112
PREIMPOUNDMENT HYDROLOGIC CONDITIONS IN THE SWATARA CREEK (1981-84) AND ESTIMATED POSTIMPOUNDMENT WATER QUALITY IN AND DOWNSTREAM FROM THE PLANNED SWATARA STATE PARK RESERVOIR, LEBANON AND SCHUYLKILL COUNTIES, PENNSYLVANIA By David K. Fishel U.S. GEOLOGICAL SURVEY Water-Resources Investigations Report 88-4087 Prepared in cooperation with the PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL RESOURCES, BUREAU OF STATE PARKS Harrisburg, Pennsylvania 1988

PREIMPOUNDMENT HYDROLOGIC CONDITIONS IN THE SWATARA CREEK (1981-84

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: PREIMPOUNDMENT HYDROLOGIC CONDITIONS IN THE SWATARA CREEK (1981-84

PREIMPOUNDMENT HYDROLOGIC CONDITIONS IN THE SWATARA CREEK (1981-84)

AND ESTIMATED POSTIMPOUNDMENT WATER QUALITY IN AND DOWNSTREAM FROM

THE PLANNED SWATARA STATE PARK RESERVOIR, LEBANON AND

SCHUYLKILL COUNTIES, PENNSYLVANIA

By David K. Fishel

U.S. GEOLOGICAL SURVEY

Water-Resources Investigations Report 88-4087

Prepared in cooperation with the

PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL RESOURCES, BUREAU OF STATE PARKS

Harrisburg, Pennsylvania

1988

Page 2: PREIMPOUNDMENT HYDROLOGIC CONDITIONS IN THE SWATARA CREEK (1981-84

DEPARTMENT OF THE INTERIOR

DONALD PAUL HODEL, Secretary

U.S. GEOLOGICAL SURVEY

Dallas L. Peck., Director

For additional information write to:

District ChiefU.S. Geological SurveyP.O. Box 1107Harrisburg, Pennsylvania 17108-1107

Copies of this report can be purchased from:

U.S. Geological SurveyBooks and Open-File Reports SectionFederal CenterBox 25425Denver, Colorado 80225

ii

Page 3: PREIMPOUNDMENT HYDROLOGIC CONDITIONS IN THE SWATARA CREEK (1981-84

CONTENTS

Page

Abstract'" - " __ __ ,-,«. . _ -. jIntroduction 2

Ba ckg round 2Purpose and scope 3Ap p r o a ch 4 Description of study area, sampling sites, and plannedreservoir 5

Results of preliminary report 10Acknowledgments 11

Data collection and methodology 11Air-temperature and precipitation data 11Streamflow data 12Water-quality data 12

Preimpoundment hydrologic conditions in the Swatara Creek 15Temperature and precipitation 15Streamf low 20Water quality 28

Preimpoundment water quality 28Acidity, alkalinity, pH, chemical oxygen demand,

turbidity, and specific conductance 46Metals 48Nutrients 60Major ions 65Mi croorganisms- 69

Estimated postimpoundment water quality in the planned reservoir 70Therma 1 stratifi cat ion 71Productivity in the reservoir 72Effects of base flow and runoff 72Accidental discharges and land-use changes 76Estimating inflow water quality from duration tables 77

Estimated water quality downstream from the planned reservoir 96Summary and conclusions 102References cited 106

ILLUSTRATIONS

Figures 1-2. Maps showing:1. Swatara Creek basin 62. Configuration of planned reservoir and location

of water-quality sampling sites 8 3-5. Graphs showing:3. Depth and capacity profile for planned Swatara State

Park Reservoir 94. Daily mean air temperature at Pine Grove, 1982-84

water years 165. Daily water temperature for Swatara Creek above

Highway 895 (mined site) and Lower Little SwataraCreek at Pine Grove (forested and agriculturalsite), 1982-84 water years 16

iii

Page 4: PREIMPOUNDMENT HYDROLOGIC CONDITIONS IN THE SWATARA CREEK (1981-84

ILLUSTRATIONS Cont inued

Page

Figures 6-9: Maps showing:6. Daily precipitation at Pine Grove, 1982-84 water years 187. Hydrograph separations for Swatara Creek above

Highway 895 (mined site) and Lower Little SwataraCreek at Pine Grove (forested and agriculturalsite), 1982-84 water years 21

8. Monthly runoff for Swatara Creek above Highway 895 (mined site) and Lower Little Swatara Creek at Pine Grove (forested and agricultural site), 1982-84 water years 22

9. Streamflow-duration curves for Swatara Creek atHarper Tavern for the study period (1982-84 water years) and the period of record (1920-84) 26

10-19. Plots of:10. Specific conductance measured once daily at Swatara

Creek above Highway 895 and Lower Little Swatara Creek, October 1983 through September 1984 47

11. Regressions of suspended-aluminum, iron, and manganese concentrations as functions of suspended-sediment concentration 51

12. Regressions of base-flow and stormflow total-recoverable and dissolved-aluminurn and iron discharges as functions of streamflow for Swatara Creek above Highway 895 52

13. Estimated annual loads of dissolved and suspendedaluminum, iron, and manganese in Swatara State Park *: Reservoir study area 54

14. Base flow, pH, water temperature, and dissolved-iron, aluminum, and manganese concentrations at Swatara Creek above Highway 895, 1982-84 water years 56

15. Coal, normalized total-recoverable metals concentra­ tions, and particle-size distribution of bottom material in the vicinity of the planned reservoir 59

16. Total- and dissolved-phosphorus concentrations at Swatara Creek above Highway 895 (mined site) and Lower Little Swatara Creek (forested and agricultural site), and their relation to base flow, 1982-84 water years 62

17. Total-nitrogen concentrations in base flow at SwataraCreek above Highway 895 (mined site) and Lower LittleSwatara Creek (forested and agricultural site),1982-84 water years 66

18. Dissolved-sulfate concentrations in base flow atSwatara Creek above Highway 895 (mined site), 1982-84 water years 68

19. Eutrophic potential for planned Swatara State ParkReservoir based on conservative phosphorus loadings 73

20. Locations of selected reservoirs with mine-drainage inflows similar to the planned Swatara State Park Re se rvoi r 97

iv

Page 5: PREIMPOUNDMENT HYDROLOGIC CONDITIONS IN THE SWATARA CREEK (1981-84

TABLESPage

Table 1. Basin and lake characteristics for the planned SwataraState Park Reservoir 8

2. Physical, chemical, and bacteriological analyses per­ formed on water-quality samples 14

3. Magnitude and number of precipitation events in PineGrove, October 1, 1981 to September 30, 1984 17

4. Annual summary of precipitation recorded at Lebanonand Pine Grove, October 1, 1981 to September 30, 1984 19

5. Streamflow durations for study period (1982-84 water years) and estimated long-term durations (1920-84) for the mined site, the forested and agricultural site, and the down­ stream site 24

6. Yearly minimum and maximum daily streamflow (1982-84 water years) and the estimated long-term mean streamflow for three sites in the study area 25

7. Ranges and medians of water-quality characteristics, con­ stituent concentrations, and instantaneous constituent discharges, 1982-84 water years 29

8. Comparison of concentrations of selected constituents at three sites in Swatara Creek during a point-source dis- discharge, September 7, 1983 34

9. Regression statistics for constituent concentrations as afunction of suspended-sediment concentration and specific conductance in storm runoff 35

10. Regression statistics for constituent loads as a functionof base flow or stormflow 38

11. Water-quality criteria and standards for selected metalsand the percent of samples from the mined site, forestedand agricultural site, and the downstream site thatexceeded the criteria or standards 49

12. Estimated average annual aluminum, iron and manganese loadsfor Swatara State Park Reservoir study area 55

13. Concentrations of coal and metals in bottom material in thevicinity of the planned Swatara State Park Reservoir 58

14. Conservative estimate of annual phosphorus load, as P, intons, for Swatara State Park Reservoir study area 63

15. Estimated annual base-flow nitrogen loads, as N, tothe Swatara State Park Reservoir study area 64

16. Estimated annual major ion loads and yields in base flowfor Swatara State Park Reservoir study area 67

17. Summary of amount of precipitation, streamflow, runoff, and suspended-sediment yield and load during selected storms at the mined site (01571919), and the forested and agricultural site (01572000) 75

18. Durations of estimated mean daily base flow and stormflow, and constituent base-flow and stormflow discharges for Swatara Creek above Highway 895 (01571919), and Lower Little Swatara Creek (01572000), 1982-84 water years 78

19. Comparison of Pennsylvania, Maryland, and West Virginiareservoirs receiving mine drainage and their effects on downstream water quality 99

v

Page 6: PREIMPOUNDMENT HYDROLOGIC CONDITIONS IN THE SWATARA CREEK (1981-84

CONVERSION FACTORS AND ABBREVIATIONS

For the convenience of readers who may prefer metric (International system) units rather than inch-pound units used in this report, values may be converted by using the following factors:

Multiply Inch-Pound Unit

inch (in.) foot (ft) mile (mi)

acresquare mile (mi2)

cubic foot per second (ft^/s) million gallons per day

(Mgal/d)

By_

Length

25.40.30481.609

Area

4.0472.590

Flow

0.028320.04381

Volume

gallon (gal)

acre-foot (acre-ft)

cubic feet per second-days (cfs-days)

3.785 3,785 V233

0.0012332.447

pound per day (Ib/d) ton per day, (ton/d) short ton per square mile per year

[(ton/ml2)/yr ]

degree Fahrenheit (°F)

Mass

80.450.90720.3503

Temperature

'C-5/9 (°F-32)

Density

pound per cubic feet (Ib/ft^) 16.05

To Obtain Metric Unit

millimeter (mm) meter (m) kilometer (km)

square kilometer (km2) square kilometer (km2)

cubic meter per second (m^/s) cubic meter per second (m3/s )

liter (L) milliliter (mL) cubic meter (m3) cubic hectometer (hm^) cubic kilometers (km^)

kilogram per day (Kg/d) megagram per day (Mg/d) metric ton per square kilo­

meter per year [(t/km2)/annum]

degree Celsius (°C)

kilogram per cubic meter (Kg/m3)

Sea Level: In this report "sea level" refers to the National Geodetic Vertical Datum of 1929 (NGVD of 1929) a geodetic datum derived from a general adjustment of the first-order level nets of both the United States and Canada, formerly called "Sea Level Datum of 1929".

vi

Page 7: PREIMPOUNDMENT HYDROLOGIC CONDITIONS IN THE SWATARA CREEK (1981-84

PREIMPOUNDMENT HYDROLOGIC CONDITIONS IN THE SWATARA CREEK (1981-84)

AND ESTIMATED POSTIMPOUNDMENT WATER QUALITY IN AND DOWNSTREAM

FROM THE PLANNED SWATARA STATE PARK RESERVOIR, LEBANON AND SCHUYLKILL

COUNTIES, PENNSYLVANIA

By David K. Fishel

ABSTRACT

The hydrology and water quality of Swatara Creek were studied by the U.S. Geological Survey in cooperation with the Pennsylvania Department of Environmental Resources, Bureau of State Parks, from July 1981 through September 1984. The purpose of the study was to determine the effects of anthracite-coal raining and other point and nonpoint sources on the water quality of a planned 10,500 acre-foot reservoir. The Swatara State Park Reservoir is planned to be used for recreation and drinking-water supply for the city of Lebanon and surrounding communities.

Annual precipitation during 1982, 1983, and 1984 was about 8 percent below, near normal, and 29 percent above the long-terra average, respectively. The average annual precipitation during a year with near-normal precipitation, the 1983 water year, was 47 inches at Pine Grove. Mean streamflows during 1982, 1983, and 1984 were about 15 percent below, 4 percent above, and 50 percent above the long-term average, respectively. The average streamflow to the planned reservoir area during the 1983 water year was about 220 cubic feet per second.

Inflows to, and downstream discharge from, the planned reservoir were poorly buffered. Median alkalinity ranged from 4 to 7 mg/L (milligrams per liter) and median acidity ranged from 2 to 5 mg/L at the three sampling loca­ tions. Maximum total-recoverable iron, aluminum, and manganese concentrations were 100,000, 66,000, and 2,300 yg/L (micrograms per liter), respectively. During 1983 the annual discharges of total-recoverable iron, aluminum, and manganese to the planned reservoir area were estimated to be 692, 300, and 95 tons, respectively. About 37 percent of the total-recoverable iron and 91 per­ cent of the total-recoverable aluminum measured was in the suspended phase. The data indicated that mine drainage affects the quality of Swatara Creek and will affect the quality of the planned reservoir.

Manuscript approved for publication June 7, 1988.

1

Page 8: PREIMPOUNDMENT HYDROLOGIC CONDITIONS IN THE SWATARA CREEK (1981-84

In addition to mine drainage, point-source nutrient and metal discharges will probably affect the planned reservoir. For example, in September 1983, Swatara Creek was sampled downstream from a point source. A dissolved-phosphorus concentration of 14 rag/L and a total ammonia plus organic nitrogen concentration of 8.2 rag/L were measured. At the same location, concentrations of total- recoverable aluminum, chromium, copper, iron, and lead were 35, 300, 110, 1,300, and 32 yg/L, respectively.

Inflows to the planned Swatara State Park Reservoir are estimated to be acidic and rich in nutrients and select metals. Unless an effort is made to improve the quality of water from point and nonpoint sources, these conditions may impair the planned uses for the reservoir. Conservation releases from the reservoir need to be carefully controlled or these conditions also may degrade the water quality downstream.

INTRODUCTION

Background

Plans for the Swatara State Park Reservoir began in July 1968 when $2.7 million was authorized by the Pennsylvania General Assembly in Act 220 for dam and reservoir construction by the Pennsylvania Department of General Services. In December 1980, an additional $7.8 million was authorized in Act 228. The multipurpose reservoir would be used for recreational activities, such as fishing, swimming, and boating, and as a water supply for Lebanon and downstream communities.

The proposed reservoir is to be built downstream from areas extensively mined for anthracite during the past two centuries. As a result of the raining activities, numerous culmi/ piles exist over a substantial part of the surface of the study area.

A U.S. Geological Survey report by Stuart, Schneider, and Crooks (1967, p. 63) gave an indication of the expected water quality in the planned reservoir in the following statement: "At Inwood the water probably will be slightly acidic (pH below 7.0) most of the time, culm will form a considerable amount of the sedi­ ment that deposits in the reservoir, and iron and manganese residues of mine wastes and coal washings will probably be above desirable limits for many types of uses." The report pointed out the need for abatement of acid mine drainage prior to construction of the reservoir, if the reservoir were built at Inwood. Several alternative sites for the reservoir also were studied during this investigation.

I/ Residue from coal-separation procedures,

2

Page 9: PREIMPOUNDMENT HYDROLOGIC CONDITIONS IN THE SWATARA CREEK (1981-84

As part of Operation Scarlift administered by the Department of Environ­ mental Resources Berger Associates Inc. (1972); Gannett, Fleming, Corrdry and Carpenter, Inc.; and Anthracite Research and Development Company, Inc., deter­ mined sources and amounts of mine drainage entering the Swatara Creek head­ waters. Their studies identified five abandoned deep-mine pool overflows Middle Creek, Indian Head, Colket, Good Spring No. 3, and Good Spring No. 1 as the primary sources of acid niine drainage in a 14.9-mi2 (square mile) area in the Swatara Creek headwaters. Refuse piles and strip mines were identified as the second and third largest sources of acid. Study results also included recommendations and costs for abatement of acid mine drainage in the upper Swatara Creek watershed.

In June 1931, the U.S. Geological Survey, in cooperation with thePennsylvania Department of Environmental Resources (PaDER), Bureau of State Parks, began the water-quality phase of the preimpoundment investigation. This investigation (preconstruction in content) was to characterize the water quality and sediment of inflows to, and discharge downstream from the planned reservoir and to estimate the effect of the reservoir on downstream water quality. As a result of findings presented in the preliminary report by Fishel and Richardson (1986), construction of the reservoir ^as temporarily suspended.

A task force of Federal, State, and local officials and scientists was then formed and chaired by Senator David J. Brightbill in June 1984, to advise PaDER on future plans for the reservoir and to identify the sources of pollution in the Swatara Creek watershed.

Purpose and Scope

This report updates results of water-quality analyses presented in the preliminary report by Fishel and Richardson (1986) and lists the average annual loads of suspended sediment and those metals and nutrients for which sufficient data have been collected. The scope of the study includes (a) the measurement of concentrations of suspended sediment, nutrients (nitrogen and phosphorus) and other constituents common to acid mine drainage (iron, aluminum, manganese, sulfate, and acidity) in surface-water inflows and in the discharge downstream from the planned reservoir, (b) the calculation of loads for the same consti­ tuents transported to the planned reservoir during a year with near-normal streamflow, the 1983 water year ' > (°) t^e measurement of nutrient and metals concentrations in the bottom material of Swatara Creek and in the soils in the area of the planned reservoir, and (d) a projection of future quality of water in and downstream from the planned reservoir.

U The water year is the 12-month period beginning on October 1 and ending on September 30; it is designated by the calendar year in which it ends.

Page 10: PREIMPOUNDMENT HYDROLOGIC CONDITIONS IN THE SWATARA CREEK (1981-84

Approach

In order to characterize the water and sediment in the planned reservoir area, three sites were selected at which streamflow and water-quality data were collected for 3 years. Streamflow was measured continuously at two sites upstream from the planned reservoir that represent the major inflows to the reservoir from two subbasins with differing land uses; one is a 72.6-ini2 area of predominantly anthracite mining (mined site) and the other is a 34.3-mi2 area of forest and agricultural land (forested and agricultural site). The third site was a partial-record station downstream from the planned dam (downstream site). Data collected at the downstream site were used to determine the effects of mixing of the two upstream inflows and to represent the water quality in the l67-mi2 Swatara Creek basin.

Streamflow data were compared to the 65 years of record from Swatara Creek at Harper Tavern a site 15.9 mi downstream from the study area to characterize streamflows during the study. Strearaflow hydrographs for the 3-year study were separated to determine the ground water (base flow) and overland-runoff (storraflow) contributions to the planned reservoir. Strearaflow durations were calculated to determine the expected frequency of occurrence of a particular flow.

Annual chemical constituent loads to the planned reservoir were estimated for a year with near-normal Streamflow (the 1983 water year) by using the sub- divided-day method discussed by Porterfield (1972). In addition, relations between chemical constituent concentrations and discharges and suspended- sediment concentrations and Streamflow were developed. Regression statistics for these relations were calculated, and the least-squares method was used to fit regression lines to the data. Relations among instantaneous total-metals and phosphorous concentrations and instantaneous suspended-sediment con­ centration for storms were used to estimate missing concentration data during selected storms. This information is needed to construct daily storm con­ centration hydrographs required for the subdivided-day method.

In order to estimate the frequency of occurrence for a particular chemical discharge, Strearaflow durations were calculated for base flows and storraflows as outlined by Miller (1951). The calculated base-flow durations were then com­ bined with the results of the regression between Streamflow and instantaneous base flow chemical discharges to develop the chemical-discharge durations (listed in table 18). The same procedure was used to develop chemical-discharge durations for storraflows. An estimated mean base-flow discharge was calculated as the average of the 5-percent increments of the duration tables using the techniques described by Miller (1951).

Relations between air and water temperatures measured in Pine Grove were developed to show that trends in water temperatures can be predicted by mean air temperatures and may help to predict the onset of thermal stratification and spring and autumn overturn in the planned reservoir.

Streambed and soil samples were collected in and upstream from the planned reservoir to determine the chemical composition of the soils that will be inun­ dated. Particle-size analysis and normalization of chemical data from streambed samples were used to attempt to identify sources of selected metals. Chemical data from streambed samples were normalized to coal concentrations.

4

Page 11: PREIMPOUNDMENT HYDROLOGIC CONDITIONS IN THE SWATARA CREEK (1981-84

Data from other reservoirs with similar raorphoraetric and water-quality characteristics as those expected at the planned Swatara State Park Reservoir were reviewed to estimate the future water quality in and downstream from the planned reservoir.

Description of Study Area, Sampling Sites, and Planned Reservoir

The 167-mi2 study area lies in Schuylkill and Lebanon Counties in south-central Pennsylvania (fig. 1). The headwaters originate in Broad Mountain and flow southwestward about 29 mi before reaching Inwood, just below the pro­ posed dam. The entire basin lies in the Valley and Ridge physiographic province and has steep rugged ridges and a valley terrain running northeasterly above Inwood. The Swatara Creek, descends rapidly at a gradient of 78 ft/mi (feet per mile) between the headwaters and Pine Grove. From Pine Grove to Inwood, the gradient flattens to about 6 ft/mi, causing slower stream velocities and increased sediment deposition.

Both the geology and soils in the headwaters differ from those downstream and greatly influence the water quality of Swatara Creek. In the headwaters near Tremont, bedrock consists of shale, sandstone, conglomerate, and anthracite. Numerous culm piles and seeps from idle mines are scattered throughout the headwaters. Soluble materials in the sedimentary rocks and soils include magnesium, carbonate, sulfate, aluminum, iron, manganese, copper, and phosphate. The presence of the magnesium, carbonate, and sulfate is reflected by the ele­ vated dissolved-solids concentrations, and the presence of anthracite is reflected by low pH and elevated acidity and sulfate concentrations in the Swatara Creek headwaters. Downstream, between Treraont and Inwood, alternating layers of sandstone, shale, and conglomerate form steep ridges and narrow valleys. Soils are composed of residue from weathered sandstone and siltstone. Tributaries fi?ora these areas often have dissolved-solids concentrations less than 50 mg/L. Dilution of acid mine drainage begins in this reach of Swatara Creek.

Population density differs significantly throughout the watershed. In the northern part of the basin, in Schuylkill County, much of the basin is rural and sparsely populated. South and west of the study area, in Lebanon County, the basin is more urban, largely because of the communities of Lebanon, Hershey, and Middletown, which depend on the Swatara Creek for water supply. Population den­ sity for the entire Swatara Creek basin has surpassed the 60-percent increase predicted by Stuart, Schneider, and Crooks (1967, p. 4) for the period 1960-80. Analysis of census data from 1980, tabulated by the Susquehanna River Basin Commission, showed a 63 percent increase in population during that period (Fishel and Richardson, 1986).

The locations of the sampling sites at which continuous streamflow, water-quality, streambed, and soil samples were '.ollected are shown in figure 1.

The most upstream site at which *'ater-quality samples were collec id is Swatara Creek above Highway 895 at P: ie Grove-01571H9 (the rained sit*-, (latitude 40°32'43", longitude 76°2:'51"), in Schuylkill County. " s site has a drainage area of 72.6 mi^. The water quality is predominantly i luen'.ed by drainage from anthracite mines; however, point-source discharges from industries

Page 12: PREIMPOUNDMENT HYDROLOGIC CONDITIONS IN THE SWATARA CREEK (1981-84

40*30'

40*15'

EXPLANATION

County Boundary

Drainage-basin boundary

Study area

Proposed dam

Bed material and soil sampling station

Water-qualty, bed material, and streamflow station

Deep-mine pools

(D Middle Creek

0 Indian Head

0 Colket

@ Good Spring No. 3

0 Good Spring No. 1

Figure 1. Swatara Creek basin.

6

Page 13: PREIMPOUNDMENT HYDROLOGIC CONDITIONS IN THE SWATARA CREEK (1981-84

and sewers also are present. The gaging station, equipped with an analog to digital stage recorder, a graphic stage recorder, and an automatic pumping sampler, is on the right bank, 0.3 mi upstream from the bridge on State Highway 895 and 0.7 mi upstream from Lower Little Swatara Creek. The material in the strearabed at this site is primarily sand and gravel. During low flows, black silt deposits along the stream banks, and "yellow boy" (precipitates of iron commonly associated with acid mine drainage) covers the rocks. The low-flow channel at this site is bordered by steep banks. The left bank is heavily forested, and the right bank is primarily open land and some trees. The aban­ doned Feeder Branch of the Union Canal is about 300 ft from the right bank. At stages above 4.50 ft, water samples were collected from the Mill Street bridge about 900 ft upstream from the gage. Storm runoff from the town of Pine Grove enters Swatara Creek from a storm sewer pipe on the right bank immediately upstream from the bridge. The low and medium stage control, below 4.50 ft, is a bedrock outcrop about 150 ft downstream from the gage. The bridge at State Route 395 is the control at high stages. Ice jams occasionally occur at this bridge, and snow removed from Pine Grove is dumped along the right bank.

The second water-quality sampling site is Lower Little Swatara Creek at Pine Grove-01572000 (the forested and agricultural site), (latitude 40°32 f 15", longitude 76 0 22'40H ), in Schuylkill County. The drainage area for this site is 34.3 nu.2, and the land use is primarily forested and agricultural. This gaging station also is upstream from the planned reservoir and equipped with the same instruments as the rained site. The gage is on the right bank, downstream from the bridge on State Route 501, 0.2 mi south of State Route 395, 0.7 mi upstream from its mouth, and 0.8 mi southeast of Pine Grove. The streambed at this site is primarily sand and gravel with a few rock outcrops. Deciduous trees and cornfields line both banks upstream and downstream from the bridge. The low and medium stage control is about 200 ft downstream of the bridge at a bedrock outcrop. The State Route 645 bridge, 0.65 mi downstreafe on the Swatara Creek, becomes the control at high flows. Ice jams in the winter at the State Route 501 bridge are frequent.

The third water-quality sampling site is Swatara Creek at Inwood-01572200 (the downstream site), (latitude 40°28 f 38", longitude 76°31 f 26"), in Lebanon County. The drainage area for this site is 167 mi2; the basin is comprised of a combination of mined, forested, and agricultural areas. The site is about 0.8 mi downstream from the planned reservoir on a single-lane steel truss bridge, which carries Township Road 475 over the Swatara Creek 100 ft east of Legislative Route 140 (Old PA. 72), 1.9 mi north of Lickdale at Inwood. A wire-weight gage is mounted on the upstream side of the bridge. The streambed at this site is primarily bedrock and some sand and gravel. The low- and medium-stage control is about 300 ft downstream from the bridge at a bedrock outcrop. Ice jams occa­ sionally occur at four bridges in a 5.0 mi reach downstream from the site.

In addition to the samples collected at the three water-quality sites, bed material and soil samples were collected once a year during low flow at eight other sites shown in figure 1.

The general configuration of the planned reservoir will be long and narrow, (fig. 2) which is expected to enhance shoreline development. The drainage area above the planned reservoir is about 167 nd.2; the area of the lake is 775 acres.

Page 14: PREIMPOUNDMENT HYDROLOGIC CONDITIONS IN THE SWATARA CREEK (1981-84

40*32'30"

76°32'30' I

PENNSYLVANIA

76°25' I

Swatara Creek above Highway 895 at Pine Grove

'01571919

01572000_ -N

Lower Little Swatarc Creek at Pine Grove

Recommended subimpoundment

Green Point Station

01572200^

Proposed dam

,01572200^.Swatara Creek at Inwood

0 1 MILES

EXPLANATION

_ County BoundaryWater-quality sampling

site and numberProposed dam

State highway

= Interstate highway

1 KILOMETERS

Figure 2. Configuration of planned reservoir and location of water-quality sampling sites.

Table 1.--Basin and lake characteristics for the planned Swatara State Park Reservoir.

Major drainage basin: Susquehanna River

Minor drainage basin: Swatara Creek

Location: Swatara Creek State Park

Latitude: 40°28r 59* Longitude: 76°32'07"

Physical Characteristics:

Altitude at normal pool: 473 ft (144.2 m)

Drainage area: 167 mi2 (432 km2)

Surface area at normal pool 775 acres (3.14 km2)

Shoreline at normal pool: 20.2 mi (32.5 km)

Volume at normal pool: 10,500 acre-ft (12.9 km3)

Mean depth: 13.5 ft (4.11 m)

Maximum depth: 40 ft (12.2 m)

Mean width: 1,200 ft (365.8 m)

Mean flow-through time: 24 days at 221.6 ft3/s (6.28 m3/s)

Lake use: Recreation (including fishing, boating, and swimming),

water supply for the city of Lebanon, Pa. and surrounding communities

Page 15: PREIMPOUNDMENT HYDROLOGIC CONDITIONS IN THE SWATARA CREEK (1981-84

The basin and lake characteristics for the planned reservoir listed in table 1 indicate that the lake will have a mean depth of about 13.5 ft and a shoreline of about 20.2 mi. The mean flow-through time for an average discharge of 221.6 ft3/s (cubic feet per second) will be about 24 days or a flushing rate of about 15 times per year. The depth and volume capacity profile in figure 3 indicates that sufficient depths will be present for thermal and chemical stra­ tification; depths exceed 10 ft as far as 6.0 mi upstream from the dam. Chemi­ cal and thermal stratification as well as anoxic conditions were found in Blue Marsh Lake at depths as shallow as 10.0 ft on July 24, and August 8, 1979 (Barker, U.S. Geological Survey, Harrisburg District Office, written commun., 1979). Morphometric characteristics of the Blue Marsh Lake are similar to those of the planned reservoir on Swatara Creek. Thus, about 43 percent of the planned reservoir, that volume below a depth of 10 ft of water, may be suscep­ tible to depletion of dissolved oxygen and re-solution of raetals. These con­ ditions will be intensified when little mixing and reaeration occurs from inflows and wind action.

0

-5

-10

LJO -15

-20

y -25LU CQ

fE -30Q.

B -35

-40

Planned SWATARA STATE PARK RESERVOIR

100

68

43

26

14

5

2

1

0

345

DISTANCE FROM BREAST OF DAM, IN MILES

Figure 3.-Depth and capacity profile for planned Swatara State Park Reservoir. (Water surface elevation at 473 feet above sea level).

Page 16: PREIMPOUNDMENT HYDROLOGIC CONDITIONS IN THE SWATARA CREEK (1981-84

The recommended location of the dam shown in figure 2 is at latitude 40°28'59" and longitude 76°32 f 07", approximately 0.6 mi upstream from Inter­ state Highway 81. The site is near the village of Green Point Station in Lebanon County.

The dam will be a concrete gravity type with a 445-foot nongated spillway (Terraqua Resources Corporation, 1982). The spillway crest, at an elevation of 473.0 feet above sea level, will impound 10,500 acre-ft (acre-feet) of water and create a lake area of 775 acres. About 7,000 acre-ft of water in the reservoir, below elevation 468 ft, will be allocated for sediment deposition, recreation, and fish and wildlife. Another 3,500 acre-ft, from elevation 468 to 473 ft, will be designated for a 10 Mgal/d (million gallons per day) water supply for Lebanon, low-flow releases to Swatara Creek, and evaporation. Water may be released from the surface, from two intermediate levels, or from the bottom of the reservoir to enhance downstream water quality. The approximate reservoir depth at the dam will be 40 ft, and the reservoir length will be about 6.8 mi.

A subimpoundraent was recommended by the Pennsylvania Fish Commission to reduce the suspended-sediment load to the reservoir (Hoopes, 1981). This struc­ ture, with total drawdown capability, could be located near township road 390 at Suedberg. The subimpoundment could retard bedload transport and reduce the amount of suspended metals and nutrients transported to and trapped in the reservoir.

