017f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/020f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/020f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/020f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/017f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/020f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/017f.html
  • 8/13/2019 Prenatal Development of the Eye and Its Adnexa

    25/71

    whereas the dilator muscle sheet remains as the multilayered stromalprojection of a part of this epithelium never separating from it. Therefore,

    the dilator muscle is not a separate cellular layer, but rather a partial myoid

    differentiation of cellular processes of the anterior neuroectodermalpigment epithelial cells. P, pupillary margin; PC, posterior chamber; PE,

    posterior epithelium; PM, pupillary membrane.

    Fig. 18. Excavation of the anterior chamber (AC) angle in

    a fetus at 75 mm (3 months) is at a level with the rim ofthe optic cup, which is well ahead of the lens bow. The

    corneal endothelium extends to the apex of the angle

    (hollow arrow). The location of the future trabecularmeshwork is indicated by the arrow. On the side toward

    the lens, the angle is limited by the forward extension of

    the loosely woven mesenchyme over the optic cup

    margin. Blood vessels in the recesses of the pigment epithelium (solidarrow) precede its infolding. LE, lens epithelium; pm, pupillary membrane.

    Fig. 19. Angle at 7 months (approximately

    225 mm). Apex of the wedge-shaped

    trabecular meshwork (Tr) is not in theillustration. The corneal endothelium (En)

    extends over one third of the trabecular

    lamellae. The loose tissue in the angle

    recess is isolated from the anterior chamber(AC) by processes of the reticular and

    mesenchymal cells (hollow arrows). There are large clefts (*), some of

    which are confluent, in the angle tissue. The angle recess extends beyond

    the level of the middle of the trabecular meshwork, and the immatureSchlemm's canal (circled) is somewhat behind it. Ir, immature iris; Sc,

    sclera. (Smelser GK, Ozanics V: The development of the trabecular

    meshwork in primate eyes. Am J Ophthalmol 71:366, 1971.)

    Fig. 20. The angle in a fetus late in the

    ninth month (at approximately 37 weeks)

    extends somewhat beyond the posterior

    part of the trabecular meshwork, whichhas its apex at the termination of the

    corneal endothelium (En). The scleral spur

    (arrow) and the canal of Schlemm

    (arrowhead) are in front of the angle.Loose tissue in the angle is indicated by the hollow arrow. AC, anterior

    chamber; CM, ciliary muscle; cp, ciliary processes; C, cornea; Ir, iris; PC,

    posterior chamber; Sc, sclera.

    Anterior chamber angle formation seems to occur through a combination ofprocesses. Differential growth of the vascular tunic results in posterior

    http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/020f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/019f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/018f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/020f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/019f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/018f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/020f.htmlhttp://www.oculist.net/downaton502/prof/ebook/duanes/pages/v7/ch002/019f.htmlhttp://www.oculist