Results of Preliminary Report

The report on the preliminary phase (1981-82) of the study (Fishel and Richardson, 1986) showed that in the 1982 water year precipitation was about 3 percent below normal and streamflow was about 15 percent below the average annual flow. Significant portions of the annual suspended-sediment load of Swatara Creek were transported in a relatively short time. In 1982, 46 percent of the annual suspended-sediment load was transported in 3 days of high flow. Measured alkalinity and acidity indicated that the inflows to and discharge downstream from the planned reservoir are poorly buffered; therefore, acid mine discharges may have a large effect on water quality in the planned reservoir.

Elevated metal concentrations, along with decreases in pH and increases in acidity, confirmed that acid mine drainage has continued to degrade the water quality of Swatara Creek. Iron, lead, copper, and zinc concentrations measured during storms exceeded the U.S. Environmental Protection Agency (USEPA) (1976) criteria for freshwater aquatic life, and concentrations of manganese and lead also exceeded the USEPA criteria for domestic water and human health, respec­ tively.

10

Page 17: PREIMPOUNDMENT HYDROLOGIC CONDITIONS IN THE SWATARA CREEK (1981-84

Acknowledgments

Appreciation is extended to the following persons and their respective agencies for the assistance they provided during the study:

1. Donald Melnicove was the observer at the stream-gaging stations and collected daily suspended-sediment samples and water-temperature data.

2. James Barr, the Swatara State Park superintendant, assisted in water- quality sampling and data collection.

3. Charles Takita of the Susquehanna River Basin Commission provided a compilation of census and land-use data.

4. David Wolfgang from the Pine Grove sewage treatment plant provided a tabulation of daily precipitation data.

5. W. G. Zimmerman provided daily maximum and minimum air-temperature data from Pine Grove.

DATA COLLECTION AND METHODOLOGY

Constituents measured, frequency of data collection, and methods used to collect and analyze the data during the 3-year study are discussed in detail in the following sections.

Data collected during the study are reported in the annual U.S. Geological Survey report, "Water Resources Data for Pennsylvania," Vol. 2, water years 1982-84.

Air-Temperature and Precipitation Data

Time-series plots of Pine Grove's daily air temperatures were compared with plots of daily water temperatures from the mined site and the forested and agri­ cultural site. The plots were used to characterize seasonal variations, to identify point-source discharges, and to identify periods when the onset of thermal stratification and spring and fall overturn may occur in the planned reservoir. Air-temperature data were obtained from a fuel oil dealer in Pine Grove who has maintained daily records for over 30 years. Although analysis of long-terra, air-temperature data was beyond the scope of this project, these data may be valuable in estimating long-term, air- and water-temperature frequency distributions and aid in the management of the planned reservoir.

Precipitation data were used to document wet and dry periods, to estimate the frequency of occurrence of a selected precipitation event, and to define the relations among rainfall, runoff, and water quality in the basin.

11

Page 18: PREIMPOUNDMENT HYDROLOGIC CONDITIONS IN THE SWATARA CREEK (1981-84

Streamflow Data

Strearaflow data were collected at the three sites shown in figure 2. Continuous Strearaflow data were collected beginning July 1981 at the forested and agricultural site and October 1981 at the mined site. A partial-record sta­ tion was established at the downstream site in November 1981. The streamflow gaging stations were discontinued in September 1984.

Stage-discharge relations were defined at each site by measuring streamflow over a wide range of stream stages including base flow and storm conditions using a current meter. Stage-discharge relations were used to determine instan­ taneous streamflows when water-quality samples were collected. These streamflows were then used to compute chemical-constituent discharges.

Streamflow records for Swatara Creek at Harper Tavern were examined to determine flow conditions during the study, inasmuch as the stations in the study area did not have long-terra records. Streamflow records for Swatara Creek at Harper Tavern have been collected for 65 years.

Streamflow hydrographs were separated using the fixed-interval, the sliding-interval, and the local-minima techniques (Pettyjohn and Henning, 1979) for the rained site and for the forested and agricultural site to determine the contribution of base flow and stormflow to the total annual flow. Long-terra, mean-daily streamflows for the mined site and for the forested and agricultural site were calculated as the average of the 5 percent increments of the long-term flow durations (see table 5, p. 24).

Base flow and stormflow durations for the mined site and the forested and agricultural &»te were obtained using the streamflows determined from the fixed-interval hydrograph separation.

Water-Quality Data

Suspended-sediment data collection began in July 1981 at the forested and agricultural site, and in October 1981 at the rained site. Daily suspended- sediment samples were collected manually at these sites during base-flow con­ ditions. During storms, samples were collected more frequently with a U.S. Geological Survey PS-69 automatic pumping sampler. Suspended-sediment samples were collected manually each month and during storms at the downstream site at Inwood. During storms at each site, additional samples were collected manually for analysis of percentages of sand and fine particles or for complete particle- size analysis.

Analyses for suspended sediment were done in the U.S. Geological Survey's sediment laboratory in Harrisburg, Pa. by methods described by Guy (1969). Daily values for suspended-sediment concentration and discharge were computed using the subdivided-day method described by Porterfield (1972).

Streambed samples were sieved in the field using a 2-mm plastic sieve. Samples were sent to the U.S. Geological Survey laboratory in Denver, Colorado and analyzed using techniques described by Skougstad and others (1979).

12

Page 19: PREIMPOUNDMENT HYDROLOGIC CONDITIONS IN THE SWATARA CREEK (1981-84

Chemical-quality samples were analyzed or preserved for analysis imme­ diately after collection at the sampling location. Field analyses included measurements of water temperature, pH, alkalinity, acidity, specific conductance, dissolved oxygen, fecal coliform, and fecal streptococcal bacteria. Samples analyzed for dissolved constituents were filtered in the field through a 0.45-microraeter membrane filter using a Plexiglas^./ filter assembly and peristaltic pump. Samples for dissolved organic carbon were filtered through a 0.45-micrometer silver filter using a stainless-steel pressurized nitrogen filtration unit. Bacteriological analyses were done during base flow in the field by techniques described by Greeson and others (1977). Bacteriological samples collected during base flow and storms also were packed in ice and de­ livered to PaDER, Bureau of Laboratories in Harrisburg, Pennsylvania for analy­ sis within 24 hours of sample collection. Table 2 lists the physical, chemical, and bacteriological analyses performed on water-quality samples.

Cheraical-quality data collection began in December 1981 at each of the three sites. Samples were collected monthly during base-flow conditions and at selected stages during seven storms to develop transport curves (relations between constituent concentrations or discharges and streamflow). Storms were selected so that the water quality at each site could be related to different phases of the growing season. Cheraical-quality samples were collected using depth-integrating samplers and the equal-transit rate procedure (also referred to as the equal-width increment procedure) (Guy and Norman, 1970). Bacteriological and dissolved oxygen samples were collected, and water tem­ perature measurements were made, at the centroid of flow at each site.

Statistical analysis of water-quality data was performed using the computer package "Statistical Analysis System" (Helwig, 1978). Basic univariate sta­ tistics for water-quality characteristics were calculated, including maximum, minimum, and median concentrations and maximum and minimum instantaneous discharges. Regression techniques were used to develop relations (concentration as a function of streamflow) for those constituents for which sufficient data were available; a minimum of 17 data pairs were used. The relations were con­ sidered good if the r2 (coefficient of determination) equaled or exceeded 0.60. Regression lines for constituent concentrations and discharges were fitted ana­ lytically using the least-squares method. Attempts using the line of organic correlation as suggested by Hirsch and Gilroy (1984) to fit regression lines for constituent discharges gave poor results, probably because the mean of the strearaflows for the values used to establish the regression was much higher than the long-term mean streamflow.

o / ' The use of trade, product, industry, or firm names in this report is for identification or location purposes only, and does not constitute endorsement of products by the U.S. Geological Survey, nor impute responsibility for any pre­ sent or potential effects on the natural resources.

13

Page 20: PREIMPOUNDMENT HYDROLOGIC CONDITIONS IN THE SWATARA CREEK (1981-84

Table 2. Physical, chemical, and bacteriological analyses performed on water-quality samples

[Ug/L, micrograms per liter; uS/cra, raicrosiemens percentimeter; NTU, nephloraetric turbidity units;mg/L, milligrams per liter]

Nutrients (mg/L)

Physical and other related analyses

Acidity (mg/L as CaCO )Alkalinity (mg/L as CaCO )Oxygen, dissolved (mg/L)pH (units)Specific conductance ( uS/cm at 25 °C)Water temperature (°C)Chemical oxygen demand (rag/L)Turbidity (NTU)

Chemical Analyses

Metals (ug/L)

Nitrogen, nitrite dissolved Nitrogen, nitrite total Nitrogen, nitrate dissolved Nitrogen, nitrate total Nitrogen, ammonia dissolved Nitrogen, ammonia total Nitrogen, Kjeldahl dissolved Nitrogen, Kjeldahl total Phosphorus, orthophosphate dissolved Phosphorus, orthophosphate total Phosphorus, dissolved Phosphorus, total Carbon, organic dissolved Carbon, organic total

Dissolved ions (mg/L)

CalciumChlorideMagnesiumSilicaSodiumSulfatePotassium

Aluminum, dissolved Aluminum, total-recoverable Chromium, total-recoverable Copper, total-recoverable Iron, dissolved Iron, total-recoverable

4*Lead, total-recoverable Manganese, dissolved Manganese, total-recoverable Mercury, total-recoverable Zinc, total-recoverable

Bacteriological Analyses

Fecal coliform (colonies/100 mL) Fecal streptococci (colonies/100 mL)

14

Page 21: PREIMPOUNDMENT HYDROLOGIC CONDITIONS IN THE SWATARA CREEK (1981-84

Regressions developed for base flow and storm runoff included the log of constituent concentration as a function of log of streamflow, log of constituent concentration as a function of the log of suspended-sediment concentration, log of constituent concentration as a function of the log of specific conductance, and log of constituent discharge as a function of the log of streamflow.

Techniques described by Miller (1951) to calculate flow-durations were used to estimate average annual and mean daily base-flow discharges for constituents that were directly correlated with streamflow (r2 greater than 0.60). The base flow-duration tables were developed from base-flow data obtained from the hydrograph separations. An estimated storm load for a year with nearly normal streamflow (1983 water year) was calculated for constituents that showed good relations with suspended-sediment concentrations. The subdivided-day method was used to estimate the annual storm load for 1983, inasmuch as the flow-duration technique underestimates the annual storm load for stations where few storms of short duration contribute most of the annual load. For example, the 1983 suspended-sediment storm load for the rained site that was estimated using the flow-duration method was 51 percent less than the measured suspended-sediment load. Missing constituent concentrations needed to construct daily hydrographs of constituent concentrations required for the subdivisions were estimated using the relations developed between instantaneous constituent concentrations and suspended-sediment concentrations. The average annual total loads for selected constituents were determined as the sum of the base-flow and storraflow loads.

Storm loads and therefore average annual loads for the downstream site at Inwood could not be calculated from the limited data.

PREIMPOUNDMENT HYDROLOGIC CONDITIONS IN THE SWATARA CREEK

Temperature and Precipitation

Seasonal changes in air temperature commonly are reflected by changes in water temperature and may be used to estimate the occurrence of the maximum change in water temperature. Plotting air and water temperatures over time can then be used to predict the onset of thermal stratification and, possibly, fall and spring overturn in the planned lake. Seasonal changes and the relation bet­ ween air and water temperature at Pine Grove can be seen in figures 4 and 5. A simple regression, which can be used to estimate the water temperature from air- temperature data collected at Pine Grove, is expressed in equations 1 and 2.

For the rained site,Water temperature, in degrees Celsius - 0.7042 (TPQ) + 5.7221 (1)The standard error of estimate * 2.7 °C.

For the forested and agricultural site,Water temperature, in degrees Celsius - 0.7147 (TpG ) + 4.5739 (2)The standard error of estimate =2.7 °C.

where TPQ is the daily mean air temperature at Pine Grove, in °C.

Figure 5 also shows the similarities in water temperature patterns for the mined site and the forested and agricultural site. Peak water temperatures for the mined site were usually slightly higher than those for the forested and agricultural site, especially from January through March.

15

Page 22: PREIMPOUNDMENT HYDROLOGIC CONDITIONS IN THE SWATARA CREEK (1981-84

91

WATER TEMPERATURE,

IN DEGREES CELSIUSAIR TEMPERATURE,

IN DEGREES CELSIUS

COcCD

cn 'i

60) <"

p ttCD CDCD " *" CD

£ 3 o-D CD

c? 5O -K

< OCD -i

3 Q) CD -*CO Q)

CD Q)Q.o) 9 5 CDQ. CD

(Q Q)=. O-

a §co

CO 00

to 52.«

CO Q.| O $ CD

CD

C/)

0)

Page 23: PREIMPOUNDMENT HYDROLOGIC CONDITIONS IN THE SWATARA CREEK (1981-84

Collins (1925) reported that the temperature of surface water approximates the mean monthly temperature of air, and, consequently, surface water is cold in winter but warm in summer. Lohman (1957) states "...on the contrary, the temperature of ground water approximates the mean annual temperature which is generally less then 10 °C".

Thus, ground water released to streams as base flow should have a relatively constant temperature of about 10 °C near its source. However, point-source discharges and the effects of air temperature between the source of base flow and the measuring point can mask the natural water temperatures of base flow. Because the volume of base flow at the rained site is greater than the base flow at the forested and agricultural site, water temperatures at the mined site may be expected to more closely reflect natural base-flow temperatures. This was evident from January through March when air temperatures were cold; yet water temperatures at the rained site were higher than those at the forested and agri­ cultural site. The warmer temperatures at the mined site were probably the result of the ground-water discharges from springs and deep mine tunnels in the headwaters. During the warmer months June through August peak water tem­ peratures were often higher at the rained site than at the forested and agri­ cultural site, perhaps as the result of pumping from active mine operations or other point sources.

Daily precipitation measured at Pine Grove during the 1982-84 water years is shown in figure 6. Precipitation in Swatara Creek basin was generally highest from April through August and lowest from September through December. Significant surface runoff in the basin is produced from storms with 1 inch or more of precipitation; such storms occur throughout the year. The largest storm during the study occurred on August 8, 1982, and produced 6.5 in. of precipita- ^tion in 12 hours, resulting in substantial flooding to residential and commer­ cial establishments in Pine Grove.

Table 3 shows that about 13 percent or 45 of the 338 precipitation events during the 3-year study were greater than 1.0 in. Therefore, on the average, more than one event with significant surface runoff occurred each month of the study.

Table 3. Magnitude and number of precipitation events in Pine Grove, October 1, 1981 to September 30, 1984

Precipitation (inches)

0.00.26.51.76

1.011.511.762.012.513.01

- 0.25- .50- .75- 1.00- 1.50- 1.75- 2.00- 2.50- 3.00- above

Number of

events182

62292023

84523

Percentage of events greater than indicated range of precipitation .

46281913

743110

Total_________________338______

17

Page 24: PREIMPOUNDMENT HYDROLOGIC CONDITIONS IN THE SWATARA CREEK (1981-84

00

6

CO LLJ

O S O LLJ

ON

DJ

FM

AM

JJ

A

S|O

N

DJ

FM

AM

JJ

A

SJO

N

DJF

MA

MJJA

S

1982

1983

1984

WA

TE

R Y

EA

RF

igure

6.

Da

ily p

reci

pita

tion

at

P

ine

Gro

ve,

19

82

-84

w

ate

r ye

ars

.

Page 25: PREIMPOUNDMENT HYDROLOGIC CONDITIONS IN THE SWATARA CREEK (1981-84

There is considerable variation in precipitation within the Swatara Creek, basin and much of the variation is caused by local thunderstorms and the orographic effects of the Appalachian Mountains. The difference in precipita­ tion between Lebanon and Pine Grove in table 4 indicates that records collected at Lebanon are not representative of the upper Swatara Creek basin. Therefore, records from Lebanon are not suitable for estimating precipitation or runoff to the planned Swatara State Park Reservoir.

Table 4. Annual summary of precipitation recorded at Lebanon and Pine Grove October 1, 1981 to September 30, 1984

Water year

Precipitation, in inches

LebanonLebanon variation normal from

Lebanon 1931-60

Pine Grove variation

fromnormal Pine Grove Lebanon (percent)

1982

1983

1984

40.

36.

56.

26

4 5 a/

83

43.

43.

43.

99

99

99

- 8

-17

+29

52.

47.

66.

38

15

37

+ 12.

+ 10.

+ 9.

12

70

54

Totals 133.54 131.W + 1 165.90 + 32.36

' Some days of missing data in 1983.

Because long-terra records are not available for Pine Grove, the variations from normal precipitation at the Lebanon station were used to characterize the study period. About 32 in. more precipitation fell at Pine Grove during the study than at Lebanon. A total of 165.9 in. of precipitation fell at Pine Grove during the 3-year study for an annual average of 55.3 in. Precipitation was 8 percent below normal in 1982 and 29 percent above normal in 1984 at Lebanon. Precipitation data for the Lebanon station were missing for January 15 and 16 and February 11 and 12, 1983; however, 2.41 in. of precipitation was recorded at the Myerstown National Oceanic and Atmospheric Administration (NOAA) station east of Lebanon and 2.58 in. was measured in Pine Grove. Therefore, the total

19

Page 26: PREIMPOUNDMENT HYDROLOGIC CONDITIONS IN THE SWATARA CREEK (1981-84

precipitation at Lebanon for 1983 may have been higher than that indicated and was probably near normal. Long-terra strearaflow records for Swatara Creek at Harper Tavern verify that the 1983 precipitation was near normal.

In summary, water temperatures at the mined site and the forested and agri­ cultural site are closely associated with air temperatures at Pine Grove, but water temperatures at the mined site are probably affected by upstream point- source discharges. Total precipitation during the study was significantly dif­ ferent each year; 1982 was drier than normal, 1983 was near normal, and 1984 was wetter than normal.

Streamflow

Streamflow conditions during the period of study are illustrated by the hydrograph separations in figure 7. These hydrographs illustrate the temporal variation of streamflow and show the large contribution of base flow to annual streamflow. Results from the three techniques used for hydrograph separations were within 9 percent of each other; therefore, the average of the three methods was used to calculate annual base flow and stormflow. Base flow and storraflow were 65 and 35 percent, respectively, of the total streamflow from the mined site during the 3-year study. In contrast, 55 and 45 percent of the total streamflow from the forested and agricultural site came from base flow and stormflow, respectively. Surface raining probably contributes to the higher per­ centage of base flow from the mined site inasmuch as the disturbed soils and reduced slopes from surface raining reduces surface runoff and increases infiltration. Continuous seepage from deep mines in the headwaters also contri­ butes to the higher base flow at the mined site.

The variation in the percentage of base flow contributing to streamflow during a wet year and a dry year can also be seen in figure 7. Base flow comprised almost 69 percent of the streamflow in 1982 a year 3 percent drier than normal but only about 57 percent in 1984 a year 29 percent wetter than normal at the mined site.

Monthly bar charts of runoff in figure 8 indicate dry periods when reten­ tion will be greatest in the planned reservoir. The 1.13 in. of monthly runoff for a complete water exchange in the planned reservoir was not met for 10 of the 36 months of the study. Critical periods of low runoff were primarily from July through October. During these periods, discharge from the reservoir will be reduced so that a recreational pool level of 473.0 ft (Terraqua Resources Corporation, 1982) may be maintained.

20

Page 27: PREIMPOUNDMENT HYDROLOGIC CONDITIONS IN THE SWATARA CREEK (1981-84

10,0

00

§0

o 0

1.00

0 2

mfc"

w 5 a

100 10

CO

Tot

al d

isch

arge

3,7

09,0

00,0

00 c

ubic

fe

et

Stc

rmflo

w (

surfa

ce r

unof

f) 31

.4

perc

ent

Tota

l di

scha

rge

4,85

7.00

0.00

0 cu

bic

feet

Sto

rm fl

ow

33.6

I pe

rcen

t

Tot

al d

isch

arge

6,9

84,0

00.0

00 c

ubic

fee

t

Sto

rm fl

ow

42.6

de

rcer

it

D B

ase

flow

(gr

ound

-wat

er r

unof

f) 68

.6 p

erce

ntBa

se f

low

66.

4 pe

rcen

t

Sw

ata

ra C

reek

above

Hig

hway

89

5B

ase

flow

57.

4 pe

rcen

t

ON

DJ

FM

AM

JJ

AS

|O

ND

JF

MA

MJ

JA

S|O

ND

JF

MA

MJ

JA

S

19

82

1983

1984

WA

TE

R Y

EA

R

10,0

00

1,0

00

I CO

10

1

Tot

al d

isch

arge

1,

747,

000,

000

cubi

c fe

et

Sto

rmfb

w 4

1.b

perc

ent

Bas

e flo

w 5

8.5

perc

ent

Tota

l di

scha

rge

2.13

2.00

0.00

0 cu

bic

feet

Sto

rm fl

ow 4

5.3

perc

ent

Tot

al d

isch

arge

2,

939.

000.

000

cubi

c fe

et

oto

rmflo

w 5

0.4

perc

ent

Base

flo

w

54.7

per

cent

Low

er

Litt

le S

wata

ra C

reek

Bas

e flo

w 4

9.6

perc

ent

ON

DJ

FM

AM

JJ

AS

|O

ND

JF

MA

MJ

JA

S|O

ND

JF

MA

MJ

JA

S

1982

19

83

1

98

4W

AT

ER

YE

AR

Figu

re 7

.-H

ydro

grap

h se

para

tions

for

Sw

atar

a C

reek

abo

ve H

ighw

ay 8

95 (

min

ed s

ite)

and

Low

er L

ittle

Sw

atar

a C

reek

at

Pin

e G

rove

(fo

rest

ed a

nd a

gric

ultu

ral

site

), 19

82-8

4 w

ater

yea

rs.

Page 28: PREIMPOUNDMENT HYDROLOGIC CONDITIONS IN THE SWATARA CREEK (1981-84

10 8

CO

HI

X

6 O Z § DC

D

Sw

atar

a C

reek

abo

ve H

ighw

ay H

'JS

H

Low

er

Littl

e S

wat

ara

Cre

ek

Runoff n

ece

ssa

ry f

or

com

ple

te

exc

ha

ng

e o

f w

ate

r in

p

lan

ne

d

rese

rvo

ir (

1.1

3 i

nch

es)

*

IO

ND

JF

MA

MJJA

slo

ND

JF

MA

MJJA

slo

ND

JF

MA

MJJA

S

1982

19

83

1984

WA

TE

R

YE

AR

Fig

ure

8.-

Month

ly r

unof

f fo

r S

wata

ra C

reek

above

Hig

hw

ay

89

5 (

min

ed s

ite)

and

Low

er

Littl

e

Sw

ata

ra

Cre

ek

at P

ine

Gro

ve (

fore

ste

d a

nd a

gric

ultu

ral

site

),

19

82

-84

wate

r ye

ars.

Page 29: PREIMPOUNDMENT HYDROLOGIC CONDITIONS IN THE SWATARA CREEK (1981-84

Long-terra streamflow durations were estimated for the mined site and the forested and agricultural site to determine long-term mean streamflows for each site. Because long-terra record is not available for the mined site and the forested and agricultural site, relations were developed between the mean daily strearaflows at the mined site and the forested and agricultural site, and the mean daily streamflows at Harper Tavern for the 3-year study. These relations are shown in equations 3 and 4.

For the rained site:

Log QM = 0.8806 (log QHT) - 0.2594 (3)

where QM ~ the daily mean streamflow for the rained site,

the daily mean strearaflow for Swatara Creek at Harper Tavern,

the r2 = 0.91, and the standard error = 0.13 log units or + 34 percent and - 25 percent.

For the forested and agricultural site:

Log QFA = 1.0151 (Log QHT) - 1.0292 (4)

where QpA = the daily mean streamflow for the forested and agricultural site,

the r2 = 0.91, and the standard error - 0.16 log units or + 44 percent and - 30 percent.

Equations 3 and 4 were then used to calculate long-terra streamflow durations for the 2 sites based on the durations for the 65 years of record for Swatara Creek at Harper Tavern (table 5).

Long-terra mean daily streamflows for the downstream site at Inwood were estimated using the relation between instantaneous streamflows at the mined site(designated Qg95) and the instantaneous streamflows at the downstream site at Inwood developed in the preliminary report (Fishel and Richardson, 1986):

Log QX = 1.1756 (Q895) - 0.0286

where Qj = the instantaneous streamflow at the downstream site at Inwood,

^895 = tne instantaneous streamflow at the mined site,

the r2 = 0.95 and the standard error = 0.13 log units or + 34 percent and - 25 percent.

23

Page 30: PREIMPOUNDMENT HYDROLOGIC CONDITIONS IN THE SWATARA CREEK (1981-84

Table 5. Streamflow durations for study period (1982-84 water years) and estimatedlong-term durations (1920-84) for the mined site, the forested and agricultural site, and the downstream site

Percentage of Streamflow, in cubic feet per secondtime stream- flow equaled Study period

or exceeded

95

90

85

80

75

70

65

60

55

50

45

40

35

30

25

20

15

10

5

Mined site

17.9

25.8

31.1

35.7

45.7

55.8

67.6

83

102

120

137

157

176

201

235

274

323

398

542

Forested and agricultural site

4.

7

8.

11.

15.

19.

23

27.

31.

39.

46.

54.

63.

73.

85.

101

123

156

236

6

3

4

4

1

2

8

4

7

2

3

9

5

Estimated long-termForested and Downstream

Mined site agricultural site site

15.2

21.3

27

33.4

40.3

47.5

55.6

65.6

76.4

88

101

115

132

151

172

204

245

308

430

4.

6.

8.

10.

13.

16

19.

23.

27.

32.

38.

3

3

3

6

2

1

1

6

4

2

44 .*4

51.

60.

70.

85.

106

138

202

8

4

5

6

23

34.

45.

57.

72.

87.

105

128

153

181

213

248

291

341

398

486

603

789

1,100

1

1

9

2

6

24

Page 31: PREIMPOUNDMENT HYDROLOGIC CONDITIONS IN THE SWATARA CREEK (1981-84

Estimated long-term mean streamflows for each site are listed in table 6 along with the ranges of streamflow recorded during the study. Long-term mean streamflows were calculated as the average of the 5 percent increments of the streamflow durations in table 5.

Streamflow duration curves (fig. 9) for Swatara Creek at Harper Tavern were used to characterize strearaflow conditions during the study and show that higher base flows occurred during the study than during the long-term period of record. Mean streamflows for Swatara Creek at Harper Tavern, located 15.9 mi downstream from the study area, were 15 percent below, 4 percent above, and 50 percent above the long-term average during the 1982, 1983, and 1984 water years, respectively. The duration curves show that the streamflow durations during the study were usually within 7 percent of the long-term record except at flows below 80 ft^/s. A flow of this magnitude, which would be equaled or exceeded about 95 percent of the time, is equal to a strearaflow of about 26 ft^/s at the mined site.

Table 6. Yearly minimum and maximum daily streamflow (1982-84 water years) and the estimated long-term mean streamflow for three stations in the study area

1982 water year

1983 water year

1984 water year

Estimated long-terra mean

Strearaflow, in cubic feet per second _________(Minimum - Maximum)__________

Forested and Downstream Mined site agricultural site site

(01571919)

17.0

13.0

11.9

- 2,330

- 3,200

- 4,050

(01572000)

2.8

2.5

3.5

- 1,370

- 2,720

- 2,230

(01572200)

26.2

19.1

17.2

_ *

_ *

_ *

122.5 50.4

Minimum values for the downstream site are estimates based on equation 5.

* Maximum strearaflows for downstream site were not estimated because maximum strearaflows at the mined site were much higher than those streamflows used to develop the relation with the downstream site.

25

Page 32: PREIMPOUNDMENT HYDROLOGIC CONDITIONS IN THE SWATARA CREEK (1981-84

100,000

Qz o o

10,000

DC LUa.

LL

gCO

oz

$o

LU DCI-co

1,000

100

10

1.0

Study period

Period of record

0.1 0.5 1 2 5 10 20 30 405060 70 80 90 95 98 9999.599.9

PERCENTAGE OF TME NDCATED STREAMFLOW WAS EQUALED OR EXCEEDED

Figure 9.~Streamflow-duration curves for Swatara Creek at Harper Tavern for the study period (1982-84 water years], and the period of record C1920-84).

26

Page 33: PREIMPOUNDMENT HYDROLOGIC CONDITIONS IN THE SWATARA CREEK (1981-84

Higher base flow during the study period may be indicative of land use changes and/or other natural and climatic variables. Extensive strip mining occurred in the basin mainly during the Second World War and directly thereafter (Berger Associates, Inc., 1972, p. 93). Since that time surface reclamation activities such as regrading and hydroseeding have been encouraged to reduce erosion of refuse banks. Consequently, the surface reclamation activities fa­ cilitate infiltration and subsequent discharge of ground water to streams as base flow. If the recommended reclamation activities continue to be implemented on a wide scale, then the percent of strearaflow discharged as base flow can be expected to increase in the future.

A.S a consequence of the changing land use and(or) other natural variations, the long-terra duration curve is of little value in predicting the frequency of occurrence of future base flows. Therefore, base-flow and storraflow durations for the 3-year study period (table 18, p. 92) were calculated using strearaflows from the hydrograph separations of the 3 years of data. Durations were developed for both base flow and stormflows to indicate the chemical loads contributed by both base flow and storms. The annual average base flow for both the mined site and the forested and agricultural site is significantly higher than the average annual stormflow even though the maximum stormflows at the sites were 4 and 6 times greater, respectively, than the corresponding maximum base flows. These results reflect the extended durations of high base flows as compared to the very short storm durations, but the durations may change depending on the effects of land-use which are unknown at this time.

Since base flows increased during the study period and more than 55 percent of the total flow to the planned reservoir will be base flow, an estimate of the detention time or time of travel for water to flow through the reservoir during mean strearaflows was based on the measured streamflows for a normal year (1983 water year). Detention in the reservoir will be influenced by the design and operation of the release gates, however, based on the sum of the mean streamflows (221.6 ft^/s) measured for the mined site and the forested and agri­ cultural site during the 1983 water year, and a reservoir capacity of 10,500 acre-ft the average detention time would be approximately 24 days.

In conclusion, base flow has a large impact on the Swatara Creek. Even during the 1984 water year when precipitation was 29 percent higher than normal, base flow comprised 57 percent of the total streamflow at the mined site and 50 percent of the total streamflow at the forested and agricultural site. Low flows often occur from July through October, because vegetative cover increases evapotranspiration, which decreases the available water for base flow. Base- flow and storm-flow durations indicate that Swatara Creek contains both base and stormflow 75 percent of the time. The contribution of base flow to total flow in Swatara Creek equals or exceeds the contribution of storraflow 95 percent of the time; however, the effects of the storraflow are relatively sudden and permit little time for aquatic life to adjust.

27

Page 34: PREIMPOUNDMENT HYDROLOGIC CONDITIONS IN THE SWATARA CREEK (1981-84

Water Quality

Several investigators have attempted to determine the effects of reservoirs on water quality with little preconstruction data. Few have been able to docu­ ment existing water quality prior to reservoir construction, to estimate the future water quality of the planned reservoir using current data, and then to predict the effects of the reservoir on downstream water quality. This study attempts to do each of the above for a planned reservoir that is expected to have a low-buffering capacity, and the primary inflow coming from an area extensively mined for anthracite.

Preimpoundment Water Quality

The preliminary report by Fishel and Richardson (1986) describes the water quality of the Swatara Creek in the vicinity of the planned reservoir for the 1982 water year. Table 7 updates that information by listing ranges and medians for measured concentrations and discharges during the entire 3-year study.

Correlations among base-flow concentrations of constituents with stream- flow, suspended-sediment concentration, and specific conductance were poor (r2less than 0.60). The poor correlations are probably caused, in part, by thenumerous point-source discharges from active and inactive mines, industries, andsewers in the Swatara Creek headwaters.

The effect of a point discharge on downstream water quality can be seen in the following example. Samples were collected during base flow on September 7, 1983, when a milky discharge that discolored the entire channel was observed at the mined site. Water-quality and bottom material samples were collected at the State Highway 443 bridge upstream from the gage located above Highway 895. No discoloration of the stream was found during reconnaissance of the stream at the next upstream bridge, 0.9 mi upstream from State Highway 443.

A. comparison of water-quality concentrations measured at three sites during the occurrence of an industrial point discharge are given in table 8 (p. 34). The first sampling site was immediately downstream from the point discharge at Swatara Creek at Highway 443 at Pine Grove. The second sampling site was 0.65 mi downstream from Highway 443 at the mined site, and the third site was 12.45 mi downstream from Highway 443 at the downstream site. The table shows that elevated metal and nutrient concentrations were present in Swatara Creek because of the point-source discharge. Generally this discharge does not significantly increase the streamflow but strongly affects the water-quality of Swatara Creek.

The effect of the point-discharge on water quality on September 7, 1983, was greatest just below the discharge point. Metal and phosphorus concentrations were significantly lower at the mined site than upstream at the Highway 443 site. Bottom-material data presented later in this report indicate that some of the metals and phosphorus precipitate and coat the streambed in the short stream reach from the discharge point to the mined site.

Regression of concentrations of selected metals, nutrients and dissolved ions with suspended sediment and specific conductance in storm runoff were good (r2 greater than 0.60) and are listed in table 9 (p. 35-37). Regression of base- flow and stormflow constituent discharges with streamflow (table 10, p. 38-45) were also good, and were used to calculate durations of chemical constituent discharges.

28

Page 35: PREIMPOUNDMENT HYDROLOGIC CONDITIONS IN THE SWATARA CREEK (1981-84

Table 7. Ranges and medians of water-quality characteristics, constituent concentrations, and instantaneous constituent discharges, 1982-84 water years[Min, minimum; max, maximum; uS/cm, microsiemens per centimeter at 25 'Celsius; *C. degrees Celsius)

[Concentration In milligrams per liter and discharge in tons per

Characteristicor

constituent

\cidltyas CaC03

Alkalinityas CaC03

pH

Specificconductance( US/cm)

WatertemperatureCO

Dissolvedoxygen

Chemicaloxygendemand

Turbidity(NTU)

I/Sediment,suspended

I/Streamflow(ft 3/s)

Statistic

Median concentrationNumber of samplesMin - max concentrationMin - max discharge

Median concentrationNumber of samplesMin - max concentrationMin - max discharge

MedianNumber of samplesMinimum - maximum

MedianNumber of samplesMinimum - maximum

MedianNumber of samplesMinimum - maximum

MedianNumber of samplesMinimum - Maximum

Median concentrationNumber of samplesMin - max concentrationMin - max discharge

MedianNumber of samplesMinimum - maximum

Median concentrationNumber of samplesMin - max concentrationMin - max discharge

MedianNumber of samplesMinimum - maximum

Mined site(01571919)

5.057

.0 - 21.0

.00 - 49.41

4.059

.0 - 12.00 - 29.97

6.4605.4 - 7.2

18060

102 - 380

9.563

.0 - 23.0

11.3605.6 - 13.8

2254

<10 - 2,140.65 7,050

12582.0 - 940

2261

1 - 5,270.10 - 17,400

1665915.0 - 1,850

Location

Forested andagricultural site

(01572000)

2.059

.0 - 10. 0

.00 - 17.98

7.059

.0 - 40

.15 - 17.28

6.9595.8 - 8.4

685954 - 88

1061

.0 - 23.5

10.8597 - 14.6

1253

<10 - 160.06 - 111

6571.5 - 265

1161

1 - 1,360.02 - 3,030

64592.00 - 860

day except as noted]

Downstream site

4.530.0.

5.530.

6.535.

1295372

9.53

10.527.

1749

<100.

7.52

13531

2745332

(01572200)

0

0 - 14.000 - 57.13

0

0 - U.O46 - 99.98

5

9 - 7.5

268

0

0 25.5

9

2 - 14.0

60086 - 3,110

3

65 - 280

94510 - 9,240

- 5,290

I/ Values for these constituents were determined from samples which had a complete chemical analysis.

29

Page 36: PREIMPOUNDMENT HYDROLOGIC CONDITIONS IN THE SWATARA CREEK (1981-84

Table 7. Ranges and medians of water-quality characteristics, constituent concentrations, and instantaneous constituent discharges, 1982-84 water years Continued[Min, minimum; max, maximum; US/cm, microsiemens per centimeter at 25 'Celsius; *C. degrees Celsius]

[Concentration in milligrams per liter and discharge in tons per day except as noted]

Location

Characteristicor

constituent

Nitrate,dissolvedas N

Nitrate,totalas N

Nitrite,dissolvedas N

Nitrite,totalas N

Amaonla,dissolvedas N

Ammonia,totalas N

Organicnitrogen,dissolvedas N

Organicnitrogen.totalas S

Ammonia +organicnitrogen,dissolvedas N

Ammonia +organicnitrogen,totalas N

Statistic

Median concentrationNumber of samplesMin - max concentrationMin - max discharge

Median concentrationNumber of samplesMin - max concentrationMin - max discharge

Median concentrationNumber of samplesMin - max concentrationMin - max discharge

Median concentrationNumber of samplesMin - maxMin - max discharge

Median concentrationNumber of samples; Hh - max concentrationMin - max discharge

Median concentrationNumber of samplesMin - max concentrationMin - max discharge

Median concentrationNumber of samplesMin - max concentrationMin - max discharge

Median concentrationNumber of samplesMin - max concentrationMin - max discharge

Median concentrationNumber of samplesMin - max concentrationMin - max discharge

Median concentrationNumber of samplesMin - max concentrationMin - max discharge

Mined site(01571919)

0.7949

.19 - 1.80

.01 - 3.82

.8148

.19 - 1.80

.01 - 3.82

.0159

< .01 - .12< .01 - .05

.0159

< .01 - .13< .01 - .05

.1559

.05 - 2.95

.01 - 1.25

0.1659

.07 - 2.95

.01 - 1.30

.5256

.01 - 1.20

.03 - 5.99

.7058

.01 - 4.10<.0l - 20.48

.7457

.16 - 1.80

.04 - 6.99

.9259

.18 - 4.40

.04 - 21.98

Forested andagricultural site

(01572000)

1.450

.33 - 3.3<.01 - 4.41

1.449

.33 - 3.3<.01 - 4.41

.0158

< .01 - .02< .01 - .02

.0159

< .01 - .03< .01 - .05

.0558

.01 - .73< .01 - .47

0.0658

.01 - .73< .01 - .54

.4752

.01 - 2.1<.01 - 1.58

.6254

.16 - 2.2

.01 - 1.81

.6058

.12 - 2.2

.01 - 1.66

.7058

.21 - 2.4

.01 - 2.09

Downstream site(01572200)

0.9040

.47 -

.05 -

.9540

.47 -

.08 -

.0153

< .01 -< .01 -

.0153

< .01 -< .01 -

.0953

.01< .01

0.0953

.01 -< .01 - 2

.5048

.01 - 1

.03 - 14

.6048

.03 - 6

.02 - 94

.6052

.08 - 1

.04 - 17

.7851

.09 - 6

.05 - 97

1.703.00

2.08.00

.01

.14

.04

.21

1.52.29

.29

.43

.1

.3

.6

.3

.20

.1

.8

.1

30

Page 37: PREIMPOUNDMENT HYDROLOGIC CONDITIONS IN THE SWATARA CREEK (1981-84

Table 7. Ranges and medians of water-quality characteristics, constituent concentrations, and instantaneous constituent discharges, 1982-84 water years Continued[Min, minimum; max, maximum; ifi/cra, microsienen* per centimeter at 25 'Celsius; °C. degrees Celsius]

[Concentration in milligrams per liter and

Characteristicor

constituent

Nitrogen, totalas N

Ortho-phosphate , dissolvedas P

Ortho-phosphate, totalas P

Phosphorus , dissolvedas P

Phosphorus, totalas P

Organic carbon,dissolved

Organic carbon,total

Statistic

Median 1Number of samples 56 Min - max concentrationMin - max discharge

Median concentration <Number of samples 58 Min - max concentration <Min - max discharge <

Median concentration (Number of samples 58 Min - max concentration <Min - max discharge <

Median concentration 0Number of samples 59 Min - max concentrationMin - max discharge <

Median concentrationNumber of samples 59 Min - max concentrationMin - max discharge <

Median concentration 2Number of samples 50 Min - max concentration <1Min - max discharge

Median concentration 3Number of samples 51 Min - max concentration <1Min - max discharge

Mined site (01571919)

.9

.81 - 5.0

.08 - 24.98

.01

.01 - .01

.01 - .05

.01

.01 - .16

.01 - .43

.02

.01 - .06

.01 - .15

.06

.01 - 2.20

.01 - .95

.2

.0 - 7.8

.14 - 8.23

.1

.0 - 90.0

.10 - 31.10

discharge in tons per day

Location

Forested andagricultural site

(01572000)

2.353

.69 - 3.8

.02 - 6.50

.0158 <.01 - .04<.01 - .05

.0156 <.01 - .06<.01 - .09

0.0359 <.0l - .10<.01 - .18

.0559

.01 - .54<.0l - .56

2.654 <1.0 - 7.0

.02 - 12.6

2.852 <1.0 - 8.8

.02 - 15.82

except as noted]

Downstream site (01572200)

1.840

.69 - 7.4

.11 - 106

<.0152 <.01 - .01<.01 - .14

<.0152 <.01 - .11<.01 - .86

0.0253

.01 - .05<.01 - .43

.0453

.01 - .61<.0l - 3.52

2.147 1.0 - 4.9.16 - 70.0

2.147 <1.0 - 8.9

.16 - 81.4

31

Page 38: PREIMPOUNDMENT HYDROLOGIC CONDITIONS IN THE SWATARA CREEK (1981-84

Table 7. Ranges and medians of water-quality characteristics, constituent concentrations, and instantaneous constituent discharges, 1982-84 water years Continued [Min, minimum; max, maximum; uS/cm, microsiemens per centimeter at 25 "Celsius; "C. degrees Celsius]

[Concentration in micrograms per liter and discharge In tons per day except as noted]

Location

Characteristic or Statistic

constituent

Aluminum,dissolve-i

Aluminum,total

Chromium,total

Copper,total

Iron,dissolved

Iron,total

Lead,total

Manganese,dissolved

Manganese,total

Mercury,total

Zinc,total

Median concentrationNumber of samplesMin - max concentrationMin - max dischage

Median concentrationNumber of samplesMin - max concentrationmin - max discharge

Median concentrationNumber of samplesMin - max concentrationMin - max discharge

Median concentrationNumber of samplesMin - max cncentrationMin - max discharge

Median concentrationNumber of samplesMin - max concentrationMin - max discharge

Median concentrationNumber of samplesMin - max concentrationMin - max discharge

Median concentrationNumber of samplesMin - max concentrationMin - max discharge

Median concentrationNumber of samplesMin - max concentrationMin - max discharge

Median concentrationNumber of samplesMin - max concentrationMin - max discharge

Median concentrationNumber of samplesMin - max concentrationMin - max discharge

Median concentrationNumber of samplesMin - max concentrationMin - max discharge

Forested and Mined site agricultural site(01571919)

1005820 - 500

< .01- .96

79559

200 - 66,000.02 - 175

2027

<10 - 70< .01 - .35

2027

<10 - 230<.01 - .76

4205940 - 1 , 800

.01 - 1.33

1,70059

200 - 100,000.02 - 306

22304 - 172

< .01 - .49

72059

270 - 2,000.05 - 2.05

80059

410 - 2,300.06 - 6.92

< 2.027

< 2.0 - 2.0< .01 - < .01

9027

<10 - 320<.01 - 1.05

(01572000)

9057

<10 330< .01 - .21

3805950 - 11,000

< .01 - 8.82

1025

<10 - 70< .01 - .12

2526

<10 - 80< .01 - .12

8558

<10 - 210< ^l - .18

40059

100 - 19,000< .01 - 16.2

6.529

< 5 - 34< .01 - .07

305810 - 200

< .10 - .27

505910 - 670

< .01 - .74

< 2.026

< 2.0 - < 2.0< .01 - < .01

3025

<10 - 110< .01 - .12

Downstream site(01572200)

10053

<10.01

4805380

.01

1520

<10< .01

2520

<io<.01

905310<.01

7405370

.01

6.7234.5

< .01

3105330

.01

3505340

.01

< 2.020

< 2.0< .01

7020

<10.01

- 5602.57

- 15,000147

701.00

1001.14

7701.43

- 30,000195

961.37

8303.29

14007.86

< 2.0.03

1701.37

32

Page 39: PREIMPOUNDMENT HYDROLOGIC CONDITIONS IN THE SWATARA CREEK (1981-84

Table 7. Ranges and medians of water-quality characteristics, constituent concentrations, and instantaneous constituent discharges, 1982-84 water years Continued [Min, minimum; max, maximum; US/cm, microsiemens per centimeter at 25 "Celslua; °C, degrees Celsius)

[Concentration in milligrams per liter and discharge in tons per day except as noted]

Location

Characteristicor

constituent

Calcium,dissolved

Chloride,dissolved

Magnesium,dissolved

Potassium,dissolved

Silica,dissolved

Sodium,dissolved

Sulfate,dissolved

Hardness,dissolved

FecalCollform(colonies/100 mL)

FecalStreptococci(colonies/100 mL)

Statistic

Median concentrationNumber of samplesMin - max concentrationMin - max discharge

Median concentrationNumber of samplesMin - max concentrationMin - max discharge

Median concentrationNumber of samplesMin - max concentrationMin - max discharge

Median concentrationNumber of samplesMin - max concentrationMin - max discharge

Median concentrationNumber of samplesMin - max concentrationMin - max discharge

Median concentrationNumber of samplesMin - max concentrationMin - max discharge

MedianNunber of samplesMin - max concentrationMin - max discharge

MedianNumber of samplesMin - max concentration

Median concentrationNumber of samplesMin - max concentration

Median concentrationNumber of samplesMin - max concentration

Mined site(01571919)

12582.7 - 240.90 - 19.2

7594.0 - 32.40 - 105

7.7592.9 - 18.63 - 14.5

1.258

.70 - 3.4

.06 - 6.99

5.957l.l - 9.5.23 - 13.4

5.3591.5 - 20.60 - 17.1

55595 - 1304.45 - 170

615919 - 130

2334<l - >1,200

10034K3 - 5,900

Forested andagricultural site

(01572000)

4.5571.9 - 6.6.04 - 9.75

6.0592.0 - 8.0.03 - 12.59

2.1571.6 - 5.1.02 - 4.41

1.058

.48 - 3.8

.01 - 6.83

4.655

.50 - 8.2

.03 - 7.66

2.7541.8 - 4.7.02 - 6.83

1059

< 5 - 55.08 - 24.9

202112 - 43

12034K3 - 3,500

20034Kl - 24,000

Downstream site(01572200)

8.0531.9 - 18.85 - 36.

6.0524.0 - 12.69 - 100

4.8531.9 - 12.37 - 27.

1.153.60 - 2..09 - 15.

5.6501.1 - 7..39 - 29.

4.2531.8 - 12..49 - 21.

345310 - 901.38 - 357

405313 - 36

2033Kl - 1,200

3234K3 - 1,700

8

1

87

0I

05

K » Value based on non-Ideal colony count

33

Page 40: PREIMPOUNDMENT HYDROLOGIC CONDITIONS IN THE SWATARA CREEK (1981-84

Table 8. Comparison of concentrations of selected constituents at three sites in Swatara Creek during a point-source discharge, September 7, 1983

[mg/L, milligrams per liter; a dash indicates sample not analyzed for that constituent]

Constituent (in rag/L, except as noted)

PH

Chemical oxygen demand

Aridity, as CaC03

Alkalinity, as CaC03

Silica, dissolved

Dissolved solids residue

Ammonia, total as N

Ammonia, dissolved as N

Ammonia + organic total as N

Phosphorus, total as P

Phosphorus, dissolved as P

Aluminum, total-recoverable^./

Chromium, total-recoverable!./

Copper, total-recoverableJL/

Iron, total-recoverableJL/

Lead, total-recoverableJL/

Manganese, total-recoverable.!/

Zinc, total-recoverableJL/

Carbon, organic, total

Swatara Creek at Hwy 443

at Pine Grove Mined site Downstream site

5.8 6.5

290 28

50 0

5 8

9.8 7.1

268 234

2.8 .79

1.8 .79

8.2 2.2

19 .45

14 .01

35,300 1,600

110

110

1,300 410

32 < 5

10 1,600

210

31 5.6

7.5

12

0

10

5.8

80

.02

.01

.60

.08

.01

150

190

< 5

130

1.8

i/Units for these constituents are micrograms per liter.

34

Page 41: PREIMPOUNDMENT HYDROLOGIC CONDITIONS IN THE SWATARA CREEK (1981-84

CO

Ln

Table 9. Regression st

atis

tics

for

cons

titu

ent

concentrations as a

function

of suspended-sediment concentration

and

spec

ific

co

nduc

tance

in

stor

m runo

ff

[n,

number

of ob

serv

atio

ns;

r^,

coefficient of de

term

ination]

y «

ax +

b

Mine

d si

te

(01571919

Swatara Cr

eek

above

Highway

(y)

Dependent vari

able

(log of

co

nstitu

ent)

Aluminum,

suspended

Alum

inum

, total

recoverable

Iron,

susp

ended

Iron,

tota

l re

cove

able

Mang

anes

e, suspended

Mang

anes

e, di

ssolved

Magn

esiu

m, di

ssolved

Sulf

ate,

dissolved

(x)

Inde

pend

ent

vari

able

(l

og of cons

titu

ent)

susp

ende

d se

diment

susp

ende

d se

diment

susp

ende

d se

diment

susp

ende

d se

diment

susp

ende

d se

dime

nt

spec

ific

conductance

spec

ific

conductance

spec

ific

co

nduc

tanc

e

(b)

n r^

Intercept

24

0.85

1.

5412

25

.89

1.75

85

25

.97

1.80

19

25

.96

2.03

92

22

.63

.6961

25

.88

.1791

25

.87

-1.7

794

25

.79

-1.1448

895)

(a)

Slop

e

0.84

01

.772

0

.8699

.7916

.6405

1.1631

1.15

36

1.24

79

Standard error

(log un

its)

0.26

85

.196

7

.1140

.118

7

.3825

.058

3

.060

8

.0866

of estimate

(in

perc

ent)

plus

minus

86

46

57

36

30

23

31

24

141

59

14

13

15

13

22

18

Dissolved ir

on,

tota

l co

pper

an

d le

ad concentrations al

so sh

owed

a direct re

lati

on

to suspended

sediment but

the

r^ va

lues

we

re slightly lo

wer

than 0.

60.

Page 42: PREIMPOUNDMENT HYDROLOGIC CONDITIONS IN THE SWATARA CREEK (1981-84

Tabl

e 9. Regression st

atis

tics

for

constituent

conc

entr

atio

ns as a

function

of su

spen

ded-

sedi

ment

concentration and

spec

ific

co

nductance

in

stor

m runoff Continued

[n,

numb

er of ob

serv

atio

ns;

r^,

coef

fici

ent

of de

termin

atio

n]y

= ax

+

b

Forested and

agri

cult

ural

si

te

(01572000

Lowe

r Little Sw

atar

a Cr

eek

at Pi

ne Gr

ove)

(y)

Dependent variable

(log

of constituent)

Alum

inum

, su

spen

ded

Alum

inum

, total

recoverabl

e

Iron,

suspended

Iron

, total

recoverabl

e

Mang

anes

e, su

spen

ded

Phos

phor

us,

orthophosphate

Phos

phor

us,

suspended

Phosphorus,

total

(x)

Inde

pend

ent

vari

able

(l

og of co

nsti

tuen

t)

suspended

suspended

susp

ende

d

suspended

suspended

suspended

suspended

suspended

sediment

sedi

ment

sedi

ment

sediment

sediment

sedi

ment

sedi

ment

sedi

ment

(b)

(a)

Stan

dard

er

ror

of estimate

(in

percent)

n 24 25 25 25 23 24 25 25

rz 0.69 .69

.74

.72

.62

.67

.72

.79

Inte

rcep

t

1.60

33

1.85

47

1.63

00

1.76

21

.6844

-2.5400

-5.7060

-1.8769

Slop

e

0.79

49

.7007

.8590

.8068

.6065

.4400

1.59

35

.4940

(log

un

its)

0.3098

.2743

.297

2

.2905

.2698

.1797

.5648

.1456

plus

104 88 98 95 86 51

267 40

minu

s

51 47 50 49 46 34 73 28

Total

manganese

also sh

owed

a di

rect

re

lati

on to su

spen

ded

sediment but

the

r^ va

lue

was

slightly lower

than 0.

60.

Page 43: PREIMPOUNDMENT HYDROLOGIC CONDITIONS IN THE SWATARA CREEK (1981-84

u>

Tabl

e 9. Regression statistics for

cons

titu

ent

conc

entr

atio

ns as

a

func

tion

of suspended-sediment co

ncen

trat

ion

and

spec

ific

co

nduc

tanc

e in

st

orm

runoff Continued

[n,

numb

er of

observations;

r^,

coef

fici

ent

of de

term

inat

ion]

y *

ax +

b

Down

stre

am si

te

(015

7220

0 Sw

atar

a Cr

eek

at In

wood

)

(y)

Depe

nden

t variable

(log

of co

nsti

tuen

t)

Alum

inum

, su

spen

ded

Alum

inum

, to

tal

recoverable

Chem

ical

ox

ygen

de

mand

Iron,

susp

ende

d

Iron

, to

tal

recoverable

Mang

anes

e, su

spen

ded

Phosphorus,

susp

ende

d

Phosphorus,

tota

l

Magn

esiu

m, di

ssol

ved

(x)

Independent

vari

able

(log of

constituent)

suspended

susp

ende

d

susp

ende

d

susp

ende

d

susp

ende

d

suspended

susp

ende

d

susp

ende

d

specific

sediment

sedi

ment

sediment

sediment

sedi

ment

sediment

sediment

sediment

conductance

(b)

(a)

Standard error

of estimate

(in

percent)

n 19 19 17 29 19 18 18 19 19

rz

0.91 .92

.68

.85

.90 .62

.66

.71

.63

Intercept

1.28

12

1.64

04

.492

3

1.5071

1.66

03

.7059

-5.3281

-2.0008

-1,3814

Slope

0.96

65

.829

4

.6414

.983

2

.9251

.6742

1.43

96

.526

2

.949

7

(log units)

0.21

35

.1649

.315

5

.285

5

.2113

.3720

.7141

.231

1

.121

2

plus 63 46 107 93 63 136

418 70 32

minus

39 32 52 48 39 58 81 41 24

Total

lead

and

orthophosphate phosphorus co

ncen

trat

ions

al

so sh

owed

a di

rect

re

lation

to su

spen

ded

sediment but

the

r^ values we

re sl

ight

ly lo

wer

than

0.60.

Page 44: PREIMPOUNDMENT HYDROLOGIC CONDITIONS IN THE SWATARA CREEK (1981-84

Table

10. Regression st

atis

tics

for

cons

titu

ent

loads

as a

func

tion

of

ba

se fl

ow or

stormflow

[constituent loads, in tons pe

r da

y; fl

ow, in cubic

feet per

seco

nd]

y -

ax +

b

oo

Mine

d si

te

(015

7191

9 Sw

atar

a Creek

above

High

way

(x)

(y)

Inde

pend

ent

vari

able

Dependent

vari

able

(l

og of st

ream

flow

) (log of

co

nsti

tuen

t lo

ad)

Base fl

ow

Stor

mflo

w

Stormflow

Base fl

owSt

ormf

low

Base

flow

Base

flow

Stormflow

Base

fl

ow

Stormflow

Base

fl

owStormflow

Base fl

ow

Base flow

Stor

mflo

w

Stormflow

Stormflow

Base

flow

Base fl

ow

Stor

mflo

w

Stormflow

Base

fl

owStormflow

Acidity, as CaC03

(loa

d +1)

Acidity, as CaC03

(load

+1)

Alka

lini

ty,

as CaC03

(load

+1)

Alum

inum

, dissolved

Alum

inum

, di

ssol

ved

Aluminum,

total

reco

verable

Calcium, dissolved

Calc

ium,

dissolved

Carb

on,

dissolved

orga

nic

Carb

on,

diss

olve

d or

gani

c

Carb

on,

total

orga

nic

Carb

on,

total

orga

nic

Chemical oxygen demand

Chloride,

dissolved

Chlo

ride

, di

ssol

ved

Chromium,

total

recoverable

Copp

er,

tota

l re

cove

rable

Iron

, dissolved

Iron,

tota

l re

cove

rabl

e Iron,

tota

l re

cove

rabl

e

Lead

, to

tal

reco

vera

ble

Magnesium, di

ssol

ved

Magn

esiu

m, di

ssol

ved

(b)

Inte

rcep

t

-0.6

172

-1.0

098

- .8

283

-3.8

682

-4.0

415

-2.6

526

- .8

949

- .6903

-1.6

485

-1.9

000

-1.6

837

-1.4

356

-1.1

392

-1.3

299

-1.7

730

-4.9

278

-4.4

414

-4.2

895

-3.0

488

-3.1

164

-5.3

930

-1.0

574

-.99

19

(a)

Slop

e

0.4881

.723

1

.6051

1.1217

1.2477

.9599

.725

6.6

220

.676

4 .9

071

.715

3.8

101

.8813

.8085

1.0424

1.29

46

1.15

76

1.66

50

1.2744

1.48

90

1.4503

.7390

.667

0

895) Coefficient

of determination

(r2)

0.63

.7

6

.62

.73

.85

.86

.96

.85

.69

.75

.68

.61

.64

.92

.86

.76

.62

.74

.76

.62

.70

.93

.95

Stan

dard

er

ror

of es

tima

te

(log units)

0.145

.192

.223

.251

.251

.145

.054

.121

.159

.209

.179

.348

.248

.087

.195

.337

.423

.372

.264

.5

47

.446

.075

.070

(in

percent)

plus

minus)

40

56 67 78 78 40 13 32 44

62 51 123 77 22 57

117

165

136 84

252

179 19 17

28

36 40 44 44 28 12 24 31

38 34 55 44 18 36 54 62 58 46

72 64 16 15

Page 45: PREIMPOUNDMENT HYDROLOGIC CONDITIONS IN THE SWATARA CREEK (1981-84

Tabl

e 10. Regression st

atis

tics

fo

r co

nsti

tuen

t loads

as a

func

tion

of

ba

se flow or

stormflow Continued

[constituent loads, in

tons per

day; flow, in cu

bic

feet per

second]

y

ax +

b

Mined

site

(01571919

Swatara

Creek

above

High

way

(x)

Indepsndent

vari

able

(l

og of

stream

flow

)

Base fl

ow

Stor

mflo

w

Base

fl

ow

Stormflow

Base fl

ow

Stor

mflo

w

Base flow

Base

fl

ow

Stormflow

Base flow

Stor

mflo

w

Base flow

Stormflow

Base flow

Stor

mflo

w

Base flow

Stormflow

Base

flow

Stormflow

Base flow

Stor

mflo

w

Stor

mflo

w

Stormflow

(y)

Depe

nden

t va

riab

le

(log of constituent

load

)

Manganese, dissolved

Manganese, dissolved

Mang

anes

e, to

tal

reco

vera

ble

Mang

anes

e, to

tal

reco

vera

ble

Nitr

ogen

, ammonia

+ or

ganic

dissolved

as N

Nitrogen,

ammo

nia

+ or

gani

c dissolved

as N

Nitrogen,

ammo

nia

+ or

ganic

tota

l as N

Nitr

ogen

, ni

trat

e dissolved

as N

Nitr

ogen

, nitrate

dissolved

as N

Nitr

ogen

, to

tal

as N

Nitr

ogen

, to

tal

aa N

Phos

phor

us,

dissolved

as P

Phos

phor

us,

dissolved

as P

Potassium, dissolved

Potassium, dissolved

Sedi

ment

, su

spen

ded

Sediment,

susp

ende

d

Silica,

dissolved

Silica,

dissolved

Sodium,

dissolved

Sodium,

diss

olve

d

Sulf

ate,

di

ssol

ved

Zinc

, to

tal

reco

vera

ble

(b)

Inte

rcep

t

-2.0

363

-2.0923

-^0303

-2.2

549

-2.3

953

-2.3

666

-2.1

082

-3.3513

-3.2

440

-2.1

679

-2.1687

-4.2

374

-4.4

020

-1.9382

-2.3456

-2.9

533

-2.3

854

-1.8004

-1.4

050

- .9095

-1.0229

- .1

864

-3.3

318

(a)

Slop

e

0.70

84

.7005

.721

3 .8

145

.829

0

.8559

.7334

1.32

19

1.22

73

.9096

.973

5

.943

9 1.

0538

.703

7.9

582

1.76

05

1.7611

1.0087

.7979

.559

7 .6517

.682

0

.901

1

895) Coefficient

Stan

dard

er

ror

of es

tima

teof de

term

inat

ion

(r2

) (log un

its)

0.89

.93

.89

.78

.64

.63

.60

.86

.83

.87

.90

.72

.85

.83

.87

.73

.62

.92

.81

.86

.77

.88

.68

0.09

3 .0

92

.093

.201

.233

.254

.225

.185

.223

.136

.151

.217

.206

.121

.171

.453

.638

.109

.182

.085

.167

.121

.288

(in

percent)

plus 24

24 24

59 71 79 68 53

67 37

42 65

61 32 48 184

334 29 52 22

47 32 94

minu

s)

19

19 19

37 42 44 40 35

40 27

29 39

38 24 33 65

77 22 34 18

32 24 48

Page 46: PREIMPOUNDMENT HYDROLOGIC CONDITIONS IN THE SWATARA CREEK (1981-84

Table

10. Regression statistics for

constituent

loads

as a

func

tion

of ba

se flow or

stormflow Continued

[con

stit

uent

loads, in

to

ns pe

r day; fl

ow, in cubic

feet per

seco

nd]

y

ax +

b

Fore

sted

and

agricultural si

te

(015

7200

0 Lower

Litt

le Sw

atar

a Cr

eek

at Pi

ne Gr

ove)

(x)

Independent

vari

able

(l

og of streamflow)

Stormflow

Base

fl

ow

Stor

mflo

w

Base fl

ow

Stormflow

Base

fl

ow

Stor

mflo

wO

Base

fl

ow

Stormflow

Base fl

ow

Stormflow

Base

flow

Stor

mflo

w

Base

flow

Stormflow

Stormflow

Stormflow

Base

fl

ow

Stor

mflo

w

Base

flow

Stormflow

(y)

Depe

nden

t va

riab

le

(log of co

nsti

tuent

load)

Acidity, as

CaC03

(load

+1)

Aluminum,

diss

olve

d Al

umin

um,

diss

olve

d

Aluminum,

tota

l recoverable

Aluminum,

total

reco

vera

ble

Calcium, dissolved

Calcium, di

ssol

ved

Carb

on,

diss

olve

d or

gani

c Ca

rbon

, di

ssol

ved

orga

nic

Carb

on,

tota

l or

gani

c Ca

rbon

, total

orga

nic

Chem

ical

oxygen de

mand

Ch

emic

al oxygen de

mand

Chloride,

diss

olve

d Chloride,

diss

olve

d

Chromium,

tota

l recoverable

Copp

er,

total

reco

vera

ble

Iron,

dissolved

Iron,

diss

olve

d

Iron,

total

reco

vera

ble

Iron,

tota

l re

cove

rabl

e

(b)

Inte

rcep

t

-0.4

977

-3.5

726

-3.5

062

-3.3

301

-3.1

766

-1.8

434

-1.8

491

-2.3

351

-2.3

423

-2.3

179

-2.2

054

-1.5

157

-1.5

922

4

-1.7

460

-1.7

418

-4.8

489

-4.4

190

-3.5

182

-3.3

655

-3.4

712

-3.2

089

(a)

Slope

0.42

35

.923

0 .9723

1.0063

1.32

94

.951

1 .9

513

1.0479

1.1440

1.0373

1.09

90

1.07

45

1.1860

.939

1 .9

438

1.2912

1.1272

.9006

.8225

1.1695

1.3895

Coefficient

Stan

dard

error

of es

tima

teof determination

(r^)

(log units)

0.60 .61

.84

.68

.80

.96

.93

.87

.95

.84

.95

.76

.91

.96

.82

.89

.88

.82

.72

.79

.78

0.229

.339

.283

.315

.438

.086

.144

.186

.166

.211

.172

.285

.272

.087

.291

.309

.281

.196

.342

.277

.485

(in

percent)

plus 69 118 92 107

174 22

39 53 47 63

49 93

87 22

95 104 91 57

120 89

205

minus)

41 54

48 52

64 18

28 35

32 38

33 48

47 18

49 51 48 36

54 47

67

Stor

mflo

wLe

ad,

tota

l re

cove

rable

-5.2

280

1.3433

.90

.298

9950

Page 47: PREIMPOUNDMENT HYDROLOGIC CONDITIONS IN THE SWATARA CREEK (1981-84

Table

10.-

Reg

ress

ion

stat

isti

cs fo

r constituent

load

s as a

function of ba

se fl

ow or stormflow Continued

[con

stit

uent

lo

ads,

in

to

ns pe

r da

y; fl

ow, in

cu

bic

feet per

seco

nd]

y -

ax +

b

Fore

sted

an

d agricultural si

te

(015

7200

0 Lower

Little Swatara

Cree

k at Pine Grove)

(x)

Inde

pend

ent

vari

able

(log

of st

ream

flow

)

Base

flow

Stor

mflo

w

Base

flow

Stor

mflo

w

Base

fl

owSt

ormf

low

Base

fl

owStormflow

Base

flow

Stormflow

Base

fl

ow

Stormflow

Base

fl

ow

Stormflow

Base

fl

owStormflow

Bsse

flow

Base

flow

Stormflow

(y)

Depe

nden

t va

riab

le(log of

constituent

load

)

Magnesium, di

ssol

ved

Magnesium, dissolved

Manganese, dissolved

Manganese, dissolved

Manganese, total

reco

vera

ble

Mang

anes

e, to

tal

reco

vera

ble

Nitrogen,

ammo

nia

diss

olve

d as

N

Nitrogen,

ammo

nia

diss

olve

d as N

Nitrogen,

ammo

nia

total

as N

Nitrogen,

ammo

nia

tota

l as

N

Nitrogen,

ammo

nia

+ or

gani

cdissolved

as N

Nitrogen,

ammo

nia

+ or

gani

cdissolved

as N

Nitrogen,

ammo

nia

+ or

gani

cto

tal

as N

Nitrogen,

ammo

nia

+ or

gani

ctotal

as N

Nitrogen,

nitr

ate

diss

olve

d as

N

Nitrogen,

nitr

ate

diss

olve

d as

N

Nitrogen,

orga

nic

diss

olve

d as N

Nitrogen,

orga

nic

total

as N

Nitrogen,

orga

nic

total

as N

(b)

(a)

Coefficient

Stan

dard

er

ror

of es

tima

teof de

term

inat

ion

Inte

rcep

t

-2.1

554

-2.1

994

-4.2

551

-4.1

797

-4.1

916

-3.9

903

-4.2

940

-3.7

490

-4.4

043

-3.6

367

-2.8

269

-2.4

672

-2.9

180

-2.5

370

-3.0

655

-2.8

354

-2.9

929

* -2.9

129

-2.4

374

Slope

0.96

28.9

763

1.0339

1.1173

1.1366

1.21

44

1.1605

1.0501

1.2863

1.0327

.952

9

.871

6

1.05

07

.9503

1.4113

1.2006

1.0193

1.0155

.8734

(r^)

0.96 .98

.76

.78

.74

.85

.75

.71

.79

.76

.75

.88

.83

.91

.92

.96

.72

.77

.71

(log units)

0.094

.081

.268

.391

.318

.334

.302

.438

.298

.377

.251

.211

.225

.202

.187

.163

.269

.254

.246

(in

perc

ent)

plus 24 20 85 146

108

116

100

174 99 138 78 63 68 59 54 46 86 79 76

minu

s)

19 17 46 59 52 54 50 64 50 58 44 38 40 37 35 31 46 44 43

Page 48: PREIMPOUNDMENT HYDROLOGIC CONDITIONS IN THE SWATARA CREEK (1981-84

Tabl

e 10. Regression st

atis

tics

for

constituent

loads

as a

func

tion

of ba

se fl

ow or stormflow Continued

[constituent loads, in

tons per

day;

fl

ow,

in cu

bic

feet pe

r se

cond

]y

- ax +

b

Forested an

d agricultural site

(01572000

Lowe

r Li

ttle

Sw

atar

a Creek

at Pi

ne Grove)

(x)

Independent

variable

(log of

st

ream

flow

)

Base flow

Stormflow

Base fl

ow

Stormflow

Base

flow

Stormflow

Base

flow

Stor

mflo

w

Base

flow

Stor

mflo

w

Base

flow

Stor

mflo

w

Base fl

ow

Stormflow

Base flow

Stormflow

(y)

Depe

nden

t va

riab

le

(log of

co

nstituent

load)

Nitrogen,

total

as N

Nitr

ogen

, to

tal

as N

Phos

phor

us,

diss

olve

d as

P

Phos

phor

us,

dissolved

as P

Phos

phor

us,

tota

l as

P

Phos

phor

us,

total

as P

Potassium, di

ssol

ved

Potassium, dissolved

Sedi

ment

, su

spen

ded

Sediment,

suspended

Sili

ca,

dissolved

Sili

ca,

diss

olve

d

Sodi

um,

dissolved

Sodi

um,

diss

olve

d

Sulf

ate,

di

ssol

ved

Sulfate, di

ssol

ved

(b)

Inte

rcep

t

-2.6

502

-2.2

498

-4.0

832

-4.4

349

-3.9

133

-4.1

793

-2.3

492

-2.5

198

-2.9

439

-2.2

716

-2.0

204

-2.1

135

-1.9

862

-2.1

933

-1.4

773

-1.5

095

(a)

Slope

1.2433

1.0449

.8955

1.1931

.9177

1.28

72

.8448

1.0466

1.75

77

1.7190

1.0749

1.0549

.911

9 1.

0269

.9681

.9484

Coef

fici

ent

Stan

dard

error

of estimate

of de

term

inat

ion

(r2

) (log units)

0.93

.9

6

.78

.96

.78

.92

.87

.94

.80

.88

.86

.87

.95

.97

.67

.82

0.15

7 .092

.218

.1

69

.223

.258

.152

.173

.483

.416

.201

.2

06

.095

.108

.312

.293

(in

percent)

plus 44

24 65 48 67

81 42

49 204

161 59

61 24

28 105 96

minus)

30

19 39

32 40

45 30

33 67

62 37

38 20

22 51

49

Stor

mflo

wZi

nc,

tota

l re

cove

rable

-4.1

401

1.0142

.86

.278

9047

Page 49: PREIMPOUNDMENT HYDROLOGIC CONDITIONS IN THE SWATARA CREEK (1981-84

Tabl

e 10. Regression st

atis

tics

for

constituent

load

s as a

function of

ba

se flow or

stormflow Continued

[constituent loads, in

tons pe

r day; fl

ow,

in cubic

feet pe

r se

cond

]y

ax +

b

Downstream si

te

(01572200

Swat

ara

Creek

at In

wood

)

(x)

Inde

pend

ent

vari

able

(l

og of

streamflow

)

Base

flow

Stor

mflo

w

Stor

mflo

w

Stor

mflo

w

Base

flow

Stormflow

u>

Base

flow

Stor

mflo

w

Base

flow

Stor

mflo

w

Base

flow

Stor

mflo

w

Stor

mflo

w

Base

flow

Stor

mflo

w

Stor

mflo

w

Stor

mflo

w

Base

flow

Stor

mflo

w

Base

flow

Stor

mflo

w

(y)

Depe

nden

t va

riab

le

(log of

co

nsti

tuen

t load)

Acidity, as CaC03

(loa

d +1)

Acidity, as

Ca

CC>3

(l

oad +1)

Alkalinity,

as CaC03

(load

+ 1)

Aluminum,

dissolved

Aluminum,

total

reco

vera

ble

Aluminum,

tota

l recoverable

Calcium, dissolved

Calcium, dissolved

Carb

on,

dissolved

orga

nic

Carb

on,

dissolved

orga

nic

Carb

on,

total

orga

nic

Carb

on,

tota

l or

gani

c

Chem

ical

oxygen demand

Chloride,

dissolved

Chloride,

diss

olve

d

Chromium,

tota

l re

cove

rabl

e

Copp

er,

total

recoverable

Iron,

diss

olve

d Iron,

dissolved

Iron

, total

recoverable

Iron,

tota

l recoverable

(b)

Inte

rcep

t

-1.0

769

-1.3

247

-1.1

692

-3.6

649

-3.9

882

-4.4

772

-1.0

211

- .9

661

-2.1

536

-2.4

383

-2.3

127

-2.5

938

-2.1

996

-1.3

495

-1.5

467

-5.3

116

-4.8

304

-4.3

315

-3.6

366

-4.0

541

-4.7

986

(a)

Slope

0.68

82

.800

3

.777

8

1.06

80

1.4038

1.7241

.7433

.708

5

.927

2 1.0870

1.0023

1.18

30

1.4614

.8181

.9256

1.3832

1.2685

1.3408

.9608

1.4950

1.9070

Coef

fici

ent

Stan

dard

error

of estimate

of determination

(r2

) (log un

its)

0.65

.88

.83

.81

.85

.86

.92

.86

.81

.94

.84

.93

.79

.92

.96

.88

.84

.64

.74

.83

.89

0.204

.181

.208

.309

.235

.410

.087

.171

.180

.149

.175

.202

.474

.099

.111

.308

.328

.406

.337

.268

.398

(in

percent)

plus 60

52 61 104 72

157 22

48 51

41 50

59 198 26

29 103

113

155

117 85

150

minu

s)

37

34 38 51 42

61 18

33 34

29 33

37 66 20

23 51 53 61

54 46

60

Stor

mflo

wLe

ad,

tota

l recoverable

-5.7

449

1.48

31.83

.126

3425

Page 50: PREIMPOUNDMENT HYDROLOGIC CONDITIONS IN THE SWATARA CREEK (1981-84

Tabl

e 10. Regression st

atis

tics

for

cons

titu

ent

loads

as a

func

tion

of ba

se flow or stormflow Continued

[con

stit

uent

loads, in tons per

day; flow,

in cubic

feet

pe

r se

cond

]y

ax +

b

Downstream site

(015

7220

0 Sw

atar

a Cr

eek

at In

wood

)

(x)

(y)

Independent

variab

le

Dependent

vari

able

(l

og of

st

ream

flow

) (log of co

nsti

tuen

t load)

Base

fl

ow

Stor

mflo

w

Stor

mflo

w

Base

flow

Stor

mflo

w

Stor

mflo

w

Base

fl

ow

Stor

mflo

w

Base flow

Stor

mflo

w

Base

flow

Stormflow

Base

fl

ow

Stor

mflo

w

Base flow

Stor

mflo

w

Base

fl

ow

Stor

mflo

w

Base flow

Stormflow

Base

flow

Stormflow

Magnesium, di

ssol

ved

Magnesium, di

ssol

ved

Manganese, dissolved

Manganese, to

tal

reco

vera

ble

Manganese, total

recoverable

Nitr

ogen

, am

moni

a di

ssol

ved

as N

Nitr

ogen

, am

moni

a to

tal

as N

Nitr

ogen

, am

moni

a to

tal

as N

Nitr

ogen

, am

moni

a +

orga

nic

dissolved

as N

Nitr

ogen

, am

moni

a +

orga

nic

diss

olve

d as

N

Nitr

ogen

, am

moni

a +

orga

nic

tota

l as

N

Nitrogen,

ammo

nia

+ or

gani

c total

as N

Nitrogen,

nitr

ate

dissolved

as N

Nitrogen,

nitr

ate

diss

olve

d as

N

Nitrogen,

orga

nic

diss

olve

d as

N

Nitr

ogen

, or

gani

c di

ssol

ved

as N

Nitrogen,

orga

nic

tota

l as

N

Nitrogen,

orga

nic

total

as N

Nitrogen,

tota

l as N

Nitr

ogen

, total

as N

Phos

phor

us,

diss

olve

d as P

Phosphorus,

dissolved

as P

(b)

Inte

rcep

t

-1.2

447

-1.3

589

-3.2

272

-3.0

444

-3.5

806

-3.9

299

-3.8

568

-3.7

907

-2.9

156

-2.4

148

-2.8

166

-2.7

147

-3.2

367

-2.8

038

-3.1

573

-2.6

239

-3.0

065

-2.9

168

-2.6

239

-2.8

760

-3.9

530

-4.6

834

(a)

Slope

0.7531

.7707

1.01

51

1.0180

1.2082

1.1389

1.08

27

1.0841

1.0182

.8816

1.0039

1.0509

1.2844

1.0695

1.0735

.922

9

1.0446

1.0986

1.1053

1.2144

.837

0 1.1344

Coef

fici

ent

of determination

0.92

.91

.83

.87

.87

.78

.61

.86

.71

.88

.72

.79

.94

.94

.61

.75

.63

.67

.91

.92

.70

.93

Stan

dard

er

ror

of estimate

(log units)

0.09

1 .142

.274

.158

.283

.364

.349

.263

.260

.189

.257

.319

.123

.150

.338

.228

.321

.352

.137

.160

.221

.184

(in

percent)

plus

minus)

23

39 88 44

92 131

123 83 82

55 81

108 33 41 118 69 109

125 37

45 66

53

19

28 47 30

48 57 55

45 45

35 45

52 25

29 54

41 52

56 27

31 40

35

Page 51: PREIMPOUNDMENT HYDROLOGIC CONDITIONS IN THE SWATARA CREEK (1981-84

Table

10. Regression st

atis

tics

fo

r constituent

loads

as a

function of

ba

se fl

ow or

stormflow Continued

[constituent loads, in

tons per

day;

flow, in

cubic

feet per

seco

nd]

y -

ax +

b

Down

stre

am si

te

(015

7220

0 Su

atar

a Cr

eek

at In

wood

)

(x)

Inde

pend

ent

vari

able

(log of

streamflow)

Base fl

ow £

- St

ormf

low

in

Base flow

Stormflow

Base

fl

ow

Stor

mflo

w

Base

flow

Stormflow

Base

fl

ow

Stor

mflo

w

Base

fl

ow

Stor

mflo

w

(y)

Depe

nden

t va

riab

le

(log of co

nsti

tuen

t lo

ad)

Phos

phor

us,

tota

l as P

Phos

phor

us,

tota

l as

P

Potassium, di

ssol

ved

Potassium, di

ssol

ved

Sediment,

susp

ende

d Sediment ,

susp

ende

d

Sili

ca,

diss

olve

d Si

lica

, di

ssol

ved

Sodi

um,

diss

olve

d So

dium

, di

ssol

ved

Sulfate, di

ssol

ved

Sulfate, di

ssol

ved

*

(b)

Inte

rcep

t

-3.9

055

-4.9

083

-1.9

689

-2.4

127

-3.1

783

-3.2

344

-1.8

003

-1.5

674

-1.2

027

-1.4

696

- .6

766

- .7478

(a)

Slope

0.95

62

1.45

60

.7372

.9674

1.6275

1.8743

.9873

.839

9

.688

6 .8

055

.861

4 .8303

Coef

fici

ent

of de

term

inat

ion

(r*>

0.70

.87

.85

.95

.80

.86

.94

.81

.89

.87

.78

.81

Stan

dard

er

ror

(log units)

0.24

9 .3

34

.125

.139

.322

.452

.099

.247

.095

.180

.184

.242

of es

tima

te(i

n percent)

plus

mi

nus)

77

44

119

54

33

25

38

27

110

52

183

65

26

20

77

43

24

20

51

34

53

3575

43

Stor

mflo

wZi

nc,

total

recoverable

-4.1

234

1.1352

.87

.264

8446

Page 52: PREIMPOUNDMENT HYDROLOGIC CONDITIONS IN THE SWATARA CREEK (1981-84

As mentioned earlier, the flow-duration technique underestimates the annual storm load when a few storms contribute most of the annual load. Therefore, an annual storm load and mean daily storm discharge were not calculated. However, the storm-flow durations (table 18) can be used to show general differences be­ tween base-flow and storm-flow discharges for a particular streamflow. For example at the rained site, 75 percent of the time the base flow will be equal to or exceed 32 ft3/ s and 30 percent of the time storraf low_t/ also will be equal to or exceed 32 ft3/s. Corresponding dissolved aluminum discharges for both base flow and stormflow will equal or exceed 0.007 ton/d (tons per day) but the corresponding total iron discharge during base flow that will be equaled or exceeded 0.074 ton/d is only about half the total iron storraflow exceeded 0.133 ton/d that will be equaled or exceeded for the same streamflow of 32 ft3/s

Acidity, alkalinity, pH, chemical oxygen demand, turbidity, and specific conductance

The acidic discharge from the rained site to the study area is two times greater than the alkaline discharge from the forested and agricultural site to the study area. Inflows from both sites have a low buffering capacity. The median acidity concentration was 5.0 rag/L (as CaC03 ) at the mined site, and 2.0 mg/L as CaC03 a t the forested and agricultural site (see table 7). The mean daily acidity discharge in base flow at the rained site was 1.17 tons/d and will be equaled or exceeded 45 percent of the time (see table 18). The rained site yields about 5.90 (tons/yr)/mi2 of acidity (as CaC03) in base flow.

Table 18 shows that storraflow acidity discharges are more than three times greater from the mined site than from the forested and agricultural site. Acid discharges from the rained site are slightly greater than the alkaline discharges from the mined site at most storraflows.

median pH for the streamflow at the rained site was 6.4 and was only slightly higher, 6.5, at the site 10 miles downstream at Inwood (see table 7, p. 29). Streamflow at the forested and agricultural site had a median pH of 6.9.

Chemical oxygen demand in base flow and storraflow from the rained site was much higher than from the forested and agricultural site. The annual chemical oxygen demand load of 1,590 tons in base flow from the rained site was more than two times greater than the annual chemical oxygen demand load of 619 tons in base flow from the forested and agricultural site (see table 18, p. 82). The maximum chemical oxygen demand discharge of 7,050 tons/d which was measured at the mined site during a storm on February 14, 1984, was more than 70 times greater than the maximum at the forested and agricultural site (see table 7, p. 29).

Turbidity also was higher at the mined site than the forested and agri­ cultural site during base flow and stormflow. The median turbidity from the mined site was 12 NTU (nephloraetric turbidity units) and the median for the forested and agricultural site was 6 NTU. During storms, extremely turbid water was discharged from the mined site. A turbidity of 940 NTU was recorded during a storm in February 1984 at the mined site.

Plots of specific conductance measured once daily at the mined site and the forested and agricultural site (fig. 10) show that discharges with elevated

A/ Storraflow is referred to as the total streamflow minus base flow.46

Page 53: PREIMPOUNDMENT HYDROLOGIC CONDITIONS IN THE SWATARA CREEK (1981-84

600

CODCO 500

UJ O

COUJ UJ DC O UJ Q

400

U) 300 CM

DCUJ 200h- UJ5

o ocUJQ. oCO 300

UJ5UJ

COooc oI

Swatara Creek above Highway 895 (mined site)

25°

Z 200

lii oz

oQZ

O

g1LoUJ Q. CO

150

too

50

& *

'/' \' * *

-

» «

* *

| 1 1 1 1 | 1

Lower Little Swatara Creek (forested and agricultural site)

ONDJ FMAMJ J AS 1983 1984

Figure 10.-Specific conductance measured once daily at Swatara Creek above Highway 895 and Lower Little Swatara Creek, October 1983 through September 1984.

47

Page 54: PREIMPOUNDMENT HYDROLOGIC CONDITIONS IN THE SWATARA CREEK (1981-84

specific conductances are more frequent at the mined site, as indicated by the plot peaks. The figure shows more scatter and a greater range in daily values at the rained site than at the forested and agricultural site. Because specific conductance is a measure of the dissolved ions, including iron, aluminum, manganese, and sulfate, the elevated specific conductances may reflect the mining and industrial activities in the Swatara Creek headwaters.

The sources causing peaks in specific conductance could not be identified for either site. Peaks occurred throughout the year, during different days of the week, and during different times of the day. Correlations between speci­ fic conductance and dissolved ions were poor (r2 less than 0.60) except for dissolved magnesium and sulfate storm concentrations at the rained site, and dissolved magnesium at the downstream site at Inwood (see table 9, p. 37). Many of the sudden decreases in specific conductance had a direct correlation with increased precipitation and therefore, surface runoff.

Metals

Constituent concentrations and discharges listed in table 7 on pages 29-33 indicate the differences in metal concentrations between the rained site, the forested and agricultural site, and the downstream site. Data in the table along with bottom material data discussed later, supports that mine drainage and point-source discharges from the Swatara Creek above Highway 895 affect the water quality of Swatara Creek between Pine Grove and the downstream site at Inwood.

Recommended USEPA criteria (U.S. Environmental Protection Agency, 1976, 1980, 1986) and Pennsylvania water-quality standards (PaDER, 1979) for metals are listed in table 11. Also listed is t*e percent of samples from the rained site, forested and agricultural site, and the downstream site that exceeded a particular limit. Metal concentrations often exceeded the recommended values at all three sites. However, concentrations at the forested and agricultural site were lower than those at the rained site. A slight reduction in metal con­ centrations between the mined site and the downstream site probably was due to the discharge from the forested and agricultural site.

Aluminum concentrations in the study area were often highest at the mined site and often exceeded recommended values. At one time, aluminum in water was thought to be harmless because it is the most abundant metal on earth, because it usually occurs as complex aluminum silicates such as feldspar, and because suspended forms of aluminum can be readily removed from water using treatment processes. More recently, the criterion suggested for aluminum by USEPA (Office of Research and Development, Environmental Research Laboratory, Duluth, Minnesota, written commun., 1986) and discussed by Stephan and others (1985), indicates "...freshwater aquatic organisms and their uses should not be affected unacceptably, when the pH is between 6.5 and 9.0, if the 4-day average con­ centration of aluminum does not exceed 150 Mg/L more than once every 3 years on the average, and if the 1-hour average concentration does not exceed 950 Ug/L more than once every 3 years on the average." The range of pH from 6.5 to 9.0 was selected to adequately protect freshwater fishes, and bottom dwelling inver­ tebrate fish-food organisms. The Pennsylvania water-quality standard states that the aluminum concentration should not be greater than 10 percent of the 96-hour

48

Page 55: PREIMPOUNDMENT HYDROLOGIC CONDITIONS IN THE SWATARA CREEK (1981-84

Table

11. Water-quality cr

iter

ia and

stan

dard

s for

selected me

tals

and

the

perc

ent

of sa

mple

s fr

om the

mined

site,

forested and

agricultural si

te,

and

the

downstream si

te that ex

ceed

ed the

crit

eria

or

st

anda

rds

[M,

mined

site

; FA,

forested an

d ag

ricu

ltur

al site;

D, downstream si

te;

mg/L,

mill

igra

ms per

liter; Pg/L,

mlcrograms pe

r liter]

\O

Cons

titu

ent

Alum

inum

Iron

Manganese

Lead*

Copp

er*

Zinc

*

USEP

A cr

iter

ia

950

pg/L

.3 mg/L

1 mg/L

50

pg/L

3.8

pg/L

50

pg/L

22

pg/L

47

pg/L

Perc

ent

of sa

mple

s ex

ceed

ing

crit

eria

Refe

renc

e

(1)

(3)

(4)

(7)

(9)

(10)

(ID

(12)

M_ 43 98 77 100 76 17 41 96

FA 23 55 23 37 59 4 35 24

£ 19 70 28 98 65 20 25 17

Perc

ent

of sa

mple

s PaDER

exceeding

stan

dard

standard

Refe

renc

e M

FA

D

500

pg/L

(2

) 90

37

26

1.5

mg/L

(5)

58

17

21

.3 mg/L

(6)

57

55

4

1.0

mg/L

(8)

33

0 2

50

pg/L

(1

1)

17

4 20

(1)

Criterion

suggested

by U.S. Envi

ronm

enta

lProtection Ag

ency

, (U

SEPA

), Of

fice

of Research

and

Deve

lopm

ent,

Environmental

Rese

arch

La

bora

tory

, Ou

luth

Minnesota, wr

itte

n co

mmun., 19

86,

1-ho

ur

aver

age

concentration

should no

t be exceeded on

ce

ever

y 3 years.

(2)

Ulanowskl, J.

, Pe

nnsy

lvan

ia De

part

ment

of

Envi

ronm

enta

l Re

sour

ces

(PaD

ER),

Bu

reau

of

Wate

r Qu

alit

y Ma

nage

ment

, oral commun., 1986,

96-hr

LC 50 h

as no

t be

en determined for

many

fish

species, a

value

of 500

pg/L

is

ge

nera

lly

felt

sa

fe fo

r Pe

nnsy

lvan

ia st

reams.

(3)

USEPA, 19

76,

1980 fo

r do

mest

ic wa

ter

supp

lies

.

(4)

USEPA, 19

76,

1980

fo

r freshwater aq

uati

c life.

(5)

PaDE

R, 1979,

for

tota

l ir

on co

ncen

trat

ions

.

(6)

PaDE

R, 1979,

for

dissolved

iron

co

ncen

trat

ions

.

(7)

USEPA, 19

76,

for

domestic wa

ter

supplies.

(8)

PaDER, 1979,

to reduce ae

sthe

tic

dama

ge and

prev

ent

obje

c-

tlonal ta

stes

.

(9)

USEPA, 19

80,

for

fres

hwat

er aq

uati

c life in water

with a

hard

ness

of

10

0 mg

/L as Ca

CO-$

.

(10) USEPA, 19

80,

human

health cr

iter

ion.

(11) USEPA, 19

80,

for

fres

hwat

er aq

uati

c life in

water

with a

hardness of

100

mg/L

as Ca

CQ-$

.

(12) USEPA, 1980,

for

freshwater aq

uati

c life in wa

ter

with a

hard

ness

of 100

mg/L as

Ca

C(>3

.

*Lea

d, co

pper

, and

zinc were only me

asur

ed du

ring

st

orms

.

Page 56: PREIMPOUNDMENT HYDROLOGIC CONDITIONS IN THE SWATARA CREEK (1981-84

LC 50 (lethal concentration for 50 percent of the specific species maintained for 96 hours for representative important species). Pennsylvania water-quality standards for Swatara Creek are based on the cold-water fishery classification given to Swatara Creek from its source to the planned reservoir, but the 96-hr LC 50 value for aluminum and other metal concentrations has not been determined for many fish species and may be quite different depending on other charac­ teristics of the native water, such as pH. An aluminum concentration generally felt safe for Pennsylvania streams is about 500 ug/L (Ulanowski, J., PaDER, Bureau of Water Quality Management, oral coramun., 1986), inasmuch as ambient conditions may be different for each stream.

At the mined site the median total-recoverable^./ aluminum concentration was 795 JJg/L and the median pH was 6.4 based on 60 samples. The maximum total- recoverable aluminum concentration measured at the mined site was 66,000 Mg/L, and at the downstream site the maxiuraum total-recoverable aluminum concentration was 15,000 JJg/L (table 7, p. 32). Based on these data and data in table 11 on page 49, aluminum concentrations in the Swatara Creek near the Swatara State Park Reservoir are not acceptable for freshwater aquatic organisms and their uses.

Total-recoverable iron, manganese, lead, copper, and zinc concentrations also exceeded USEPA and PaDER limits as indicated in table 11. These metals like aluminum are of concern because they may be sorbed to clay particles and accumulate in areas of the planned reservoir making those areas unsuitable for aquatic organisms. In addition, removal of these metals from water to be used for domestic purposes will require special treatment such as pH adjustment, aeration, superchlorination, or chemical precipitation.

Figure 11 shows the relation between suspended-aluminum, iron, and manga­ nese concentrations and suspended-sediment concentrations. Figure 12 shows relations between discharges of selected metals and streamflow. Regression statistics for these relations are given in tables 9 and 10.

±L' Total-recoverable as used in this report is defined as the amount of a given constituent that is in solution after a representative water-suspended sediment sample has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all particulate matter is not achieved by the digestion treatment, and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the dissolved and suspended phases of the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such ana­ lyses because different digestion procedures are likely to produce different analytical results.

50

Page 57: PREIMPOUNDMENT HYDROLOGIC CONDITIONS IN THE SWATARA CREEK (1981-84

i co

-I

OC<

oQ

O

S5

*l

Q.

Z

D

CO £ <

Q

Oz o

cUJ

O

0- 5

CO *

gs

UJ

CO

UJ <!

2 <

Q Z CO

100,

000

, 10

,000

\ \ 1,

000

I 10

0 10

100,

000

C

10,0

00

1,00

0

100

10,0

00

1,00

0

100 10 1

0.1

0.01

Sw

atar

a C

reek

"

abov

e H

ighw

ay 8

9J

1 10

1

00

1

,00

0

10

,00

0

Sw

atar

a C

reek

abov

e H

ighw

ay 8

95

1 1

0

10

0

1,0

00

10,0

00

Sw

atar

a C

reek

abov

e H

ighw

ay 8

95 "i

**

* 100,000

10,0

00

1,00

0

100 10

100,000

10,0

00

1,000

100

10,0

00

1,000

100 10 1

0.1

0.01

Lo

we

r Litt

le S

wata

ra C

reek

1 10

1

00

1

,00

0

10

,00

0

: Low

er

Littl

e S

wat

ara

Cre

ek

1 1

0

10

0

1,0

00

10,0

00

: Low

er

Litt

le S

wata

ra C

reek

r

X

100,000

10,000

1,00

0

100 10

100,

000

10,000

1,00

0

100 10

10,0

00

1,00

0

100 10

10.

1

0.01

Sw

atar

a C

reek

at

Inw

ood

1 10

100

1,000

10,0

00

Sw

atar

a C

reek

at

Inw

ood

10

100

1,00

0 10

,000

Sw

atar

a C

reek

at

Inw

ood

' ""

""

""'

' ' ""

" 'i"

10

100

1,00

0 10,0

00

1 10

10

0 1,0

00

10,0

00

1

SU

SP

EN

DE

D S

ED

IME

NT

, IN

MIL

LIG

RA

MS

PE

R

LIT

ER

10

100

1,00

0 10

,000

Fig

ure

11.-

Reg

ress

ions

of

susp

ende

d-al

umin

um,

iron,

and

man

gane

se c

once

ntra

tions

as

func

tions

of s

uspe

nded

-sed

imen

t co

ncen

trat

ion.

Page 58: PREIMPOUNDMENT HYDROLOGIC CONDITIONS IN THE SWATARA CREEK (1981-84

Tl

<5'

c -1

CD

TO

TA

L

RE

CO

VE

RA

BL

E IR

ON

,

IN

TO

NS

P

ER

D

AY

DIS

SO

LV

ED

IR

ON

,

IN

TO

NS

P

ER

D

AY

TO

TA

L R

EC

OV

ER

AB

LE

A

LU

MIN

UM

.

IN

TO

NS

P

ER

D

AY

DIS

SO

LV

ED

A

LU

MIN

UM

,

IN

TO

NS

P

ER

D

AY

in

o ~* c/> ^t CD 0) 3 o $ o" "^ 05

^ 0) HT 5 0 i CD CD 0) CT

O CD X co'

Q)

Z) Q.

Q.

Crt

0 CD Q. 1 QJ C 3 ^3 c 3 0) Q.

^.

i O ZJ Q.

O ZT

Q

) i

(Q

DO CD (O CD W

(A 5'

ZJ C/) 0̂ ** cr 0)

CD 1 *,

o 0) ZJ

Q.

C/)

* ̂ 0 -1 3 o"

$ o

CO H m ^ T) o < * 2 o c CD o Tl m m i TJ m 03

CO m O

O

oo <D

Ol

O o

o

\

\

T

0-i

CD

O

O

<

CD -^

Q

) cr

CD

O £ -I

C/)

o

CO

H

O T)

O

o

CO -i

O

XJ

Page 59: PREIMPOUNDMENT HYDROLOGIC CONDITIONS IN THE SWATARA CREEK (1981-84

Most of the trace metals transported to the planned Swatara State Park Reservoir area are adsorbed on suspended sediment, and more than 1,000 tons of various trace metals are transported during years with near-normal streamflow. An average of about 692 tons of total-recoverable iron, 300 tons of total- recoverable aluminum and more than 95 tons of total-recoverable manganese are transported annually to the study area (fig. 13) (table 12). About 91 and 87 percent of the total-recoverable aluminum and iron, is transported in suspension respectively. More than 18 tons of suspended manganese was transported to the study area from the mined site and the forested and agricultural site, respec­ tively, during the 1983 water year.

An average of about 36 percent of the total-recoverable iron load and 27 percent of the total-recoverable aluminum load, respecively, is transported annually in base flow from the two inflows. About 80, 248, and 95 tons of total-recoverable aluminum, iron, and manganese respectively, were transported from these sites in base flow during the 1983 water year. In base flow, approximately 28 percent of the iron, 92 percent of the manganese, and 14 per­ cent of the aluminum was transported in a dissolved phase. During base flow, the mined site, which has an area that is twice the forested and agricultural area, contributes 91 and 98 percent of the total-recoverable aluminum and manga­ nese, respectively, but only 59 percent of the total-recoverable iron. Total- recoverable aluminum annual yields during base flow were 5 times higher at the mined site 1.00 ton/mi2 than at the forested and agricultural site 0.21 ton/mi2. Total-recoverable iron annual yields during base flow were higher at the forested and agricultural site 2.97 tons/mi2 than at the mined site 2.0 tons/mi2.

Concentrations of metals dissolved in base flows were different during various hydrologic conditions at Swatara Creek above Highway 895; the variations within a year were greater than the variations between years, even when annual flows differed significantly (fig. 14). For example, even though the water year 1982 was dry, 1983 normal, and 1984 wet, the ranges of dissolved-metal con­ centrations did not vary much during the 3 years. However, dissolved-iron con­ centrations showed a strong seasonal trend; maximuras occurred each year between January and March when there was little surface runoff and water temperatures were low. The highest base-flow concentrations of dissolved iron, aluminum, and manganese measured during the study were 1,800 Ug/L, 200 Ug/L, and 2,000 Ug/L, respectively, and all were measured at the mined site. Dissolved-alurainura con­ centrations varied the least, but increased with higher base flows and lower pH during the wetter 1984 water year. Dissolved-manganese concentrations were highest from July through November when flows were low and water temperature and pH were highest.

Storms contributed an average of about 220 and 444 tons/yr of total-recov­ erable aluminum and iron, respectively, to the reservoir area from the mined site and the forested and agricultural site (table 12). The mined site, contri­ buted 75 and 82 percent of the total-recoverable aluminum and iron, respec­ tively, during storms. Most of the iron and aluminum discharge occurred in about 4 to 5 days each year. The timing of these discharges is highly variable and difficult to predict. The largest metals discharges from the mined site for 1982, 1983, and 1984, occurred in August, April, and February, respectively. Thus, maximum metals discharges from the rained site appear to be independent of season and precipitation. However, the storm discharges at the forested and

53

Page 60: PREIMPOUNDMENT HYDROLOGIC CONDITIONS IN THE SWATARA CREEK (1981-84

60

0

D

Sto

rm,

susp

ende

d

Sto

rm,

diss

olve

d

Bas

e flo

w,

susp

ende

d

Bas

e flo

w, d

isso

lved

Figu

re

13. E

stim

ate

d a

nnua

l lo

ads

of d

isso

lved

and

sus

pend

ed a

lum

inum

, iro

n, a

nd m

anga

nese

in S

wat

ara

Sta

te P

ark

Res

ervo

ir st

udy

area

.

Page 61: PREIMPOUNDMENT HYDROLOGIC CONDITIONS IN THE SWATARA CREEK (1981-84

Tabl

e 12. Estimated

aver

age

annual aluminum,

iron

, and

mang

anes

e lo

ads

for

Swatara

State

Park

Re

serv

oir

stud

y ar

ea

[loa

ds,

in tons;

a dash in

dica

tes

a po

or fit

in th

e re

gres

sion

an

d therefore

a po

or es

timate

of

load]

Mined

site

Base

fl

ow

Storraflow

Aluminum,

dissolved

Aumi

nura

n, su

spen

ded

Alum

inum

, to

tal

Iron

, di

ssol

ved

Iron

, su

spen

ded

Iron

, to

tal

Mang

anes

e, dissolved

Mang

anes

e, su

spen

ded

Mang

anes

e, to

tal

9.86

62.7

72.5

6

66.4

79.2

145.

6

86.1 7.0

93.1

10.5

156

166.

5

18

346

364

8.28

Tota

l

20.36

219

239.

06

84.4

425.2

509.

6

15.2

8

Fore

sted

an

d agricultural site

Base

flow

2.92

4.38

7.30

2.92

99.1

102 1.

10

0.73

1.83

Stormflow

Tota

l

2.46

51.2

53.66

1.28

78.9

80.18

2.11

5.38

55.6

60.98

4.20

178

182.18

2.83

Page 62: PREIMPOUNDMENT HYDROLOGIC CONDITIONS IN THE SWATARA CREEK (1981-84

WATER TEMPERATURE,

N DEGREES CELSIUSPH

ssV cu 00 F

*i a> c

CD

BASE FLOW, N CUBIC FEET PER SECOND

CT>

o 8 o

o o

DISSOLVED MANGANESE, IN DISSOLVED ALUMNUM, IN DISSOLVED IRON, IN MICROGRAMS PER LITER MICROGRAMS PER LITER MICROGRAMS PER LITER

Page 63: PREIMPOUNDMENT HYDROLOGIC CONDITIONS IN THE SWATARA CREEK (1981-84

agricultural site are dependent on both precipitation and season inasmuch as metals discharges consistently were higher in the winter when little vegetation was present. More than 94 percent of the aluminum and iron discharged during storms to the study area was suspended (fig. 13).

Regressions of manganese storm discharges on streamflow and suspended- sediment concentration were low (r2 less than 0.60), so that estimates of average annual storm discharges for manganese were not made.

Annual storm yields of total-recoverable aluminum and iron were higher at the rained site 2.29 tons/mi2 and 5.01 tons/mi2 , respectively than at the forested and agricultural site 1.56 tons/mi2 and 2.34 tons/mi2, respectively.

Concentrations of metals in the streatabed and near the base of a culm pile in the vicinity of the planned Swatara State Park Reservoir were determined from samples collected each year during low flows. After reviewing bottom-material and storm-water-quality data for the 1982 water year, additional sampling sites and metals were selected to improve the characterization of sediments in the study area and to attempt an identification of sources of metals that may affect water quality in the planned reservoir.

Table 13 lists the concentrations of coal and metals in the bottom material and near a culm pile at Suedberg for sites in the 14.5-mi stream reach from Swatara Creek, at Ravine to Swatara Creek at Inwood shown in figure 1. Bed- material samples collected from Swatara Creek at Ravine the most upstream site contained 63 percent coal. Concentrations of coal generally declined downstream.

Metals concentrations commonly associated with coal, especially aluminum, iron, and manganese, were higher in the main stem of the Swatara Creek than in Lower Little Swatara Creek (table 13). Concentrations of aluminum, iron, lead, copper, and zinc reached a maximum at the site 1.9-mi downstream from Ravine (at Route 443), which is immediately downstream from a point-source discharge. Mercury and selenium concentrations as high as 1.9 Ug/g and 7.0 yg/g, respec­ tively, were measured in the 14.5-mi stream reach affected by mine drainage. No detectable selenium and little mercury was found at the forested and agri­ cultural site. Aluminum and iron concentrations were much lower at the forested and agricultural site than at the mined site.

The sample collected at the base of the culm pile at Suedberg was enriched with aluminum, iron, and selenium.

Bottom-material data collected on September 6, 1984, were used to identify sources of particular trace metals. The data were normalized using coal as a diluent and then plotted (fig. 15) to show the distribution of metals from their sources. This normalizing technique described by Horowitz (1984, p. 62) was used so that a dilution factor could be multiplied by the chemical concentration of the selected constituent to minimize the influence of the coal mining. The dilution factor was calculated by dividing the percent of the size fraction that was less than 20 micrometers of coal into 100. Particle-size analyses of bottom-material samples were compared to determine whether the metals were asso­ ciated with a particular size fraction and whether the fine sediments were evenly distributed in the stream reach. Normalized concentrations of aluminum,

57

Page 64: PREIMPOUNDMENT HYDROLOGIC CONDITIONS IN THE SWATARA CREEK (1981-84

Table

13. Concentrationa of coal and

meta

la in botton ma

teri

al in th

e vi

cini

ty of the

planned

Swacara

State

Park

Reservoir

[Concentrationa

are

In mi

ccog

rams

per

gran,

exce

pt coal,

which

la given

in grama

per

kilo

gram

]

Stat

ion

Date

Coal Aluminum

Arse

nic

Swat

ara

Creek

9/06/84

630

1,600

at Ravina (A)

Swatare

Craek

9/06

/84

240

1,600

1.0

ml below

Ravi

ne (B)

Swatare

Creek

9/07

/83

<11.9

ml below

9/06

/84

39

7,700

Ravi

ne at High­

way

443

(C)

Mined

elte

Swat

are

Creek

9/14

/82

5,600

above

Highway

9/07/83

<1895, 2.5

ml

9/06

/84

66

2,400

below

Ravin*

(015

7191

9)

Fore

sted

and

Agri

cult

ural

si

teLower

Litt

le

9/14

/82

900

Swat

ara

Creek

9/07

/83

<1(0

1572

000)

9/

06/8

4 <1.0

950

00

Swat

are

Creek

9/06/84

85

960

7.2

ml below

Ravine near

Airp

ort

(D)

Swat

ara

Cree

k**9

/06/

84

120

2,300

7.9

ml below

Ravine at ba

a*of

cu

lm pi

le (E

)

Cadlum Chromium

Cobalt

Copper

12 18

29

30

60 59

14

20

20 19

15

10

5 4 10 41

Iron

Lead

5,400

<10

7,600

20

32,000

8019,000

270

13,0

007,400

206,700

20

2,900

8.200

104,100

20

4,200

<10

13,0

00

40

Manganese

270

370

260

260

650

380

270

340

590

250

210

120

Merc

ury

Sele

nium

Zinc

0.27

7

50

.15

23

.26

140

.33

6 300

.01

64.0

5 46

<.0t .05

<1

24

<.01

37

.32

12

30

Swatara

Creek

9/14

/82

580

2,500

220

7.9

mi below

Ravi

ne et

Suedberg (F)

Swatare

Cree

k 9/14/82

11.2

ml

below

9/06

/84

Ravi

ne (G

)

Swat

are

Creek

9/14/82

13.0

ml below

9/06/84

Ravine (H

)

Downstream site

Swat

ara

Creek

9/14/82

at In

wood

9/

07/8

314.5 ml below

9/06/84

Ravi

ne(01572200)

660

46

900

1,700

62

970

900

<1

2 5

14

1,600

2,800

8 3,700

<10

5,700

10

4,000

<10

3,30

*080

30

9,500

2013

6,700

10

370

320

.08

1,000

440

.03

720

3,600

.05

790

1.9

45 52

250 91

** Sample co

llec

ted

at base of

culm pila not

from

st

ream

bottom.

Page 65: PREIMPOUNDMENT HYDROLOGIC CONDITIONS IN THE SWATARA CREEK (1981-84

CO

NC

EN

TR

AT

ION

, IN

MIC

RO

GR

AM

S P

ER

GR

AM

<ji

VO

"XJ

TO

CD'

5*

S

§ cn^c

A.

:..

S ?

2 a

2LCD

O CO H Z

O

m o

Oo

=r II

!~

to

"n

g

R

mCD

_

>

O

Q

. 2

; 3»

cr

o 3)

-n

o 5[

<

3)

? J

m 9

3 $

3) 2

1 3

2 * c

o

CD*

FC

T m

C?

*>

5'I

rr

9LCD

CO

< o

5- §

5'

o~

CD

*<

D

5 I

'CD

_C

O 0)

H

3)

O

3) m

m H

3) Z m

PE

RC

EN

TA

GE

OF

SA

ND

, S

ILT

, A

ND

CL

AY

IN

B

OT

TO

M M

AT

ER

IAL

o 8

& 8

8 8

o -

cn -

cn

Q CO

cn cn cn

rrv»

-^

ro

8

8

m

DO

O C

3D

HX

c

cn O

3 0

g

j-«

o -

>

.r~

>cn

o

^ o

c

cn O

4 < <

N

.Z

O

'

i \ ,

:

8 8

cn

Page 66: PREIMPOUNDMENT HYDROLOGIC CONDITIONS IN THE SWATARA CREEK (1981-84

iron, lead, copper, and zinc reached a maximum 1.9 mi below Ravine. Particle- size data show that the highest percentages of silt and clay in the bed material also were found 1.9 mi below Ravine. The elevated metals concentrations 1.9 mi downstream from Ravine probably derive from a source other than coal, because the concentration of coal is much lower at this site and the bottom material is extremely fine. A possible source of the metals may be the point-source discharge mentioned earlier in this report. The point-source discharge is imme­ diately upstream from the sampling point, and the point-source discharge con­ tained elevated concentrations of aluminum, iron, lead, copper, and zinc, and low concentrations of manganese. The decrease in manganese in the bottom material below the point-source discharge 1.9 mi downstream from Ravine may be associated with the elevated dissolved-manganese concentration measured 2.5 mi downstream from Ravine. Ingols and Wilroy (1962) indicated that manganese may redissolve and move downstream as a result of the influence of a water discharge containing tannic acid. The current site of the point discharge is at a textile-dye plant, and a tannery used to be located at the site.

In summary, metal concentrations measured at the rained site and the forested and agricultural site often exceeded the recommended USEPA criteria and Pennsylvania water-quality standards. During a year with normal streamflow, more than 1,000 tons of metals, most of which are attached to sediment, are transported to the planned reservoir study area from the mined site Swatara Creek above Highway 895 and the forested and agricultural site Lower Little Swatara Creek. About 36 percent of the total-recoverable iron and 27 percent of the total-recoverable aluminum is transported during base flow. Swatara Creek also is probably affected by point sources other than mine discharges. The point-source discharge measured during the study probably contributed lead, copper, and zinc in addition to iron and aluminum which also are commonly asso­ ciated with coal. The point-source discharge also may have been responsible for the resolution of manganese from the bottom material. Unlike iron and aluminum, manganese is being transported primarily in the dissolved phase in the stream reach within the study area. Mercury and selenium concentrations in the Swatara Creek bottom material were higher at the mined site than the forested and agri­ cultural site.

Nutrients

The amount of nutrients transported into a reservoir is important because of the critical role of nutrients in eutrophication. Wetzel (1975) states "the terra eutrophication is synonymous with increased growth rates of the biota of lakes," and "the most conspicuous, basic, and accurately measurable criterion of accelerated productivity is increasing rates of photosynthesis by algae and larger plants per given area." The danger in increased photosynthesis or growth rates is that, as the algal bloom increases, it consumes more oxygen than it generates within the reservoir and the demand for oxygen increases in the deeper water as dead algae settles to the bottom and decomposes. Therefore, there is little oxygen available for other aquatic life in the reservoir. If the dischage from the reservoir is not well aerated, then releases of poorly oxyge­ nated water from the reservoir also may cause adverse effects downstream.

Two of the primary nutrients required for algal growth are phosphorus and nitrogen. Commonly, the limiting nutrient for increased algal and plant growth within a reservoir is the amount of phosphorus transported to the reservoir (Vallentyne, 1970).

60

Page 67: PREIMPOUNDMENT HYDROLOGIC CONDITIONS IN THE SWATARA CREEK (1981-84

A conservative estimate of the average annual phosphorus load to the planned Swatara Creek State Park Reservoir was based on limited data because relations between total-phosphorus concentrations and streamflow or suspended- sediment concentrations were low (r2 less than 0.60). Poor correlations bet­ ween phosphorus concentrations, streamflow, and suspended sediment probably resulted from the point-source discharge near Highway 443 mentioned earlier, inasmuch as extremely high total- and dissolved-phosphorus concentrations of 19 mg/L and 14 rag/L, respectively, were measured at the site on September 7, 1983, (table 8). Similar elevated phosphorus concentrations were measured during low flows in October 1982 and September, October, and November 1983 at the rained site (fig. 16) that also may be the direct result of the upstream industrial point-source.

Large quantities of phosphorus are transported in Swatara Creek during storms, and much of the phosphorus may originate from the point-source near Swatara Creek above Highway 443. The maximum total-phosphosus concentration that was measured during a storm was 2.2 mg/L. This storm concentation was measured 0.6 mi downstream from the industrial point-source at the mined site, and was eight times higher than any other concentration measured in storm runoff. The maximum storm concentration was measured 2 weeks after a phosphorus concentration of 19 rag/L was measured at the point source on September 7, 1983. The elevated storm concentration probably resulted from the resuspension of phosphorus that had been discharged from the point source, and coraplexed and precipitated with iron and aluminum.

Base flow from the rained site and the forested and agricultural site transports an average of about 1.83 tons and 0.73 ton, respectively, of dissolved phosphorus annually to the Swatara State Park Reservoir area. An additional 0.73 ton of suspended phosphorus is transported as base flow to the study area from the forested and agricultural site. Because a relation between total-phosphorus discharge and streamflow during base flow at the *iined site could not be demonstrated, an average annual total- and suspended-phosphorus discharge for the mined site could not be calculated. However, inasmuch as con­ centrations in base flow of suspended phosphorus were usually at least two times higher than concentrations of dissolved phosphorus, the suspended-phosphorus discharge during base flow can be estimated to be at least twice the dissolved- phosphorus discharge. Thus, the average annual base flow suspended-phosphorus discharge for the mined site was at least 3.6 tons, and the average annual total-phosphorus discharge to the Swatara State Park Reservoir study area as base flow was at least 6.89 tons. During base flow, at least 63 percent of the total-phosphorus load was suspended, and about 79 percent of the total load came from the mined site.

Average daily base-flow discharges and yields indicate that more phophorus is being discharged from the mined site than from the forested and agricultural site. The average daily dissolved-phosphorus discharge in base flow for the mined site, and the forested and agricultural site were 0.005 ton/d, and 0.002 ton/d, respectively. The average annual base-flow yields of dissolved phosphorus from the mined site 0.03 ton/mi2 and from the forested and agri­ cultural site 0.02 ton/mi2 were nearly equal. However, the average annual base-flow yield for suspended phosphorus was more than 2.5 times greater from the mined site than from the forested and agricultural site.

61

Page 68: PREIMPOUNDMENT HYDROLOGIC CONDITIONS IN THE SWATARA CREEK (1981-84

PH

OS

PH

OR

US

A

S

P,

IN

MIL

LIG

RA

MS

P

ER

LIT

ER

op

O

Oppp

O

O

O

QJ 3 a Er *r -n CD QJ 5" o a- 05 CO CD

o>

g5

N i CO 00 ro i 0

0 cu CD -i CD CO

r; cb"

C/)

< Q}

-*

Q}

-i

Q}

O CD CD « »

o" CD CO «-* a Q}

D Q.

0) (O o'

? w_ CO.

J5-*

i^

C7)

Q}

-*

Q}

S O -t CD 01 C7

O CD I <5'

01 00

CO en i \

3 5'

a CO CD V '

Q} a

(O c CD 0^ i 1

O 5T T 01 3 a a co"

CO o^ CD a a o CO a o c CO o o o CD J.

03

< ^*

^^ H m 3)

^^ m 31

o CO

Q}

O z D

c_-L

-n

CD Z

a>

>

10 2 c.

c_ O Z

D

c_

-L -

n CD

Z

a> >

co

CO O z D

00 > c_

c_ > CO

ro

-^

o>

oo

o

o

o

o

oo

o

CD

O

BA

SE

F

LO

W,

IN

CU

BIC

F

EE

T

PE

R

SE

CO

ND

Page 69: PREIMPOUNDMENT HYDROLOGIC CONDITIONS IN THE SWATARA CREEK (1981-84

Maximum base-flow total- and dissolved-phosphorus concentrations were 0.45 mg/L and 0.07 mg/L, respectively, at the mined site, on September 7, 1983, and 0.10 mg/L and 0.06 mg/L, respectively, at the forested and agricultural site on February 16, 1982 (fig. 16). Dissolved-phosphorus concentrations in base flow at the mined site and the forested and agricultural site remained relati­ vely constant throughout the year and varied little between dry, normal, and wet years. Total-phosphorus concentrations in base flow at the mined site varied considerably; the highest concentrations occurred during low flows in September and October. These variations probably reflect the point-source discharge just upstream from Route 443.

Storm loads and base-flow loads from the forested and agricultural site for total phosphorus were 3.06 tons and 1.46 tons, respectively, during the near- normal 1983 water year. About 91 percent of the 3.06 ton storm load was dissolved phosphorus; about 16 percent was orthophosphate.

An average annual storm load from the rained site was estimated to be at least 3.06 tons. This load was estimated because the relation between total- phosphorus concentrations and streamflow was low (r2 less than 0.60), and the estimation was based on the assumption that the storm loads at the rained site must be at least equal to those at the forested and agricultural site since the concentrations and stormflows were almost always higher at the mined site.

In summary, table 14 shows that, based on a conservative estimate, an average of at least 13.01 tons of phosphorus is transported to the planned reservoir study area during a normal year. At least 65 percent of the phosphorus comes from the rained site and at least 47 percent is transported from both sites by storms.

Table 14. Conservative estimate of annual phosphorus load, as P, for Swatara State Park Reservoir study area

[load in tons]

Location

Mined site

Forested and agricultural site

Total Phosphorus

Percentage

Base-flow loadDissolved

1.

2.

20

83

73

56

Suspended

3.60^

.73

4.33^

33

5

1

6

53

Total

.*i4'

.46

.89*'

Stormflow loadDissolved Suspended

2.78 0.28

__

Annual loadTotal

3.0*4'

1.064/

6.12^

47

Total

8.49

4.52

13.01

Percentage

65

35

100

100

Conservative estimates based on limited data.

63

Page 70: PREIMPOUNDMENT HYDROLOGIC CONDITIONS IN THE SWATARA CREEK (1981-84

Average annual total-nitrogen discharges were not calculated because of the limited amount of data collected during the 3-year study. Most of the nitrogen transported in the study area was dissolved, so that correlations like those used to estimate metal and phosphorus concentrations in storm runoff based on suspended-sediment concentrations could not be used.

The relation between nitrogen concentrations in base flow and streamflow at the mined site were low (r^ less than 0.60). Lack of evident correlations pro­ bably were the result of the point-source discharge mentioned previously. For example, elevated concentrations of total and dissolved ammonia, and of ammonia plus organic nitrogen, were measured during base flow on September 7, 1983 at the mined site (table 8). The elevated nitrogen concentrations at Swatara Creek at Highway 443 listed in table 8 were measured just upstream from the mined site and were probably the result of the point-source discharge mentioned previously. Similar point discharges also may have been responsible for the elevated base- flow ammonia-nitrogen concentrations measured at the mined site in July and September 1982, July through September 1983, and September and October 1984.

During base flow, an average of at least 175 and 94 tons of nitrogen from the mined site and the forested and agricultural site, respectively, are discharged annually to the planned reservoir study area (table 15). Like phosphorus, 65 percent of the nitrogen during base flow is discharged from the mined site. About 53 percent of the base-flow nitrogen 93.1 tons from the mined site is discharged as dissolved nitrate, and about 74 percent of the base- flow nitrogen 72.3 tons from the forested and agricultural site is discharged as dissolved nitrate.

Table 15. Estimated annual base-flow nitrogen loads, as N, to the Swatara State Park Reservoir study area

[load in tons]

AmmoniaDissolved Total

Swatara Creek above Highway 895

Lower Little 1.46 1.83 Swatara Creek

Total

Percentage

Ammonia & OrganicDissolved Total

68.3

18.2

86.5

32

82.5

22.3

104.8

39

Dissolved Nitrate

93.1

72.3

165.4

61

Total Nitrogen

175.6

94.6

270.2

100

Percentage of total

nitrogen load

65

35

100

64

Page 71: PREIMPOUNDMENT HYDROLOGIC CONDITIONS IN THE SWATARA CREEK (1981-84

Average daily base-flow nitrate-nitrogen discharges from the mined site 0.255 ton/d were higher than those from the forested and agricultural site 0.198 ton/d but the yield from the forested and agricultural site 2.11 (tons/yr)/mi2 was higher than from the rained site 1.28 (tons/yr)/mi2. In contrast to the average annual yields for nitrate-nitrogen discharges in base flow, the average annual yield for total ammonia plus organic nitrogen in base flow was higher from the rained site 1.14 (tons/yr)/rai2 than from the forested and agricultural site 0.65 (ton/yr)/mi2. About 82 percent of the yields of total ammonia plus organic nitrogen in base flow from both sites was dissolved.

Maximum total-nitrogen (fig. 17) concentrations in base flow were 3.8 and 3.2 mg/L at the forested and agricultural site and at the rained site, respec­ tively, and occurred December 1982 and February 23, 1983, respectively.

Total-nitrogen concentrations in base flow at the two inflows (fig. 17) decreased during the 3-year study and during the "wet" 1984 water year at both sites. At the forested and agricultural site, concentrations decreased during each year of the study. Similar decreases in nitrogen concentrations are seen at intensively farmed sites in the Conestoga Creek headwaters in Lancaster County and may be related to the uptake of nitrogen by corn during the growing season (U.S. Department of Agriculture, 1985). After the crop is harvested in September, farmers are able to spread nitrogen as manure, which then can infiltrate through the soil and enter the ground-water system, and ultimately discharge to streams in base flow. Although this was originally thought to be a long process, nitrogen concentrations in base flow measured in Lancaster County increase within several days following manure and fertilizer applications and subsequent large precipitation events.

Annual total-nitrogen discharges in storm runoff were higher than discharges in base flow at the mined site and the forested and agricultural site because of increases in suspended organic-nitrogen concentrations. Average annual nitrogen discharges in storm runoff were not calculated, because the relations between nitrate- and ammonia-nitrogen with streamflow were poor (r2 less than 0.60). Most of the nitrate and ammonia-nitrogen was dissolved and diluted during storms.

Major ions

The ionic strength of water in Swatara Creek changes in the reach between Highway 895 to Inwood. This change results from dilution of the raixed-cation- sulfate type of water from the rained site by the less mineralized raixed-cation- mixed-anion inflow from the forested and agricultural site (Fishel and Richardson, 1986). The median sulfate concentration is more than 5 times higher in the mine drainage than in the agricultural and forested drainage (table 7). Water in the planned Swatara State Park Reservoir area is generally soft, with hardness values less than 70 mg/L as CaCO^ a t the rained site and the downstream site at Inwood, and 30 mg/L as CaC03 at the forested and agricultural site.

Instantaneous and median sulfate concentrations and discharges (table 7) indicate that most sulfate in Swatara Creek originates from mine drainage upstream from Highway 895. Increases in dissolved-calcium, magnesium, car­ bonate, and sulfate concentrations reflect raining operations where rock has been

65

Page 72: PREIMPOUNDMENT HYDROLOGIC CONDITIONS IN THE SWATARA CREEK (1981-84

oc LU

DC LUa.CO

4.U

3.5

3.0

2.5

2.0

1.5

1.0

0.5

nn

SWATARA CREEK ABOVE HK3HW/

1982 Water Year 8 percent below

normal precipitation

°0 ° 00 °

O O

O

1983 Water Year near normal precipitation

O

0

O

0 0

O

O

O

0 °°

W 8951984 Water Year

25 percent above normal precprtation

0

O 0

O

D ° O O

O

O

ONDJFMAMJJASbNDJFMAMJJASlONDJFMAMJJAS 1982 1983 1984

zLU OODC

4.U

3.5

3.0

2.5

2.0

1.5

1.0

0.5

° L0\

O O

O

O

O

O

0

0

A/ER LfTTLE SWATARA CRE

O

0O

O

O

0 <

O

0

O

0

EK

O

0 ^O

O

o_O

5 0

O

0

°"° ONDJFMAMJJASIONDJFMAMJJASIONDJFMAMJJAS 1982 1983 1984

WATER YEAR

Figure 17. Total-nitrogen concentrations in base flow at Swatara Creek above Highway 895 Cmined site) and Lower Little Swatara Creek Cforested and agricultural site), 1982-84 water years.

66

Page 73: PREIMPOUNDMENT HYDROLOGIC CONDITIONS IN THE SWATARA CREEK (1981-84

disturbed and minerals are exposed and available for dissolution. Much of the sulfate anion comes from base flow that originates in both active and inactive mines in the study area. Additional sulfate may come from the continuous drainage of deep mine tunnels in the Swatara Creek headwaters. Slugs of acidic water high in sulfate also come from the culm piles when storm runoff washes the oxidized pyritic material into the streams. Occasionally, some surface runoff may infiltrate into the waste piles and leach acid into the local ground water. Later, this ground water, with its high sulfate concentrations, discharges to streams as base flow.

Discharges of individual ions could not be estimated from the limited data collected because the dissolved-ion concentrations correlated poorly with streamflow. The low correlations during base flow probably resulted from point discharges in the Swatara Creek headwaters. Low correlations between dissolved- ion concentrations and streamflow during storms probably resulted from the interaction between diluted base flow and slugs of storm runoff with elevated acid concentrations. Correlations for the forested and agricultural site were affected by changes in the minimum detection limit set by the analyzing agency in the third year of the study, inasmuch as dissolved-sulfate concentrations were commonly reported to be less than or equal to 5.0 mg/L during 1982 and 1983 but were reported to be less than 25.0 mg/L during 1984. Therefore it was not possible to analyze 1984 water year sulfate data with 1982 and 1983 water year data for the forested and agricultural site.

Daily and annual dissolved-ion loads and yields during base flow were esti­ mated using relations between streamflow and constituent discharges when the relation had a r2 greater than 0.60 (table 16). The estimate for the sulfate load from base flow for the rained site was made by multiplying the median sulfate concentration (77 mg/L) in base flow by the average daily base flow (109 ft-Vs), inasmuch as the correlation between instantaneous sulfate discharge and instantaneous strearaflow was low (r2 less than 0.60). This method resulted in an annual sulfate load from base flow that was 11 percent higher than the load estimated by the flow-duration method when applied to the forested and agri­ cultural site. The estimate for the annual sulfate load from base flow for the mined site is, therefore, probably slightly higher and not as accurate as esti­ mates for the other dissolved ions.

Table 16. Estimated annual major ion loads and yields in base flow for Swatara State Park Reservoir study area [(tons/yr)/mi2 t tons per year per square mile]

CalciumMagnesiumPotassiumSulfate

Discharge(tons)

1,300953566

8,270a/

Mined site(01571919)

Yield(tons/yr)/ml2

17.913.17.8

114

Forested

Discharge(tons)

17589.4108436

and agricultural site(01572000)

Yield(tons/yr)/mi2

5.102.613.1512.7

'Estimates for these values are based on the median concentration in base flowand average daily base flow,

67

Page 74: PREIMPOUNDMENT HYDROLOGIC CONDITIONS IN THE SWATARA CREEK (1981-84

As expected, table 16 shows higher loads and yields of major ions from the rained site than from the forested and agricultural site. The estimated annual base-flow dissolved-sulfate load was nearly 20 times higher, and the yield was 10 times higher at the mined site than at the forested and agricultural site. Dissolved-sulfate concentrations were much higher at the mined site than the forested and agricultural site. The maximum sulfate concentration in base flow was 130 mg/L at the mined site. Lower peak concentrations occurred throughout the study at the forested and agricultural site, and the maximum concentration in base flow was 55 mg/L.

The annual increases in sulfate concentrations in base flow at the mined site appear to be due to two factors (fig. 18): First, increased concentrations are evident from July through November when base-flow discharges were not diluted as they were during other parts of the year; second, higher sulfate con­ centrations occur during wet years, such as the 1984 water year, when discharges

200

DCuj

QC UJ Q.CO

< QCO13

i

UJ

_

COoUJ

dCO CO5

150

100

50

1982 Water Year percent below normal precipitation

O O

o oo o

1983 Water Year near normal precipitation

O O

O OO O

1984 Water Year 25 percent above normal precipitation

O OO

O

ONDJFMAMJJA SlO NDJFMAMJJA SlO NDJFMAMJJAS 1982 1983 1984

WATER YEAR

Figure 18. Dissolved-sulfate concentrations in base flow at Swatara Creek above Highway 895 (mined site), 1982-84 water years.

68

Page 75: PREIMPOUNDMENT HYDROLOGIC CONDITIONS IN THE SWATARA CREEK (1981-84

from the deep mine tunnels increase. Increases in sulfate concentrations in base flow for the 3-year period may have resulted from the above normal precipi­ tation during the third year of the study, however they were not statistically significant.

Annual major ion discharges during storms could not be calculated from the limited data. Unlike suspended nutrients whose concentrations tend to increase during storm flows, concentrations of dissolved substances generally were diluted, especially if they were discharged at a constant rate from a point source. Although a few storms may contribute a substantial part of the annual nutrient load, the same storms may contribute very little to the annual major ion load depending on the amount of runoff and the availability of the ion. Without using the same analytical detection limit throughout a study, and measuring the dilution for each storm, an annual discharge is difficult to esti­ mate. For example, at Swatara Creek above Highway 895, during the storm on February 14, 1984, dissolved sulfate was diluted from 61 mg/L to 34 mg/L at the peak streamflow. Although the sulfate concentration was diluted, the maximum instantaneous sulfate discharge (170 tons/d) for the 3-year study at the mined site was measured at peak streamflow on the storm hydrograph.

Several observations from the instantaneous sulfate concentrations in storm runoff provide information on the expected storm discharges. Sulfate con­ centrations at the mined site were diluted during all storms, but concentrations returned quickly to high levels before strearaflows returned to base flow. This observation suggests that sulfate is transported primarily in ground water and at times may be discharged to the streams from bank storage or leachate from culm piles near the stream as discharges recede. Elevated sulfate con­ centrations prior to return to base flow, and maximum instantaneous sulfate discharges near streamflow peaks, suggest that the annual load of sulfate from the mined site is probably higher than the estimated 1,830 tons calculated from the average daily stormflow (53 ftVs) and median concentration (35 mg/L) during storm runoff. Thus, the total annual load for sulfate from the mined site is probably greater than the sum of the estimated loads of 8,270 tons from base flow and 1,830 tons from storm runoff.

Microorganisms

The USEPA criterion and the Pennsylvania recommended standard for primary contact water (swimming) is less than 200 fecal-coliform colonies per 100 mL of water based on a geometric mean of five consecutive samples (U.S. Environmental Protection Agency, 1976 and Pennsylvania Department of Environmental Resources, 1979). Inasmuch as bacteriological sampling was performed once a month and during storms, rather than daily, it is difficult to compare the data to the standard. However, duplicate samples collected during base flow and analyzed both in the field and by the PaDER laboratory in Harrisburg gave similar results. Bacteriological data indicate 9 and 35 percent of the base-flow samples collected at the mined site and the forested and agricultural site, respectively, nad greater than 200 colonies per 100 mL of water. Maximum base- flow fecal-coliforra counts as high as 1,200 colonies per 100 mL of water occurred during the period from September through November at the mined site. Fecal-coliform counts as high as 3,500 colonies per 100 mL of water from May through October occurred at the forested and agricultural site.

69

Page 76: PREIMPOUNDMENT HYDROLOGIC CONDITIONS IN THE SWATARA CREEK (1981-84

Fecal-coliforra counts in 71 percent of the base-flow samples were two times higher at the forested and agricultural site than at the rained site. The low counts at the rained site may reflect the toxic conditions that reduce the sur­ vival rate of bacteria (Hackney and Bissonnette, 1978).

Fecal-streptococci counts during base flow were higher than fecal-coliforra counts at both the mined site and the agricultural and forested site. Fecal- streptococci counts were two times higher in over 53 percent of the base-flow samples at the forested and agricultural site than at the rained site. Maximum counts at both sites occurred between June through October.

Sources of bacteria are commonly determined using the ratio of fecal coli- forra to fecal streptococci, FC/FS. Geldreich and Kenner (1969), reported that fecal-coliforra counts are at least four times higher than fecal-streptococci counts in human feces. Conversely, fecal-streptococci counts are 1.4 times higher than fecal-coliforra counts in farm animals, dogs, cats, and rodents. Lin and others (1974) suggest the following guides for interpreting FC/FS ratios.

FC/FS _< 0.7 animal wasteFC/FS > 0. 7 and <^ 1 preponderance animal wasteFC/FS > 1 and _< 2 difficult to interpretFC/FS > 2 and <_ 4 preponderance human wasteFC/FS > 4 human waste

These correlations are most helpful when bacterial survival rates are not influenced by factors such as mine drainage and if samples are collected within 24 hours of the contact of the bacteria with the receiving water. Because mine drainage affects the survival rate of bacteria at Swatara Creek above Highway 895, the FC/FS ratio may not be helpful in identifying the source o^bacteria in this stream. Because Lower Little Swatara Creek is unaffected by mine drainage, and travel times from the headwaters to the sampling point are less than 24 hours, the FC/FS ratio probably is a good method for determining source of bac­ teria in this stream. About 21 percent of the samples collected from the forested and agricultural site had a FC/FS ratio greater than 2, indicating pro­ bable periodic point discharges of human waste at the site.

ESTIMATED POSTIMPOUNDMENT WATER QUALITY IN THE PLANNED RESERVOIR

Estimates of the water quality of the planned Swatara State Park Reservoir are based on numerous chemical and physical characteristics of the planned reservoir and other reservoirs with similar drainage basin characteristics. A comparison of the water quality of reservoirs, and in downstream river reaches, can only be discussed qualitatively, as suggested by Flippo (1970), because no two reservoirs have identical morphological characteristics, sedimentation rates, and inflows with the same streamflow and chemical loads. These factors play an important role in the chemical reactions taking place in a reservoir and will be included in the following discussion.

70

Page 77: PREIMPOUNDMENT HYDROLOGIC CONDITIONS IN THE SWATARA CREEK (1981-84

Thermal Stratification

Thermal stratification in the planned Swatara State Park Reservoir can be expected to occur much like other reservoirs with similar morphological charac­ teristics and geographic locations. Water temperatures in the reservoir will be different from those of the inflows because of the effects of solar radiation on the water surface, increased retention times within the reservoir, and mixing by wind action and streamflows. However, because the discharges from the rained site to the planned reservoir will be about twice that from the forested and agricul­ tural site, mixing of these two discharges will result in an inflow to the res­ ervoir with water temperatures more closely related to those at the rained site.

Because changes in water temperatures in a reservoir are largely the result of increased solar radiation followed by the warming of the water surface, esti­ mating changes in water temperature at the inflows may help to predict the onset of stratification and overturn. Predicting the onset of stratification and overturn will aid managers of the reservoir to determine the timing and the quantity of water to be released to maintain optimum water quality in and downstream from the reservoir. Estimating the timing of rapid changes in water temperature at the inflows will only be helpful, however, if following these changes, the water temperatures are sustained and other conditions, such as wind action, have a minimal effect on water in the reservoir.

For example, in late April and in September water temperatures rapidly increase and decrease, respectively, at the rained site and at the forested and agricultural site. Occasionally the rapid changes are followed by periods of sustained warm or cool water discharges. Time-series plots of air and water temperatures (figs. 4-5), indicate the greatest changes in water temperatures are closely associated with changes in air temperatures measured at Pine Grove. Following these periods of rapid changes, there is a flattening of the curves that represents a period of sustained warmer or cooler temperatures, respec­ tively. Using equations 1 and 2 estimates of these changes can be made.

On April 25, for example, the mean daily air temperature was 5.0 °C and measured water temperatures were 7.5 and 8.0 °C, respectively, at the mined site and the forested and agricultural site. Estimated temperatures from equations 1 and 2 were 9.2 and 8.1 °C, respectively. The next day, the daily mean air temperature rose to 11.0 °C (fig. 4) and measured water temperatures at the mined site and forested and agricultural sites were 11.5 and 11.0 °C, respec­ tively. The increase in air temperature was also reflected by increases in estimated water temperatures. Estimated water temperatures were 13.5 and 12.4 °C for the mined site and the forested and agricultural sites, respec­ tively. The 7-day period following April 25 (April 26-May 2) would have been ideal for the onset of the formation of density layers in the lake especially if the wind were calm. Air temperatures during these 7 days remained signifi­ cantly higher than those measured on April 25 and would probably have resulted in warmer inflows to the reservoir than those of several days earlier. As solar radiation and air temperatures increase, the upper layer of the reservoir would become warmer and less dense. The warm-water inflows would mix with water with a similar density near the reservoir surface and would flow over the cooler, denser water near the bottom of the reservoir. Thus, the establishment of den­ sity layers in the reservoir is predicted to begin as early as late April. Release of water from the bottom of the reservoir from April through September may help reduce the extent of thermal stratification.

71

Page 78: PREIMPOUNDMENT HYDROLOGIC CONDITIONS IN THE SWATARA CREEK (1981-84

The onset of fall overturn likewise may be predicted by determining when the maximum rate of change in water temperature at the inflows occurs and when density layers in the lake are close to the density of the water of the inflows. Such a period occurred in September 1983 and could have been predicted by using the time-series plots and equations 1 and 2. In this particular instance, daily mean air temperature decreased from 26.0 °C on September 20, 1983, to 9.0 °C on September 24. Concurrently, water temperatures dropped from 22.0 and 23.5 °C to 14.5 and 15.0 °C, respectively, at the rained site and the forested and agri­ cultural site. Estimated declines in water temperatures using equations 1 and 2 would have been from 24.0 to 12.1 °C and from 23.5 °C to 11.1 °C, respectively, at the rained site and the forested and agricultural site. These sudden air- and water-temperature changes signal the beginning of when water temperatures and densities from inflows would approach those in the lower part of the reservoir and when mixing of the upper and lower layers of the reservoir might occur. Figures 4 and 5 show that similar patterns can be identified annually; there­ fore, stratification and fall overturn is predicted to occur about the same time each year.

Productivity in the Reservoir

The water quality of the planned reservoir, in terras of productivity, was estimated using a graphical technique developed by Vollenweider (1975) (fig. 19). Vollenweider developed a method by which conditions in a lake can be pre­ dicted using the estimated phosphorus loading required to maintain a steady state of productivity. When these levels are exceeded, rapid eutrophication is likely. Work done by Billion and Rigler (1974) and Dillion (1975) led to the inclusion of a factor for the retention of phosphorus in a lake termed the hydraulic residence time (tw), which is included in figure 19. Also included in the figure are results from Barker, (U.S. Geological Survey, written comraun., 1979) who used this method to classify the productivity of several lakes in Pennsylvania. When this method is applied to the planned Swatara State Park Reservoir which will have an estimated phosphorus loading of over 13 tons during a normal year and a flushing rate of 15.3 times a year, then eutrophication is a possibility for the planned reservoir. The actual rate at which the planned reservoir will become eutrophic will depend on the actual loadings and the volume of inflow. The process of eutrophication may be slowed by eliminating or reducing input from sources of nutrients such as the point source mentioned earlier.

Effects of Base Flow and Runoff

Water quality of the planned reservoir will largely depend on the quality of base flow and runoff. Since 95 percent of the time streamflow to the planned reservoir will consist mostly of base flow, the water quality of the planned reservoir will largely depend on the quality of base flow. Chemical data pre­ sented earlier indicate that variations in chemical concentrations in base flow will probably be greater within a year than between years, and that the chemical concentrations of inflows to the planned reservoir during base flow are affected by point sources.

72

Page 79: PREIMPOUNDMENT HYDROLOGIC CONDITIONS IN THE SWATARA CREEK (1981-84

100

10

ocHI

OC HI D_

OC HIH- Hl2HI OC

O CO

ocHI D_

CO

OCo5 1CO*

D OC O

D_ CO O

D_

0 Blue Marsh Lake 0 F. E. Walter Reservoir

Planned Swatara Creek Reservoir

© /Eutrophic

.0 X/

9

. Beltzville Lake

/Oligotrophic

0.110 100 1,000 10,000

RATIO OF MEAN DEPTH, IN METERS, TO RESIDENCE TIME, IN YEARS

Figure 19.~Eutrophic potential for planned Swatara State Park Reservoir based on conservative phosphorus loadings modified Cfrom Vollenweider, 1975).

73

Page 80: PREIMPOUNDMENT HYDROLOGIC CONDITIONS IN THE SWATARA CREEK (1981-84

Although the water quality of the planned reservoir will often be dominated by base flow, sudden changes in the chemical composition of the reservoir may occur in response to runoff from precipitation events. Table 17 summarizes the precipitation and stream response in terms of total streamflow, surface runoff, and sediment for precipitation events during which water-quality samples were collected. Responses indicated in the table are representative of typical storms, but do not reflect the maximum responses observed during the study. Because precipitation data were collected only once daily at Pine Grove, the following discussion is limited to 24-hour responses in surface runoff and water quality resulting from precipitation. Water quality is indexed to suspended- sediment yields and loads, because most of the metals transported during the study were sorbed to suspended sediment.

Streamflow, runoff, suspended-sediment yields, and suspended-sediment loads during storms varied significantly with variations in magnitude and duration of precipitation events, and with seasons. Water-quality responses represented by the suspended-sediment yields and loads were not always directly related to the amount of precipitation. Responses are probably related to antecedent soil con­ ditions, land use, topography, and geology. For example, on April 10, 1983, (table 16), 1.10 in. of precipitation fell, and streams responded with large increases in surface runoff and suspended-sediment yields of 6.42 and 18.2 (tons/d)/mi2 at the rained site and the forested and agricultural site, respec­ tively. These responses may have resulted from the saturated conditions of the soils inasmuch as 0.83 in. of precipitation fell the previous day. On September 22, 1983, 1.42 in. of precipitation fell and the response by surface runoff and suspended-sediment yields were much lower than the storm in April. These responses were probably the result of the dry soil which facilitated infiltration of precipitation.

Stream responses also differed significantly at the two sites, indicating that the sources of inflow (base flow and storm runoff) and the effects of the combined inflow on the planned reservoir from a particular storm will be dif­ ficult to predict. Storm 2 resulted in similiar yields from both sites. Resultant discharge to the reservoir would be a simple flow-weighted mixture of the two discharges. Storm 3, however, produced a load of 581 tons of suspended sediment from the rained site and a load of 8.03 tons from the agricultural and forested site. In contrast, storm 5 produced a larger suspended-sediment yield from the agricultural and forested site than from the mined site; the loads from each site were comparable (775 tons and 732 tons, respectively). The contrast between the storms may be the result of seasonal and land-use differences. Less vegetation covered the forested and agricultural site during storm 5 (April) than during storm 3 (August). Suspended-sediment yields at the forested and agricultural site also were high during the February and December storms when vegetation cover was minimal.

The effect of storms on the planned reservoir will differ according to the response of upstream basins to the storms. For example, if suspended-sediment yields from the rained site are high, much of the suspended sediment delivered to the reservoir will be enriched with coal. Because coal has a low density, most of it may be transported through the main body of the reservoir and discharged, depending on the density currents and the type of release. In contrast, if suspended-sediment yields from the forested and agricultural site are high, the suspended sediment delivered to the reservoir will have a higher density. This

74

Page 81: PREIMPOUNDMENT HYDROLOGIC CONDITIONS IN THE SWATARA CREEK (1981-84

Tabl

e 17. Summary of

amount of

pr

ecip

itat

ion,

st

ream

flow

, ru

noff

, and

susp

ende

d-se

dime

nt yi

eld

and

load during selected

storms at th

e mined

site

(0

1571

919)

, an

d th

e forested an

d ag

ricu

ltur

al site (01572000)

[ftVs, cu

bic

feet pe

r se

cond

; (t

ons/

d)/m

i^,

tons per

day

per

square mile]

-4

Ul

Stre

amfl

ow

Total

prec

ipit

atio

n Pr

ecip

itat

ion

Total

Storm

(inc

hes)

Date

(inches)

(ft3/s

)

Surf

ace

runoff

(ft3

/g)

01571919

1 2 3 4 5 6 7

1.39

Febr

uary

2, 1982

3 4 5

1.75

April

25,

1982'

26 27 28 29

1.45

August 24,

1982

25 26

1.68

Dece

mber

14

, 19

8215 16 17

2.40

April

7, 1983

8 9 10 11 12

1.42

Sept

embe

r 20,

1983

21 22 23

2.02

Fe

brua

ry 13,

1984

14 15 16

0.63

.76

0 0 0 1.10 .65

0

.09

1.32 .04

0 1.58 .10

0

.05

.28

.83

1.10 .14

0 0 0 1.42

0

.02

.03

1.87 .10

180

339

424

239

150

214

281

310

259 38 233

111 59 60 485

367

216

325

395

807

700

506 14 39 36 18

1

153

726

1,310

7,061

130

299

284 99

0 64 131

160 82 0

195 73 0 0

425

307 0

109 0

412

305

111 0 22 19

g

1 0573

157

553

Total

(ft3

/s)

Surf

ace

runoff

(ft3

/g)

01572000

140

260

300 94 49 109

145

208

144 12 49 24 20 19

174

150 89 159

232

608

390

230 2.

84.

912 4.

9

40 289

717

350

122

188

228 22 0 60 96 159 75 0 37 12 0 0

155

131 0 70 67

443

225 65 0 1.

08.

11.0

0249

677

310

Suspended -s

edim

ent

Susp

ende

d-se

dime

nt

yield

load

(tons/d)/ml2

(ton

s)

01571919

0.32

2.0 .73

.22

.05

.61

.36

.50

.13

.01

7.88 .11

.02

.02

9.88 .41

.13

.83

.44

6.42

1.56 .72

.00

1.21 .17

.01

.07

39.26

9.89

1.45

01572000

0.32

3.67

2.80 .32

.02

.52

.35

.67

.16

.17

1.31 .38

.00

.01

2.57 .24

.05

.85

.70

18.2 2.22 .61

.00

.00

.01

.00

.04

23.73

13.3

22.01

01571919

23 145 53 16

150

214

281

310

259 1.

0572 8.

1

1.3

1.5

717 30 9.

360 32

466

113 52

.15

88 12.3

9

5.0

2,850

718

105

01572000

11 126 96 12

.66

18 12 235.4 .19

7.0 .84

.16

.21

88 8.1

1.7

29 2462

4 76 21

.00

.11

.29

.09

1.3

814

457 69

Page 82: PREIMPOUNDMENT HYDROLOGIC CONDITIONS IN THE SWATARA CREEK (1981-84

sediment may, therefore, be deposited near the head of the reservoir, thereby affecting a much smaller part of the reservoir. Storms of larger magnitude, however may resuspend this sediment and transport it farther into the main body of the reservoir or, if the reservoir is drawn down, this sediment may be exposed and become vulnerable to erosion.

Inputs of suspended constituents such as iron, aluminum, and phosphorus to the reservoir will generally be higher during wet years than dry years. For example, the combined suspended-sediment load to the reservoir from the mined site and the forested and agricultural site was 21,000 tons 5 percent of which was sorbed and particulate iron, aluminum, and manganese during the 1983 water year when streamflow was near normal. In contrast, the combined suspended- sediment load to the reservoir from the two sites was 59 percent higher in 1984 and 24 percent lower in 1982 when streamflows at Swatara Creek at Harper Tavern were 50 percent above average and 15 percent below average, respectively.

Inputs of constituents that were transported primarily in the dissolved phase to the reservoir may be highest following periods when water infiltrating to the groundwater has had longer contact time with soluble constituents and is released as base flow with little dilution occurring. These constituents include sulfate, nitrate, and manganese.

Accidental Discharges and Land-Use Changes

Accidental discharges and land-use changes upstream from a reservoir may significantly alter the water quality in the planned Swatara State Park Reservoir because the reservoir is expected to have a low buffering capacity. Accidental discharges may reach the main body of the reservoir before being diluted inasmuch as the reservoir will be long, narrow and relatively shallow,and most of the inflow comes from an area extensively mined for anthracite.«*

Two accidental discharges of fuel from an automobile and truck plaza near Pine Grove just upstream from the head of the planned reservoir occurred during the week of February 8, 1984 (Harrisburg Patriot News, 1984). Both spills would have strongly affected the water quality of the planned reservoir. Water-supply intakes used by Dauphin Consolidated Water Supply Company downstream at Hummelstown (fig. 1) were shut down, and farmers were advised to keep livestock from Swatara Creek. The first spill was visible under the ice that covered nearly 50 percent of the stream channel at Inwood. Prior to dilution of the fuel by stormflow on February 8, 1984, many small fish were found dead along the stream bank at Inwood. The maximum dissolved-organic carbon concentration (4.9 mg/L) at Swatara Creek at Inwood for the 3-year study was measured during the peak streamflow of this storm. The second spill was reported to be larger than the first. Fuel concentrations in Swatara Creek near Hummelstown following the second spill were measured by the water company. Concentrations of dissolved- organic carbon were 0.17 mg/L several days after the spill. The effect of this type of spill may be confined to the reservoir after it is completed.

A common land-use practice in the study area is the placement of culm along streambanks. If this practice is continued, it probably will affect the reser­ voir. Berger Associates Inc. (1972) identified coal-mine-refuse piles as the second largest source of acidity in the basin. From 1948 through 1982, several large culm piles, totaling approximately 834,000 tons (Trovel, C.P., PaDER,

76

Page 83: PREIMPOUNDMENT HYDROLOGIC CONDITIONS IN THE SWATARA CREEK (1981-84

Bureau of State Parks oral coraraun., 1985) have been placed near the planned reservoir, and it will require an estimated 3 years to remove these piles. The main pile, immediately east of Township Highway 390 (fig. 2) has about 529,000 tons of culm, borders the Swatara Creek near the head of the planned reservoir, and will become a peninsula in the reservoir upon its completion. Runoff and erosion from this pile are expected to contribute slugs of acid and metals. Results of a chemical analysis of a soil sample collected from washings at the base of the pile are given in table 12. The washings contain elevated con­ centrations of coal, aluminum, iron, copper, lead, mercury and selenium.

Estimating Inflow Water Quality from Duration Tables

Duration tables of mean daily streamflow and constituent discharges have been used by several investigators, (Johnson, 1970, Schornick and Fishel, 1980, and Fishel, 1984) to estimate the water quality of streams in various parts of the country. This method should be used with caution when (1) analyzing short periods of record, (2) major land-use changes have affected the hydrology of the study area, and (3) few precipitation events have a major effect during the study period. Because each of these factors has been shown to be important in estimating the water quality of the planned reservoir, duration tables were developed separately for both base flow and storraflow.

In order to estimate the water quality of inflow for the planned reservoir, the flow that represents the 50-percent flow-duration value, and the relation between streamflow and constituent discharge were used to estimate a base-flow concentration and load for the 50-percent flow-duration value. When this method is used for both inflow streams, a resultant base-flow concentration or load can be calculated for Swatara Creek at the location of the planned reservoir. A. similar approach can be used to calculate a mean daily load as the average of the 5-percent increments of the duration tables using techniques described by Miller (1951). Instantaneous chemical-constituent discharges to the planned reservoir however, can not be determined by simply summing the discharges from any two different duration intervals for the two inflows. Table 18 (at back) can be used to estimate the frequency of occurrence of chemical constituent discharges to the reservoir and resultant concentrations if a common duration interval is assumed for the inflows. The table also lists the mean daily base- flow loads and annual base-flow loads.

77

Page 84: PREIMPOUNDMENT HYDROLOGIC CONDITIONS IN THE SWATARA CREEK (1981-84

Table

18. Durations

of es

tima

ted

mean dally

base

flow and

stor

mflo

w, and

constituent

base-flo

w and

stor

mflo

w di

scha

rges

, for

the

mine

d si

te (Swata

ra Creek

abov

e Highway

895

- 01

5719

19),

and

the

fore

sted

an

d agricultural si

te (L

ower

Li

ttle

Swatara

Creek

- 01

5720

00),

19

82-8

4 wa

ter

years

00

[Str

eamf

low,

in

cubi

c fe

et pe

r se

cond

;co

nsti

tuen

tdi

scha

rges

Strearaf low

Percentage of

ti

me

equaled

or exceeded

98.75

95.00

90.00

85.00

80.00

75.00

70.00

65.00

60.00

55.0

0

50.00

45.00

40.00

35.00

30.00

25.00

20.00

15.00

10.00

5.00

1.25

Mean

Annu

al total

Base

0157

1919

13 16 22 26 29 32 36 46 52 61 70 90 103

120

138

152

180

209

252

306

475

109

39,8

00

flow

01572000

0.0

3.9

5.4

7.2

8.0

12.0

15.0

18.0

20.0

24.0

29.0

34.0

39.0

46.0

52.0

58.0

68.0

79.0

97.0

115.

0

174.

0

41

15,0

00

Stor

mflo

w

0157

1919

0 0 0 0 0 1 2 3 5 7 10 13 18 23 32 44 61

#87

126

225

808 53

19,3

00

01572000

0.0 .0 .0 .0 .0 .1 .7 1.1

1.8

2.9

4.1

6.0

8.1

12.0

17.0

23.0

30.0

44.0

74.0

137.

0

410.0

28

, In to

ns per

Acidity

Base flow

day)

, as

CaCO

j

Stor

mflo

w

0157

1919

01571919

01572000

0.00

00

0

.000

0

.091

5

.184

3

.2491

.310

6

.3881

.564

6

.6610

.795

6

.920

4

1.171

1.31

9

1.49

8

1.67

5

1.804

2.045

2.275

1

2.589

2

2.945

3

3.890

11

1.17

.0000

0.

.0000

.0000

.0000

. 000

0

.0000

.000

0

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.198

3

.508

6

.9106

.470

.228

.910

1.

.38

3.

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0554

1995

3423

5787

9675

554

063 ~

Alka

lini

ty,

as Ca

O>3

Stor

raf lo

w

0157

1919

0.00

00

.000

0

.0000

.0000

.000

0

.000

0

.000

0

.000

0

.000

0

.000

0

.000

0

.000

0

.0000

.0000

.209

1

.4661

.786

5

1.21

5

1.771

2.93

6

7.53

0

10,200

428

Page 85: PREIMPOUNDMENT HYDROLOGIC CONDITIONS IN THE SWATARA CREEK (1981-84

Table

18. Du

rati

ons

of estimated

mean dally

base fl

ow an

d stormflow, and

cons

titu

ent

base

-flo

w and

stor

mflo

w discharges,

for

the

mine

d si

te (Swatara

Creek

above

Highway

895

- 01

5719

19),

and

the

fore

sted

and

agricultural site (L

ower

Little

Swat

ara

Creek

- 01

5720

00),

19

82-8

4 water

years Continued

[Str

eamf

low

, In

cu

bic

feet

pe

r se

cond

; co

nsti

tuen

t discharges,

In

Percentage of

ti

me

equaled

or ex

ceed

ed

98.75

95.00

90.00

85.00

80.00

75.0

0

70.00

65.00

60.00

55.0

0

50.00

45.00

40.00

35.00

30.00

25.0

0

20.00

15.00

10.00

5.00

1.25

Mean

Annu

al to

tal

Base

01571919

0.0024

.0030

.004

3

.005

2

.005

9

.006

6

.007

5

.009

9

.011

4

.0136

.015

9

.0211

.024

5

.0291

.034

0

.037

9

.045

9

.054

2

.066

9

.083

2

.136

2

.027

9.86

Aluminum,

flow 01

572000

0.00

00

.000

9

.001

3

.0017

.0018

.002

7

.003

3

.003

9

.004

2

.005

0

.006

0

.006

9

.007

9

.009

2

.010

3

.0114

.0131

.0151

.018

2

.021

4

.0313

.008

2.92

diss

olve

d

tons pe

r day]

Alum

inum

, total

reco

vera

ble

Stormflow

0157

1919

0.00

00

.000

0

.000

0

.000

0

.0000

.0001

.000

2

.000

4

.000

7

.001

0

.001

6

.002

2

.003

3

.004

5

.006

9

.010

2

.015

3

.0239

.037

9

.078

2

.385

5

01572000

0.00

00

.000

0

.000

0

.000

0

.0000

.000

0

.0002

.000

3

.0006

.000

9

.001

2

.0018

.002

4

.0035

.004

9

.0066

.008

5

.012

4

.0205

.037

3

.108

2 ~

Base

0157

1919

0.02

61

.031

9

.0433

.050

8

.056

4

.062

0

.069

4

.087

8

.098

8

.1151

.131

4

.167

2

.190

3

.220

4

.252

0

.276

5

.325

3

.375

4

.449

3

.541

3

.825

6

.199

72.6

flow 01

572000

0.00

00

.001

8

.0026

.0034

.003

8

.0057

.007

1

.0086

.0095

.0114

.013

9

.0163

.0187

.0220

.024

9

.0278

.032

7

.0380

.046

7

.0554

.084

1

.020

7.3

Stormflow

01572000

0.00

00

.0000

.000

0

.0000

.000

0

.0000

.000

4

.0008

.001

4

.0027

.004

4

.007

2

.0107

.0181

.028

8

.0430

.061

2

.101

9

.2034

.4613

1.98

1 ~

Page 86: PREIMPOUNDMENT HYDROLOGIC CONDITIONS IN THE SWATARA CREEK (1981-84

Table

18. Durations

of es

tima

ted

mean daily

base

flow and

ator

rafl

ow,

and

cons

titu

ent

base

-flo

w and

stormflow

disc

harg

es,

for

the

mine

d si

te (S

watsra Cr

eek

abov

e Highway

895

- 01571919), and

the

fore

sted

and

agri

cult

ural

site (L

ower

Li

ttle

Swatara

Creek

- 01

5720

00),

19

82-8

4 wa

ter

years Continued

CO o

(Strearaf low?

in

cubic

feet pe

r second;

cons

titu

ent

discharges,

in tons per

day)

Calc

ium,

di

ssol

ved

Perc

enta

ge of

time

equa

led

or ex

ceed

ed

98.75

95.0

0

90.00

85.0

0

80.00

75.00

70.00

65.00

60.00

55.00

50.00

45.00

40.0

0

35.00

30.0

0

25.00

20.00

15.00

10.0

0

5.00

1.25

Mean

Annual to

tal

1

Base

0157

1919

0.8192

.952

4

1.20

0

1.35

5

1.46

6

1.57

5

1.71

5

2.049

2.240

2.515

2.77

9

3.335

3.67

8

4.109

4.548

4.878

5.51

5

6.146

7.040

8.105

11.1

5

3.56

,300

flow

01572000

0.00

00

.052

3

.071

3

.093

8

.103

6

.152

4

.188

4

.2241

.247

8

.294

7

.352

8

.410

4

.467

6

.5471

.6147

.682

0

.793

4

.9150

1.112

1.30

8

1.93

9

.480

175

Stor

rof low

0157

1919

0.0000

.0000

.0000

.0000

.0000

.2040

.3140

.4041

.555

2

.6845

.854

5

1.00

6

1.23

2

1.43

4

1.762

2.148

2.63

1

3.282

4.132

5.926

13.1

2 --

0157

2000

0.00

00

.000

0

.0000

.000

0

.0000

.001

6

.0101

.015

5

.024

8

.039

0

.0542

.077

8

.103

6

.150

5

.209

6

.2794

.359

8

.518

0

.8494

1.52

6

4.330

Page 87: PREIMPOUNDMENT HYDROLOGIC CONDITIONS IN THE SWATARA CREEK (1981-84

Tabl

e 18. Durations

of es

tima

ted

mean dally

base flow and

ator

mflo

w, and

cons

titu

ent

base

-flo

w and

stor

mflo

w di

scha

rges

, for

the

mine

d si

te (S

wata

ra Creek

above

Highway

895

- 01

5719

19),

and

the

fore

sted

and

agricultural site (L

ower

Li

ttle

Sw

atar

a Creek

- 01572000), 19

82-8

4 water

years Continued

00

(Str

eamf

low,

In

cubic

feet

pe

r se

cond

; co

nsti

tuen

t discharges,

In

Percentage of

time

equaled

or ex

ceed

ed

98.7

5

95.00

90.00

85.0

0

80.00

75.00

70.0

0

65.00

60.00

55.0

0

50.0

0

45.00

40.00

35.0

0

30.0

0

25.00

20.00

15.00

10.00

5.00

1.25

Mean

Annu

al total

Carbon

Base fl

ow

, organic

01571919

01572000

0.12

73

0

.1465

.181

8

.2035

.2191

.234

2

.253

6

.299

4

.325

2

.362

3

.397

7

.471

4

.516

4

.572

6

.629

4

.671

9

.753

3

.833

4

.9458

1.07

9

1.452

1

.494

180

84

.0000

.019

2

.0271

.036

6

.0409

.0625

.079

0

.095

6

.106

7

.129

2

.157

5

.1861

.214

9

.255

4

.290^

.325

7

.384

8

.450

2

.558

3

.667

3

.030

.230

dissolved

Stor

mflo

w

tons

per

day]

Carb

on,

organic

0157

1919

01572000

0.00

00

0.

.0000

. 000

0

.0000

.0000

.012

6

.023

6

.0341

.054

2

.073

6

.101

6

.1290

.173

2

.216

4

.2920

.3897

.5242

.723

3

1.01

2

1.71

3 1.

5.46

2 4.

0000

0000

0000

0000

0000

0003

0030

0050

0087

0150

0223

0345

0486

0763

1136

1605

2175

3371

6111

236

332

Base flow

0157

2000

0.00

00

.019

7

.0277

.037

3

.041

6

.063

3

.079

8

.096

4

.107

6

.1300

.1581

.186

5

.2150

.255

2

.289

8

.324

6

.382

8

.447

2

.553

3

.6602

1.014

.242

88

total

Stormflow

0157

1919

0.00

00

.0000

.000

0

.0000

.0000

.0367

.064

3

.089

3

.135

1

.1774

.2369

.2930

.381

3

.465

1

.6078

.7866

1.025

1.36

6

1.84

5

2.951

8.312 ~

01572000

0. 000

0

.000

0

.0000

.0000

.000

0

.000

5

.0042

.006

9

.011

9

.020

1

.0294

.044

6

.0621

.095

6

.140

2

.195

5

.261

8

.398

8

.706

1

1.39

0

4.63

5 ~

Page 88: PREIMPOUNDMENT HYDROLOGIC CONDITIONS IN THE SWATARA CREEK (1981-84

Tabl

e 18. Du

rati

ons

of estimated

mean da

lly

base Cl

ow and

stor

mflo

w, and

cons

titu

ent

base

-flo

w and

stormflow

disc

harg

es,

for

the

mined

site (S

wata

ra Creek

abov

e Highway

895

- 01

5719

19),

and

the

forested and

agricultural site (Lower Little

Swatara

Creek

- 01572000), 1982-84

water

years Continued

00 to

[Streamf low

, In

cu

bic

feet

per

seco

nd;

cons

titu

ent

disc

harg

es.

In

Chem

ical

oxygen de

mand

Perc

enta

ge of time

equaled

or ex

ceed

ed

98.75

95.00

90.00

85.00

80.00

75.00

70.0

0

65.00

60.00

55.00

50.00

45.00

40.00

35.00

30.00

25.00

20.00

15.00

10.00

5.00

1.25

Mean

Annual to

tal

Base

01571919

0.6959

.835

6

1.10

6

1.282

1.411

1.53

9

1.70

8

2.119

2.36

1

2.718

3.068

3.82

9

4.31

2

4.93

4

5.58

0

6.077

7.05

3

8.045

9.488

11.2

6

16.5

9

4.37

1,59

0

flow 01

572000

0.0000

.1316

.186

8

.2544

.284

9

.440

4

.559

8

.680

9

.762

5

.927

6

1.137

1.34

9

1.56

3

1.86

6

2.129

2.39

4

2.840

3.33

7

4.16

0

4.995

7.794

1.69

619

Stormflow

Base

01572000

0.0000

.000

0

.000

0

.000

0

.000

0

.0017

.016

8

.028

6

.051

4

.090

4

.136

3

.2141

.3057

.4872

.7364

1.054

1.444

2.275

4.214

8.749

32.10 ~

01571919

0.37

22

.4402

.5694

.651

8

.7120

.770

9

.848

0

1.034

1.142

1.29

9

1.452

1.77

9

1.984

2.244

2.513

2.71

7

3.11

5

3.515

4.089

4.78

4

6.82

7

1.96

715

tons per

day]

Chlo

ride

flow 01

572000

0.00

00

.0644

.087

5

.114

6

.126

5

.1851

.228

3

.270

9

.2991

.354

9

.424

0

.492

3

.560

0

.653

9

.733

7

.812

9

.943

9

1.087

1.31

8

1.54

6

2.281

.572

209

, di

ssol

ved

Stor

mflo

w

01571919

0.00

00

.0000

.000

0

.000

0

.000

0

.016

9

.0347

.053

0

.0903

.1282

.186

0

.2444

.3432

.4431

.6251

.871

2

1.225

1.773

2.60

9

4.774

18.1

0 --

01572000

0.00

000

.000

00

.000

00

.000

00

.000

00

.002

06

.012

94

.0198

.0316

.049

5

.068

6

.098

3

.1305

.189

1

.2627

.349

5

.4491

.6446

1.05

3

1.88

3

5.298 --

Page 89: PREIMPOUNDMENT HYDROLOGIC CONDITIONS IN THE SWATARA CREEK (1981-84

Table

18. Durations of estimated me

an dally ba

se fl

ow an

d atormflow, and

constituent base-flow an

d stormflow discharges, fo

r the

mined site (Swatara Creek ab

ove

Highway 895

- 01571919), and

the

fore

sted

an

d agricultural si

te (Lower Little

Swatara Creek -

01572000), 1982-84

water years Continued

00

Ui

[Str

eamf

low

, In cubic feet pe

rse

cond

; constituent

discharges.

Chromium, to

tsl

recoverable

Percentage of

time

equaled or

exceeded

98.75

95.00

90.00

85.00

80.00

75.0

0

70.00

65.00

60.00

55.00

50.00

45.00

40.00

35.0

0

30.00

25.00

20.00

15.0

0

10.00

5.00

1.25

Stormflow

01571919

0.0000

0

.000

0

.000

0

.000

0

.000

0

.000

0

.000

0

.000

0

.0001

.000

1

.000

2

.0003

.0005

.000

7

.001

0

.0016

.0024

.003

8

.0062

.0131

.0686

01572000

.0000

.000

0

.000

0

.000

0

.000

0

.000

0

.000

0

.0000

.0000

.0001

.000

1

.000

1

.0002

.000

4

.000

5

.0008

.0011

.0019

.003

7

.0081

.0335

In tons pe

r day]

Copp

er,

total

Storm flo

w

01571919

0.0000

0

.000

0

.000

0

.0000

.000

0

.0000

.0001

.0001

.000

2

.000

3

.000

5

.0007

.0010

.0014

.0020

.0029

.004

2

.006

4

.009

8

.0191

.0840

recoverable

01572000

.0000

.000

0

.000

0

.000

0

.000

0

.000

0

.000

0

.000

0

.0001

.0001

.000

2

.000

3

.0004

.000

6

.0009

.001

3

.001

8

.0027

.004

9

.009

8

.033

6

Page 90: PREIMPOUNDMENT HYDROLOGIC CONDITIONS IN THE SWATARA CREEK (1981-84

Table

18. Durations

of es

tima

ted

mean dally

base flow and

stormflow, and

cons

titu

ent

base-flow

and

stormflow

discharges,

for

the

mine

d al

te (S

wstara Creek

abov

e Highway

895

- 01

5719

19),

an

d th

e forested and

agri

cult

ural

site (L

ower

Li

ttle

Swatsra

Creek

- 01

5720

00),

1982-84

water

years Continued

00

[Str

eamf

low

In cu

bic

feet per

seco

nd;

constituent

discharges,

in to

ns pe

r da

y]

Iron,

diss

olve

d

Perc

enta

ge of

ti

me

equaled

or exceeded

98.75

95.0

0

90.00

85.00

80.00

75.0

0

70.00

65.00

60.0

0

55.00

50.00

45.00

40.00

35.0

0

30.00

25.0

0

20.00

15.0

0

10.0

0

5.00

1.25

Mean

Annu

al total

Base fl

ow

0157

1919

0.00

37

.0052

.008

8

.011

6

.014

0

.016

5

.020

0

.0301

.037

0

.0482

.060

6

.092

1

.1153

.1487

.1877

.2204

.292

1

.374

6

.511

5

.7067

1.47

0

.182

66.4

01572000

0.00

00

.001

0

.001

4

.001

8

.0020

.002

8

.0035

.0041

.004

5

.005

3

.0063

.007

3

.0082

.009

5

.010

6

.0117

.013

6

.015

5

.0187

.021

8

.031

6

.008

2.92

Stor

mflo

w

01572000

0.00

00

.000

04

.000

0

.000

0

.0000

.0000

.0000

.000

0

.0000

.0001

.0001

.0001

.0001

.000

2

.000

2

.000

3

.000

4

.000

5

.000

7

.001

2

.0015

Base

01571919

0.0235

.030

6

.045

9

.056

8

.065

3

.074

0

.086

0

.117

6

.137

4

.168

4

.200

7

.276

5

.328

4

.398

9

.4767

.539

2

.668

8

.8091

1.02

7

1.31

5

2.30

3

,399

146

Iron,

flow 01

572000

0.00

00

.0017

.002

4

.003

4

.003

8

.006

2

.008

0

.009

9

.011

2

.013

9

.017

3

.020

9

.024

5

.029

7

.034

3

.039

0

.047

0

.0560

.071

2

.086

9

.141

0

.279

102

total

recove

rable

Stormflow

0157

1919

0.0000

.000

0

.000

0

.000

0

.000

0

.000

8

.0021

.003

9

.0084

.013

9

.023

6

.034

9

.056

6

.081

5

.133

3

.2141

.348

3

.590

9

1.02

6

2.432

16.321

01572000

0.00

00

.000

0

.000

0

.000

0

.0000

.000

0

.0004

.0007

.0014

.0027

.0044

.0074

.011

3

.019

5

.031

7

.048

2

.069

8

.118

8

.244

6

.575

5

2.64

0

Lead,

tota

l re

cove

rabl

e

Stor

mflo

w

01571919

0.00

00

.0000

.0000

.0000

.000

0

.0000

.0000

.0000

.0000

.0001

.0001

.000

2

.000

3

.000

4

.0006

.001

0

.001

6

.002

6

.0045

.010

4

.066

6

01572000

0.00

00

.000

0

.0000

.0000

.000

0

.0000

.0000

.000

0

.000

0

.0000

.000

0

.0001

.000

1

.000

2

.000

3

.000

4

.0006

.001

0

.0019

.004

4

.019

1

Page 91: PREIMPOUNDMENT HYDROLOGIC CONDITIONS IN THE SWATARA CREEK (1981-84

Table

18. Du

rati

ons

of estimated

mean dally

base flow and

stor

rafl

ow,

and

constituent

base-flow

snd

stormflow

disc

harg

es,

for

the

mined

site (S

watara Creek

above

Highway

895

- 01

5719

19),

and

the

fore

sted

and

agri

cult

ural

site (L

ower

Li

ttle

Sw

atar

a Cr

eek

- 01

5720

00),

19

82-8

4 water

years Continued

00

Ut

(Str

eamf

low

(In

cu

bic

feet per

second

; co

nsti

tuen

tdischarges,

In tons per

Magnesium, dissolved

Percentage of

ti

me

equa

lled

or ax

ceed

ed

98.7

5

95.00

90.00

85.00

80.00

75.00

70.00

65.0

0

60.00

55.00

50.00

45.0

0

40.0

0

35.0

0

30.00

25.00

20.00

15.00

10.0

0

5.00

1.25

Mean

Annu

al to

tal

Base fl

ow

0157

1919

01572000

0.5832

.679

9

.860

3

.973

3

1.05

5

1.13

5

1.23

8

1.484

1.625

1.82

8

2.02

4

2.43

7

2.692

3.01

4

3.342

3.58

9

4.067

4.54

1

5.21

5

6.019

8.33

1

2.61

953

0.00

00

.025

9

.0355

.046

8

.0518

.076

5

.094

8

.1130

.1251

.1491

.178

9

.208

5

.238

0

.278

9

.313

9

.348

7

.406

4

.469

5

.5721

.674

0

1.004

.245

89.4

Stormflow

0157

1919

0.0000

0.

.000

0

.000

0

.000

0

.0000

.101

9

.161

8

.212

0

.2981

.3731

.473

3

.563

8

.7004

.824

8

1.02

8

1.271

1.581

2.003

2.565

3.776

8.858

2.

~

01572000

0000

0000

0000

0000

0000

0007

0045

0069

0112

0179

0250

0363

0487

0715

1004

1349

1749

2542

4222

7703

246

Base flow

0157

1919

0.05

66

0.

.065

6

.082

2

.092

5

.099

9

.1071

.116

5

.138

5

.1511

.169

2

.186

5

.222

9

.245

2

.273

3

.301

7

.3231

.364

2

.404

9

.462

2

.530

4

.724

2

.236

86.1

1.

day)

Manganese,

01572000

0000

0002

0003

0004

0005

0007

0009

0011

0012

0015

0018

0021

0024

0029

0033

0037

0044

0051

0063

0075

0115

003

10

dissolved

Stormflow

0157

1919

0.00

00

0.

.0000

.0000

.0000

.000

0

.0081

.013

1

.017

5

.0250

.031

6

.040

6

.0488

.061

2

.072

7

.0916

.1145

.144

0

.184

6

.239

3

.359

3

.879

7 __

01572000

0000

0000

0000

0000

0000

0000

0000

0001

0001

0002

0003

0005

0007

0011

0016

0022

0030

0045

0081

0161

0549 --

Page 92: PREIMPOUNDMENT HYDROLOGIC CONDITIONS IN THE SWATARA CREEK (1981-84

Table

18. Du

rati

ons

of estimated

mean da

lly

base flow an

d st

ormf

low,

an

d co

nsti

tuen

t base-flow

and

ator

mflo

w di

scha

rges

, fo

r th

e mined

site (S

watara Creek

above

Highway

895

- 01571919), snd

the

fore

sted

and

agri

cult

ural

si

te (L

ower

Li

ttle

Sw

atar

a Creek

- 01572000), 19

82-8

4 water

years Continued

00

(Str

eamf

low,

in

cubic

feet pe

r se

cond

; co

nsti

tuen

t discharges,

in to

ns pe

r day]

Manganese, to

tal

Perc

enta

ge of

equaled

o: ex

98.75

95.00

90.00

85.00

80.00

75.0

0

70.00

65.00

60.00

55.0

0

50.00

45.0

0

40.0

0

35.00

30.00

25.00

20.00

15.00

10.0

0

5.00

1.25

Mean

Annu

al

Base

time

. .-

ceed

ed

0157

1919

0.05

93

.068

9

.0867

.097

8

.1058

.1136

.1237

.147

6

.1612

.180

9

.1998

.239

5

.264

0

.2947

.326

0

.349

5

.394

8

.439

8

.503

3

.5790

.7951

.253

total

93.1

flow 01

572000

0.00

00

.000

3

.000

4

.000

6

.000

7

.0011

.001

4

.001

7

.001

9

.002

4

.0030

.003

5

.0041

.005

0

.0057

.006

5

.007

8

.0092

.011

7

.0141

.022

6

.005

1.83

Storrof low

0157

1919

0.00

00

.0000

.0000

.0000

.000

0

.0056

.009

8

.013

6

.020

6

.0271

.0363

.044

9

.058

6

.071

5

.093

6

.1212

4

.1582

.211

3

.285

7

.4581

1.29

8

01572000

0.00

00

.0000

.0000

.000

0

.0000

.0000

.0001

.0001

.000

2

.000

4

.0006

.000

9

.001

3

.0021

.003

2

.0046

.0064

.0101

.0190

.040

2

.152

3

Ammo

nia,

Base flow

01572000

0.0000

.000

2

.000

4

.0005

.0006

.0009

.001

2

.001

5

.0016

.0020

.002

5

.0030

.003

6

.004

3

.0050

.005

7

.006

8

.0081

.010

3

.012

5

.020

2

.004

1.46

diss

olve

d aa

N

Stormflow

0157

2000

0.00

00

.0000

.0000

.0000

.000

0

.0000

.0001

.000

2

.000

3

.000

5

.000

8

.001

2

.001

6

.002

4

.003

5

.004

8

.006

3

.009

5

.016

4

.0312

.098

8 ~

Ammo

nia,

Base flow

0172

000

0.00

00

.000

2

.0003

.000

5

.0006

.001

0

.001

3

.0016

.001

9

.002

3

.003

0

.0037

.004

4

.0054

.0064

.007

3

.0090

.010

9

.014

2

.017

6

.0300

.005

1.83

total

sa N

Stor

mflo

w

01572000

0.00

00

.000

0

.000

0

.0000

.0000

.0000

.000

2

.000

3

.000

4

.0007

.001

0

.001

5

.002

0

.003

0

.004

3

.005

9

.007

7

.011

5

.019

7

.037

1

.1152 ~

Page 93: PREIMPOUNDMENT HYDROLOGIC CONDITIONS IN THE SWATARA CREEK (1981-84

Table

18. Durations

of estimated

mean dally

bsse fl

ow and

ator

mflo

w, and

constituent

base

-flo

w and

stormflow

disc

harg

es,

for

the

mined

site (S

wsta

ra Cr

eek

above

Highway

895

- 01

5719

19),

an

d the

forested and

agri

cult

ural

si

te (Lower Li

ttle

Swatara

Cree

k -

01572000), 1982-84

water

years Continued

00

(Stresmflow

In cu

bic

feet pe

r second;

cons

titu

ent

disc

harg

es,

Intons pe

r day)

Ammo

nia

+ or

gani

c nitrogen,

dissolved

as N

Ammo

nia

+ organic

nitrogen,

tota

l as N

Perc

enta

ge of

time

equaled

or exceeded

98.75

95.0

0

90.0

0

85.0

0

80.00

75.0

0

70.00

65.00

60.0

0

55.0

0

50.00

45.0

0

40.00

35.00

30.0

0

25.0

0

20.00

15.0

0

10.0

0

5.00

1.25

Mean

Annu

al total

Base

01571919

0.0337

.0401

.052

2

.059

9

.065

6

.071

2

.078

5

.096

2

.106

5

.121

5

.136

2

.167

8

.187

6

.2130

.2391

.2591

.2981

.3374

.394

0

.462

8

.666

3

.187

68.3

1

flow 01

572000

0.00

00

.0054

.0074

.009

8

.010

8

.015

9

.0197

.0234

*

.025

9

.030

8

.036

9

.042

9

.048

9

.057

2

.064

3

.0714

.083

0

.095

8

.116

5

.137

0

.203

3

.050

18.2

Stormflow

0157

1919

0.00

00

.0000

.0000

.000

0

.0000

.004

3

.007

8

.011

0

.017

0

.022

7

.030

8

.038

6

.051

0

.0629

.0835

.109

7

.1450

.196

5

.269

8

.443

2

1.32

4

01572000

0.00

00

.0000

.0000

.0000

.0000

.000

5

.002

5

.003

7

.005

7

.008

6

.011

7

.016

3

.021

1

.029

7

.040

3

.052

4

.0661

.092

3

.145

2

.248

4

.645

8

~

Base

01571919

0.05

11

.059

6

.075

2

.0850

.0921

.099

0

.107

9

.129

2

.141

4

.158

9

.175

8

.211

4

.233

4

.2610

.289

2

.310

4

.351

4

.3921

.449

8

.518

6

.716

0

.226

82.5

flow 01

572000

0.00

00

.0050

.007

1

.009

6

.010

7

.0164

.020

8

.0252

.028

1

.034

1

.041

5

.0491

.0567

.067

5

.0767

.086

1

.1017

.1191

.147

7

.1767

.2730

.061

22.3

Stor

mflo

w

01572000

0.00

00

.000

0

.000

0

.000

0

.000

0

.000

3

.002

1

.003

2

.0051

.008

0

.0111

.015

9

.0212

.030

8

.042

9

.057

2

.073

6

.1059

.173

5

.311

5

.882

9

~

Page 94: PREIMPOUNDMENT HYDROLOGIC CONDITIONS IN THE SWATARA CREEK (1981-84

Table

18. Durations

of estimated

mean daily

base

fl

ow and

stor

mflo

w. and

cons

titu

ent

base

-flo

w an

d st

ormf

low

disc

harg

es,

for

the

mined

site (Swatara Creek

above

High

way

895

- 01

5719

19),

and

the

fore

sted

and

agricultural site (L

ower

Li

ttle

Switara

Creek

- 01572000), 19

82-8

4 wa

ter

years Continued

00 00

(Str

eamf

low

, in

cu

bic

feet

per

Percentage of

time

equa

led

or ex

ceed

ed

98.7

5

95.00

90.00

85.00

80.0

0

75.0

0

70.00

65.00

60.0

0

55.00

50.0

0

45.00

40.00

35.00

30.0

0

25.00

20.00

15.00

10.00

5.00

1.25

Mean

Annual to

tal

Base

01571919

0.0132

.017

4

.0265

.0330

.038

2

.043

5

.0508

.0703

.0826

.1020

.122

4

.170

6

.2039

.249

6

.300

2

.341

1

.4265

.519

6

.665

4

.860

2

1.5382

.255

93.1

seco

nd;

cons

titu

ent

discharges, in

Nitr

ate,

flow 0157

2000

0.00

00

.0059

.0093

.0140

.016

2

.028

7

.0393

.050

8

.0590

.0763

.0996

.124

7

.151

4

.1910

.227

1

.2650

.3317

.4098

.5476

.696

2

1.249

.198

72.3

tons per

day]

Organic

nitrogen,

Orga

nic

dissolved

as N

diss

olve

d as

N

tota

l

Stormflow

01571919

0.0000

.0000

.0000

.0000

.0000

.0006

.0013

.0022

.004

1

.0062

.009

6

.0133

.0198

.0268

.040

1

.059

3

.088

5

.1369

.215

7

.439

4

2.11

0

01572000

0.00

00

.0000

.0000

.0000

.0000

.000

1

.0010

.0016

.0030

.0052

.0080

.012

6

.0180

.0289

.0438

.0630

.086

7

.137

3

.2563

.5370

2.002

Base flow

01572000

0.0000

.0041

.005

7

.0076

.008

5

.012

8

.0161

.019

3

.0215

.0260

.031

5

.037

0

.0425

.050

3

.0570

.0638

.0750

.087

4

.107

7

.1281

.195

4

.045

16.4

Base

fl

ow

01572000

0.0000

.0049

.006

8

.009

1

.010

1

.0152

.019

1

.0230

.025

6

.0308

.037

3

.043

9

.0504

.059

7

.067

6

.075

5

.0887

.103

3

.127

3

.151

3

.2303

.053

19.4

nitrogen,

as N Stormflow

01572000

0.0000

.000

0

.0000

.000

0

.000

0

.0005

.002

7

.0040

.0061

.009

3

.0125

.017

5

.022

7

.032

0

.0434

.056

5

.071

2

.099

5

.156

7

.268

4

.699

2

Page 95: PREIMPOUNDMENT HYDROLOGIC CONDITIONS IN THE SWATARA CREEK (1981-84

Tabl

e 18

. Durations

of estimated

mean

dally

base flow and

stormflow, and

cons

titu

ent

base-flow

and

stor

mflo

w di

scha

rges

, fo

r the

mine

d site (S

wata

ra Creek

above

High

way

895

- 01571919), and

the

fore

sted

and

agri

cult

ural

site (L

ower

Little

Swatara

Creek

- 01

5720

00),

19

82-8

4 wa

ter

years Continued

00

SO

[Streamflow, in

cubic

feet per

seco

nd;

cons

titu

ent

discharges,

in tons per

day]

Nitrogen,

total

as N

Percentage of

time

equaled

or ex

ceed

ed

98.75

95.00

90.0

0

85.0

0

80.0

0

75.0

0

70.00

65.0

0

60.0

0

55.00

50.0

0

45.00

40.00

35.00

30.00

25.00

20.00

15.00

10.00

5.00

1.25

Mean

Annu

al total

Base

01571919

0.07

00

.0846

.113

0

.1316

.145

3

.158

9

.176

9

.221

1

.247

2

.2858

.3239

.407

1

.4602

.5288

.6005

.6557

.764

7

.876

0

1.039

1.239

1.84

8

.471

172

flow 01

5720

00

0.0000

.0122

.0182

.0260

.029

7

.0492

.0649

.0814

.0928

.1164

.147

2

.1794

.2128

.2613

.3043

.3486

.424

8

.5118

.6606

.8163

1.366

.252

92.0

Stormflow

01571919

0.0000

.000

0

.0000

.0000

.0000

.0068

.0133

.0198

.0325

.045

1

.0638

.0824

.113

1

.1435

.1980

.269

9

.371

0

.524

1

.7516

1.32

2

4.588

0157

2000

0.0000

.0000

.0000

.0000

.0000

.0005

.0039

.006

2

.010

4

.0171

.0246

.0366

.050

1

.075

5

.1086

.1490

.1966

.2934

.505

1

.9613

3.02

2

Base

01571919

0.00

07

.000

8

.001

1

.0013

.0014

.0015

.0017

.002

1

.0024

.0028

.0032

.004

0

.0046

.0053

.006

1

.0066

.007

8

.0090

.0107

.0128

.0195

.005

1.83

Phos

phor

us ,

flow

0157

2000

0.0000

.0003

.000

4

.0005

.0005

.0008

.0009

.0011

.0012

.0014

.001

7

.0019

.0022

.0025

.0028

.003

1

.003

6

.004

1

.0050

.0058

.0084

.002

.73

dissolved

as P

Stor

mflo

w

01571919

0.0000

0

.0000

.000

0

.0000

.000

0

.0000

.000

1

.0001

.000

2

.000

3

.000

4

.000

6

.000

8

.0011

.001

5

.0021

.0030

.0044

.006

5

.011

9

.045

9

--

0157

2000

.0000

.0000

.0000

.0000

.000

0

.000

0

.0000

.0000

.000

1

.000

1

.0002

.0003

.0004

.000

7

.001

1

.0015

.002

1

.0034

.006

2

.0130

.0481

Page 96: PREIMPOUNDMENT HYDROLOGIC CONDITIONS IN THE SWATARA CREEK (1981-84

Table

18. Durations

of es

tima

ted

mean

daily

base

flow and

stormflow, and

constituent

base-flow

and

stor

mflo

w di

scha

rges

, fo

r the

mined

site (S

wata

ra Creek

above

High

way

895

- 01571919), and

the

fore

sted

an

d agricultural site (L

ower

Little

Swatara

Creek

- 01

5720

00),

1982-84

water

years Continued

[Screamf low

, in

cubic

Percentage of ti

me

equa

led

or ex

ceed

ed

98.75

95.00

90.00

85.00

80.00

75.00

70.00

65.00

60.00

55.00

50.0

0

45.0

0

40.00

35.0

0

30.00

25.00

20.00

15.0

0

10.00

5.00

1.25

Mean

Annu

al to

tal

feet

per

seco

nd

Phosphorus,

Base fl

ow

0157

2000

0.0000

.000

4

.0006

.000

7

.0008

.001

2

.0015

.001

7

.001

9

.002

3

.002

7

.003

1

.003

5

.0041

.0046

.005

1

.0059

.006

7

.008

1

.009

5

.0139

.004

1.46

; co

nsti

tuen

t discharges,

in to

ns per

total

as P

Stormflow

01572000

0.00

00

.0000

.0000

.0000

.0000

.0000

.0000

.000

1

.000

1

.000

3

.000

4

.000

7

.0010

.0016

.0025

.0037

.0053

.0086

.0169

.037

2

.152

7

day]

Pota

ssiu

m, di

ssol

ved

Base

01571919

0.0701

.081

1

.1015

.114

2

.123

3

.132

1

.1435

.1706

.1859

.2080

.229

2

.2735

.3008

.3349

.369

5

.3955

.4455

.4949

.5645

.647

1

.8818

.290

106

flow

01572000

0.0000

.0141

.018

6

.023

7

.0259

.0365

.044

1

.051

4

.056

2

.065

6

.0770

.088

0

.0988

.1136

.1260

.138

2

.1581

.179

4

.213

4

.246

4

.3496

.098

35.8

Stormflow

01571919

0.0000

.0000

.0000

.0000

.0000

.0045

.0088

.0129

.021

1

.029

1

.0410

.052

7

.0720

.0910

.1249

.1695

.2318

.325

7

.4645

.8096

2.756

0157

2000

0.00

00

.0000

.000

0

.000

0

.0000

.000

3

.002

1

.0033

.0056

.009

2

.013

2

.019

7

.0270

.0407

.0586

.0804

.106

2

.158

6

.273

2

.5206

1.640

Page 97: PREIMPOUNDMENT HYDROLOGIC CONDITIONS IN THE SWATARA CREEK (1981-84

Table

18. Durations

of estimated

mean da

ily

base flow and

stormflow, and

cons

titu

ent

base-flow

and

stor

mflo

w di

scha

rges

, fo

r the

mined

site

(Swatara Creek

above

High

way

895

- 01571919), and

the

forested an

d ag

ricu

ltur

al site (L

ower

Little

Swatara

Creek

- 01

5720

00),

19

82-8

A wa

ter

years Continued

[Streamflow, in

Percentage of

time

equa

led

or ex

ceed

ed

98.75

95.0

0

90.00

85.0

0

80.0

0

75.00

70.00

65.00

60.0

0

55.00

50.0

0

45.00

40.00

35.00

30.0

0

25.00

20.0

0

15.00

10.00

5.00

1.25

Mean

Annu

al total

cubic

feet Base

01571919

0.10

18

.146

7

.257

1

.3450

.4181

.497

2

.611

7

.9419

1.169

1.548

1.97

2

3.070

3.89

3

5.094

6.51

6

7.724

10.40

13.53

18.8

1

26.4

7

57.41

7.66

2,800

per

second

Sediment,

flow

; constituent

susp

ende

d

Stor

mflo

w

01572000

01571919

0.0000

.0124

.022

0

.0366

.0440

.089

7

.1328

.1830

.220

2

.3035

.423

2

.559

7

.7124

.9522

1.181

1.A3

1

1.89

3

2.464

3.534

4.766

9.87

0

1.37

501

0.0000

.0000

.0000

.0000

.0000

.0040

.0140

.0290

.0700

.1270

.2380

.3770

.6690

1.030

1.842

3.228

5.738

10.72

20.5

9

57.1

5

543.1

discharges,

0157

2000

0.00

00

.000

0

.0000

.000

0

.000

0

.0000

.0030

.0060

.0150

.0330

.0610

.1160

.195

0

.383

0

.697

0

1.173

1.85

2

3.577

8.74

2

25.2

0

165.9

in tons

Base

01571919

0.21

05

.2595

.3578

.4235

.4728

.522

2

.5881

.7530

.852

2

1.00

1

1.150

1.482

1.698

1.98

1

2.281

2.514

2.982

3.467

4.187

5.092

7.93

6

1.91

--

699

per

day] Si

lica

,

flow

0157

2000

0.0000

.041

2

.0585

.0796

.0892

.1379

.175

3

.213

2

.2388

.2905

.3561

.4225

.4896

.5846

.6670

.750

1

.8900

1.0A6

1.304

1.56

5

2.443

.564

206

dissolved

Stormflow

01571919

0.0000

.0000

.0000

.0000

.0000

.039

4

.068

4

.0946

.142

1

.1859

.2471

.3047

.395

0

.4803

.6251

.806

0

1.046

1.388

1.866

2.964

8.219

01572000

0.0000

.0000

.0000

.0000

.000

0

.000

7

.0053

.0085

.0143

.023

7

.034

1

.0510

.070

0

.1059

.152

9

.2104

.2784

.4170

.721

7

1.382

4.393

Page 98: PREIMPOUNDMENT HYDROLOGIC CONDITIONS IN THE SWATARA CREEK (1981-84

Tabl

e 18

. Durations

of es

tima

ted

mean da

ily

base flow and

stor

mflo

w, and

constituent

base-flow

and

stor

mflo

w di

scha

rges

, for

the

mined

site (Swatara Creek

abov

e Hi

ghwa

y 895

- 01571919), and

the

fore

sted

and

agri

cult

ural

site (L

ower

Li

ttle

Swatara

Creek

- 01

5720

00),

1982-84

wate

r years Continued

vO

(Streamflow, in

cubic

feet

per

second

; co

nsti

tuen

tdischarges,in tons per

day]

Sodium,

dissolved

Percentage of time

equa

led

or exceeded

98.75

95.00

90.0

0

85.00

80.00

75.00

70.00

65.00

60.0

0

55.0

0

50.0

0

45.00

40.00

35.0

0

30.0

0

25.0

0

20.0

0

15.00

10.00

5.00

1.25

Mean

1.55

Annu

al to

tal

566

Base

01571919

0.5176

.5814

.6948

.7629

.8110

.8569

.9153

1.05

0

1.124

1.230

1.32

8

1.529

1.648

1.796

1.942

2.050

2.253

2.45

0

2.720

3.032

3.878

.295

108

flow 0*

572000

0.0000

.035

7

.0480

.0625

.0688

.0995

.122

0

.144

0

.1586

.1872

.2225

.2572

.2915

.3389

.3790

.418

7

.4840

.5549

.6692

.7815

1.140

Stormflow

01571919

0.0000

.0000

.0000

.0000

.0000

.0949

.1490

.194

1

.2708

.337

2

.425

4

.504

7

.6240

.732

0

.9078

1.117

1.382

1.742

2.218

3.236

7.445

01572000

0.0000

.0000

.0000

.0000

.0000

.0006

.004

4

.007

1

.011

7

.019

1

.027

3

.040

3

.054

9

.0822

.1176

.1604

.2106

.3122

.5324

1.00

2

3.089

Page 99: PREIMPOUNDMENT HYDROLOGIC CONDITIONS IN THE SWATARA CREEK (1981-84

Tabl

e 18. Duration*

of es

tima

ted

mean da

ily

base flow and

stor

mflo

w, and

cons

titu

ent

base-flow

and

stormflow

disc

harg

es,

for

the

mined

site (Swatara Creek, ab

ove

Highway

895

- 01571919), and

the

fore

sted

and

agri

cult

ural

si

te (L

ower

Little

Swatara

Creek

- 01572000), 19

82-8

4 water

years Continued

OJ

[Streamflow, in

cubic

feet

per

seco

nd;

cons

titu

ent

discharges,

in tons per

day]

Sulf

ate,

dissolved

Percentage of

time

equaled

or exceeded

98.7

5

95.00

90.00

85.00

80.0

0

75.00

70.00

65.0

0

60.00

55.00

50.0

0

45.00

40.00

35.00

30.0

0

25.00

20.00

15.00

10.00

5.00

1.25

Mean

Annu

al to

tal

Base

flow

0157

2000

0.0000

.1244

.1705

.2253

.2494

.3694

.4584

.546

9

.605

7

.7226

.867

9

1.01

2

1.156

1.356

1.52

7

1.698

1.980

2.29

0

2.793

3.294

4.918

1.20

436

Stormflow

01571919

0.0000

.0000

.0000

.0000

.0000

.6510

1.044

1.37

7

1.95

1

2.45

4

3.13

0

3.744

4.67

4

5.52

5

6.920

8.59

9

10.74

13.69

17.62

26.17

62.3

8 _

0157

2000

0.00

00

.0000

.0000

.000

0

.000

0

.0035

.0221

.033

9

.054

0

.084

9

.1179

.1692

.2250

.326

6

.4544

.6053

.778

8

1.12

0

1.833

3.288

9.300

_

Zinc

,total

reco

vera

ble

Stor

mflo

w

01571919

0.0000

.0000

.000

0

.0000

.0000

.0005

.0009

.0013

.0020

.002

7

.003

7

.004

7

.0063

.0079

.0106

.0141

.0189

.0261

.0364

.0613

.1941

_ .

0157

2000

0.0000

.000

0

.0000

.000

0

.0000

.000

0

.000

1

.000

1

.000

1

.0002

.0003

.0004

.0006

.0009

.0013

.0017

.0023

.0034

.0057

.0106

.0323

_

Page 100: PREIMPOUNDMENT HYDROLOGIC CONDITIONS IN THE SWATARA CREEK (1981-84

Equations 5 and 6 below can be used to determine corresponding constituent concentrations for streamflows and chemical constituent discharges at selected duration intervals, and to compute concentrations in the resultant inflow to the planned reservoir, respectively.

(5)Q x 0.0027

where C = the concentration of the inflow, in milligrams per liter;

D = the chemical constituent discharge of the inflow, in tons per day; and

Q = the quantity of the inflow, in cubic feet per second.

D1 + D? 1 2 (6)

r CO + Q ) x 0.0027t 2

where Cr = the resultant concentration, in milligrams per liter;

1 = the chemical constituent discharge for the mined site, in tons per day;

2 = the chemical constituent discharge for the forested and agricultural site, in tons per day;

^1 = the quantity of the inflow from the rained site, in cubic feet per second; and

^2 = the quantity of the inflow from the forested and agricultural site, in cubic feet per second.

94

Page 101: PREIMPOUNDMENT HYDROLOGIC CONDITIONS IN THE SWATARA CREEK (1981-84

For example, assuming median streamflows (a duration percentage of 50 in table 18), the corresponding constituent concentrations for total-recoverable aluminum at the mined site, the forested and agricultural site, and the resultant con­ centration of the inflow to the planned reservoir would be calculated as follows:

D

Q< x 0.0027and

D,

Q2 x 0.0027

therefore0.131

70 x 0.0027and

0.014 2 29 x 0.0027

and = 0.69 milligrams per liter and C2 = 0.18 milligrams per liter,

ThusD + D

CQ Q ) x 0.00272

therefore0.131 » 0.014

Cf~ C70 * 29) x 0.0027

and *r - 0.54 milligrams per liter or

540 micrograms per liter.

The assumption of median streamflows occurring at the same time at both stations is based on the close proximity of the stations and the good correlation between instantaneous streamflows at the sites.

This information, along with the value of 500 yg/L for total aluminum generally considered to be the maximum level for freshwater organisms in most Pennsylvania streams, points out that 50 percent of the time the total- recoverable aluminum concentration in the base flow entering the planned reser­ voir will equal or exceed the safe value for the cold-water fishery classification given to Swatara Creek.

95

Page 102: PREIMPOUNDMENT HYDROLOGIC CONDITIONS IN THE SWATARA CREEK (1981-84

ESTIMATED WATER QUALITY DOWNSTREAM FROM THE PLANNED RESERVOIR

As suggested during the proceeding discussion, the water quality of Swatara Creek in and downstream from the reservoir will need to be monitored closely. Because the reservoir will stratify thermally and chemically in the summer and autumn, releases during this part of the year will have the greatest impact on downstream water quality. Conservation releases need to be carefully controlled from the release gates, so that water from the hypolimnion with decreased dissolved-oxygen levels and elevated dissolved-metal concentrations will not degrade the downstream water-quality and be detrimental to the aquatic com­ munity.

The reservoir will act as a sediment trap and, therefore, reduce the con­ centrations of total phosphorus, iron, aluminum, lead, copper, and zinc discharged immediately downstream from the reservoir. During high flows resuspension and release of the sediment may cause elevated phosphorus and metal concentrations downstream from the reservoir. Because peak flows at Harper Tavern and other points downstream from Inwood probably will be reduced by the reservoir, the frequency of large discharges of nutrients and metals, such as those currently being measured at Inwood, also will be reduced.

When storm discharges are large or when the winter-pool level is to be maintained by releasing water from the hypolimnion, rapid flushing of elevated concentrations of dissolved iron, aluminum, lead, copper, and zinc that may occur could have an adverse effect on the downstream aquatic community.

Acidic conditions similar to those reported by the Pennsylvania Fish Commission for Tioga-Hammond Lakes (Baltimore Corps of Engineers, oral commun., 1984) may also occur in the planned Swatara State Park Reservoir. Mixing in the reservoir may be reduced during winters when severe ice buildup develops and the inflow channel becomes constricted. If during these periods, acidic storm discharges from the mined site are not diluted before they enter the reservoir, the acidic discharges may be trapped in pockets or accumulate near the release structure without mixing with the main body of water in the reservoir. These pockets or accumulations of acid, like those observed at the Tioga-Hammond Lakes, may be detrimental to fish in the reservoir and release of this water may kill fish downstream.

Studies by the U.S. Army Corps of Engineers (1976, 1978, 1980, and 1982) of other Pennsylvania, Maryland, and West Virginia reservoirs with different morphometric characteristics but similar mine-drainage inflows support the results of this study. Figure 20 shows the locations and table 19 lists outflow characteristics of selected reservoirs and their effects on downstream water quality. Water-quality characteristics of Swatara Creek at Inwood were included to show current downstream conditions prior to reservoir construction.

The planned Swatara State Park Reservoir is expected to have morphological and chemical characteristics similar to Crooked Creek Lake. Therefore, water quality downstream from the Swatara State Park Reservoir is expected to be simi­ lar to that observed downstream from Crooked Creek Lake, which also receives acid mine drainage. Reports of acidity in the Crooked Creek Lake (U.S. Army Corps of Engineers, 1980, p. 6) stated that it was "so severe that it caused bleaching and rotting effect on the fabric of bathers and water skier's swimming suits."

96

Page 103: PREIMPOUNDMENT HYDROLOGIC CONDITIONS IN THE SWATARA CREEK (1981-84

42*

40*

Lake Erie

OHIO

WEST VIRGINIA

7ST 76*

NEW YORK

0 20 40 MILESI r-H r-

0 20 40 60 KILOMETERS X

PENNSYLVANIA

Crooked Creek Lake

» Loyalhanna Lake

Youghiogheny River Lake

Planned

K VTygart Lake

VIRGINIA

Swatara State Park Reservoir

MARYLAND

Figure 20.--Locations of seclected reservoirs with mine-drainage inflows similar to theplanned Swatara State Park Reservoir.

97

Page 104: PREIMPOUNDMENT HYDROLOGIC CONDITIONS IN THE SWATARA CREEK (1981-84
Page 105: PREIMPOUNDMENT HYDROLOGIC CONDITIONS IN THE SWATARA CREEK (1981-84

Data collected downstream from the Crooked Creek Lake may not be representative of typical conditions, inasmuch as excessive precipitation flushed the lake approximately 12 times in 5 months. At the planned Swatara State Park Reservoir, the average flushing rate of about 15.3 times in 12 months is expected to cause greater thermal and chemical stratification than that observed in Crooked Creek Lake. Streamflows during the chemical sampling of the inflows and outflows to the Crooked Creek Lake and other reservoirs were not reported, so an assessment of the conditions expected in the Swatara State Park Reservoir can be made only qualitatively.

The depths of the Tygart Lake and Youghiogheny River Lake provide benefits that will not be present at the planned reservoir. Bottom withdrawals from the hypolimnion of these larger lakes prevent buildup of poorly oxygenated water having elevated dissolved-metals concentrations. These lakes also have the capacity to dilute inflow storm concentrations and greater buffering capacities that can decrease extremes in pH. Unlike inflow to these deeper lakes, inflow to the planned Swatara State Park Reservoir may flow through the entire lake to the outflow structure with little mixing occurring in the density currents, and then be discharged directly downstream.

Alkalinity in the planned Swatara State Park Reservoir will be important in stabilizing the water quality in and downstream from the reservoir. Each of the reservoirs in table 18 has higher buffering capacities than Swatara Creek. Acidic discharges entering the planned Swatara State Park Reservoir may not be diluted as much as they are in the other reservoirs. If dilution of acidity does not occur, and reducing conditions exist in the hypoliminion, then acidic discharges with metal concentrations higher than those observed in the other reservoirs can be expected.

The need for careful monitoring of streamflow and water quality above and below the planned reservoir is shown by data from each of the lakes. Careful management of conservation releases from the reservoir by PaDER, Bureau of Parks will require monitoring data so that water from the hypoliminion with depleted dissolved-oxygen concentrations and elevated dissolved-metals concentrations will not degrade downstream water quality. Monitoring data also will provide information on (1) the location of density currents that could increase acidity near the outlet structure, or (2) discharges from the lake that have low pH and high metal and nutrient concentrations.

101

Page 106: PREIMPOUNDMENT HYDROLOGIC CONDITIONS IN THE SWATARA CREEK (1981-84

SUMMARY AND CONCLUSIONS

1. The planned Swatara State Park. Reservoir, 9 mi northwest of Lebanon, Pa., will be long and narrow with a shore line of about 20.2 mi, a mean width of 1,200 ft, a mean depth of 13.5 ft, and a maximum depth of about 40 ft. The length of the reservoir will enhance development of shoreline communities. Depths exceeding 10 ft, where thermal and chemical stratification may occur, will extend as far as 6.0 mi upstream from the dam. About 43 percent of the lake volume will be in this critical area.

2. Daily water temperatures at the inflows to the planned reservoir are expected to increase as early as April 25 and to decrease beginning in September. Simple linear regressions between water temperature at inflows and mean daily air temperatures measured in Pine Grove were good (r2 greater than 0.60) and can be used to predict periods of maximum change in water temperature of inflows. Release of water from the bottom of the reservoir may help reduce thermal stratification between April and September.

3. Thermal stratification in the planned reservoir can be expected to occur like other reservoirs with similar morphometry and geographic locations.

4. Precipitation for the 1982, 1983, and 1984 water years was 8 percent below normal, near normal, and 25 percent above normal, respectively.

5. Precipitation data collected at the NOAA station in Lebanon is not represen­ tative of the study area and probably should not be used to estimate runoff to the planned reservoir.

6. Mean streamflows during the 3-year study were 15 percent below, 4 percent above, and 50 percent above the 65-year average at Swatara Creek at Harper Tavern, 15.9*mi downstream from the study area.

7. Iron, aluminum, and phosphorus discharges to the reservoir are expected to be higher during wet years, while sulfate, nitrate, and manganese may be higher during periods when infiltration has had longer contact times with soluble constitutents.

8. Base flow will have a large effect on water quality in the planned reser­ voir. During the 3-year study, base flow and stormflow comprised 65 and 35 percent, respectively, of the annual inflow to the reservoir area from the mined site and 55 and 45 percent, respectively, of the annual inflow from the forested and agricultural site. Base flow comprised almost 69 percent of the streamflow in 1982 a dry year but only about 57 percent in 1984 a wet year at the mined site.

9. About 1.13 in. of runoff is necessary for complete water exchange in the planned reservoir. This amount was not met during 10 of the 36 months of the study. Critical times were July through October when reduced runoff would have necessitated small releases so that a recreational pool of 473.0 ft could have been maintained. As a result, thermal stratification, oxygen depletion, and increases in dissolved metals, dissolved phosphorus, and hydrogen sulfide concentrations in the hypolimnion can be expected.

102

Page 107: PREIMPOUNDMENT HYDROLOGIC CONDITIONS IN THE SWATARA CREEK (1981-84

SUMMARY AND CONCLUSIONS Continued

10. Inflows to and the discharge downstream from the planned reservoir study area are poorly buffered. Median alkalinity and acidity concentrations were less than 10 and 5 rag/L (as CaC03), respectively. Therefore, acidic discharges from upstream mines may enter the reservoir rapidly, form den­ sity currents with little dilution, increase acidity in the reservoir and at the release structure, or be discharged and adversely affect downstream aquatic communities.

11. Concentrations of aluminum, iron, and manganese at the mined site and at the downstream site at Inwood often exceeded the USEPA criteria for fresh­ water aquatic organisms and Pennsylvania water-quality standards. Lead, copper, and zinc concentrations during storms also often exceeded the USEPA criteria for freshwater aquatic life. Maximum total-iron, aluminum, and manganese concentrations of 100,000 yg/L, 66,000 Pg/L, and 2,300 Pg/L, respectively, in storm runoff demonstrate the effect of mine drainage that is discharged into Swatara Creek above the planned reservoir.

12. Concentrations of suspended iron, aluminum, manganese, and phosphorus in storm runoff were directly related to suspended-sediment concentrations (r2 greater than 0.62). These relations were used to estimate annual storm loads

13. About 21,000 tons of suspended sediment were transported to the area of the planned reservoir during 1983 when streamflow was near normal. About 5 percent of this suspended-sediment load was sorbed and particulate iron, aluminum, and manganese. The suspended-sediment discharge was 59 percent higher during 1984 when streamflow was 50 percent above normal, and was 24 percent lower during 1982 when streamflow was 15 percent below normal.

*14. On the average, more than 692, 300, and 95 tons of total-recoverable iron,

aluminum, and manganese, respectively, were discharged annually into the area of the planned reservoir. Most of the annual storm load was discharged in 4 to 5 days. About 91 and 87 percent of the total aluminum and iron discharges were associated with suspended sediment, and storms annually contributed about 444 and 220 tons of total-recoverable iron and aluminum, respectively. The mined site contributed 91 and 98 percent of the total- recoverable aluminum and manganese, respectively, during base flow, but only 59 percent of the total-recoverable iron.

15. Point-source discharges, in addition to mine drainage, are expected to affect water quality in the planned reservoir. Concentrations of total- recoverable aluminum, total-recoverable lead, chemical-oxygen demand, and dissolved phosphorus measured in Swatara Creek just below a point discharge near Swatara Creek above Highway 443 were 35,000 Ug/L, 32 Ug/L, 290 mg/L, and 14 mg/L, respectively. The point-source discharges are probably partly responsible for the poor correlations between nutrient and metals con­ centration in base flow and storraflow in Swatara Creek.

103

Page 108: PREIMPOUNDMENT HYDROLOGIC CONDITIONS IN THE SWATARA CREEK (1981-84

SUMMARY AND CONCLUSIONS Continued

16. Concentrations of aluminum, iron, lead, copper, and zinc in bottom-material were greatest near Swatara Creek above Highway 443 just downstream from the point source near Swatara Creek above Highway 443. Reduced manganese con­ centrations in Swatara Creek bottom-material samples correspond to increases in concentrations in the water, which indicates that manganese is redissolved downstream from the point source. Less than 1 g/k of coal and less than 1 Pg/L of selenium was measured in the bottom material from the forested and agricultural site and aluminum and iron concentrations were significantly lower than those at the rained site.

17. A 529,000-ton culm pile within Swatara State Park is expected to require 3 years or more to remove; if not removed, it will become a pennisula in the planned reservoir. Analyses of washings from the base of this pile indi­ cate that the fine coal particles and runoff from the waste pile contain elevated concentrations of aluminum, iron, copper, lead, mercury, and selenium. Washings from this culm pile may cause significant chemical input to the planned reservoir.

18. Measured nutrient concentrations in inflow and estimates of phosphorus loadings indicate that the planned reservoir will be productive and may become eutrophic if discharges of phosphorus are not reduced. Nitrogen concentrations in base flow at the rained site showed an upward trend from October through September during the dry and normal year but a downward trend from November through July during the wet year. The downward trend was probably the result of dilution of the point-source discharge which had elevated ammonia concentrations. Trends in nitrogen concentrations in base flow at the forested and agricultural site were downward each year, perhaps as a result of the seasonal uptake of nitrogen by plants. Similar downward trends have been seen in other agricultural bJsins in Lancaster County.

19. Dissolved-sulfate concentrations in base flow at the rained site werehighest during low flows when much of the streamflow was discharged from deep mines in the Swatara Creek headwaters.

20. Bacteriological data collected during base flow show 9 and 35 percent of the fecal-coliform concentrations at Swatara Creek above Highway 895 and Lower Little Swatara Creek, respectively, were above 200 colonies/100 mL. Seventy-one percent of the fecal-coliform samples during base flow were over two times higher at the forested and agricultural site than at the mined site. About 21 percent of the samples collected from the forested and agricultural site had an FC/FS ratio greater than 2, indicating that discharges of human waste probably are present in the waters at the site.

21. Through use of duration techniques, the safe concentration of total- recoverable aluminum of 500 yg/L in the inflow to the planned reservoir will be equalled or exceeded more than 50 percent of the time.

104

Page 109: PREIMPOUNDMENT HYDROLOGIC CONDITIONS IN THE SWATARA CREEK (1981-84

SUMMARY AND CONCLUSIONS Continued

22. Data from reservoirs in Pennsylvania, Maryland, and West Virginia with inflow and reservoir characteristics similiar to those of the planned Swatara State Park Reservoir provide examples of the expected water quality in and downstream from the planned reservoir. The formation of density currents in the planned reservoir, such as those observed in the Crooked Creek and Loyalhanna Lakes, is likely. Because the planned reservoir will not have the buffering capacities of the larger and deeper Tygart Lake and Youghiogheny River Lake, extremes in pH may occur and dilution of acidic storm runoff may not be possible at the Swatara State Park Reservoir.

23. Unless conservation releases from the planned Swatara State Park reservoir are carefully controlled, poorly oxygenated water with elevated metals con­ centrations may degrade the downstream quality and be detrimental to the aquatic community.

105

Page 110: PREIMPOUNDMENT HYDROLOGIC CONDITIONS IN THE SWATARA CREEK (1981-84

REFERENCES CITED

Berger Associates, Inc., 1972, Swatara Creek mine drainage pollution abatement project, part two, Operation Scarlift: Commonwealth of Pennsylvania, SL-126-2, 168 p.

Collins, W. D., 1925, Temperature of water available for industrial use in the United States: U.S. Geological Survey Water-Supply Paper 520, p. 97-101.

Dillion, P. J. , and Rigler, F. H., 1974, The phosphorus-chlorophyll relationship in lakes: Limnology and Oceanography, v. 19(5), p. 767-773.

Dillion, P. J., 1975, The phosphorus budget of Cameron lake, Ontario-the importance of flushing rate to the degree of eutrophy of lakes: Limnology and Ocean­ ography, v. 20(1), p. 28-39.

Fishel, D. K., 1984, Water-quality and chemical loads of the Susquehanna River at Harrisburg, Pennsylvania, April 1980 to March 1981: U.S. Geological Survey Water-Resources Investigations Report 83-4164, 90 p.

Fishel, D. K., and Richardson, J. R. , 1986, Results of a preimpoundment water- quality study of the Swatara Creek, Pennsylvania: U.S. Geological Survey Water-Resources Investigations Report 85-4023 84 p.

Flippo, H. N., Jr., 1970, Chemical and biological conditions in Bald EagleCreek and prognosis of tropic characteristics of Foster Joseph Sayers Reser­ voir, Centre County, Pennsylvania: U.S. Geological Survey Open-File Report, 48 p.

Geldreich, E. E., and Kenner, B. A., 1969, Concepts of fecal streptococci in stream pollution: Journal Water Pollution Control Federation, v. 41, no. 8, 16 p.

Guy, H. P., 1969, Laboratory theory and methods for sediment analysis: U.S. Geological Survey Techniques of Water Resources Investigations, Book 5, Chapter Cl, 58 p.

Guy, H. P., and Norman, V. W., 1970, Field methods for measurement of fluvial sediment: U.S. Geological Survey Techniques of Water Resources Investiga­ tions, Book 3, Chapter C2, 59 p.

Hackney, C. R., and Bissonnette, G. K., 1978, Recovery of indicator bacteria in acid mine streams: Journal of Water Pollution Control Federation, v. 50, p. 775-780.

Helwig, J. T., 1978, SAS Introductory Guide, SAS Institute Inc., Raleigh, North Carolina, 83 p.

Hirsch, R. M., and Gilroy, E. J. , 1984, Methods of fitting a straight line to data: Water Resources Bulletin, v. 20, no. 5, p. 705-711.

Horowitz, A. J., 1984, A primer on trace metal-sediment chemistry: U.S. Geological Survey Open-File. Report 84-709, 82 p.

106

Page 111: PREIMPOUNDMENT HYDROLOGIC CONDITIONS IN THE SWATARA CREEK (1981-84

REFERENCES CITED Continued

Ingols, R. S., and Wilroy, R. D., 1962, Observations on manganese in Georgia Waters: Journal of American Water Works Association, v. 54, p. 203.

Johnson, L. E., 1971, Continuing sediment investigations in Indiana: U.S. Geological Survey Open-File Report, 17 p.

Lin, Shundar, Evans, R. L., and Beuscher, D. B., 1974, Bacteriologicalassessment of Spoon River water quality: Applied Microbiology, v. 28, no. 2, p. 288-297.

Lohman, S. W., 1957, Ground water in northeastern Pennsylvania: Pennsylvania Geological Survey Fourth Series, Bulletin W4, p. 39-40.

McKee, J. E., and Wolf, H. W., 1963, Water quality criteria: The ResourcesAgency of California, State Water Quality Control Board, Pub. No. 3-A, 300 p.

Miller, C. R., 1951, Analysis of flow durations, sediment - rating curve method of computing sediment yield: U.S. Bureau of Reclamation Report, 55 p.

Pennsylvania Department of Environmental Resources, 1979, Water quality standards, Pa. Bulletin, 9 (36), p. 3051-3183.

Pettyjohn, W. A., and Henning, R., 1979, Preliminary estimate of ground-water recharge rates, related streamflow and water quality in Ohio: The Ohio State University Department of Geology and Mineralogy Project Completion Report No. 522, 323 p.

Porterfield, G., 1972, Computation of fluvial-sediment discharge: U.S. Geologi­ cal Survey Techniques of Water-Resources Investigations, Book 3, Chapter C3, 66 p.

Schornick., J. C., Jr., and Fishel, D. K., 1980, Effects of storm runoff on water quality in the Mill Creek drainage basin, Willingboro, New Jersey: U.S. Geological Survey Water-Resources Investigations Report 80-98, 111 p.

Skougstad, M. W., Fishman, M. J., Friedman, L. C., Erdman, D.E., and Duncan, S. S., 1979, Methods for determination of inorganic substances in water and fluvial sediments: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 5, Chapter A-l, 626 p.

Stephan, C. E., Mount, D. I., Hansen, D. J., Gentile, J. H., Chapman, G. A., and Brungs, W. A., 1985, Guidelines for deriving numerical national water quality criteria for the protection of aquatic organisms and their uses: National Technical Information Service, Springfield, VA, PB 85-227049.

Stuart, W. T., Schneider, W. J., and Crooks, J. S., 1967, Swatara Creek basin of southeastern Pennsylvania: U.S. Geological Survey Water-Supply Paper 1829, 79 p.

Terraqua Resources Corporation, 1982, Feasibility study report, dam and reservoir project, Swatara State Park: Commonwealth of Pennsylvania, Department of General Services, Project Number 152-1, 66 p.

107

Page 112: PREIMPOUNDMENT HYDROLOGIC CONDITIONS IN THE SWATARA CREEK (1981-84

REFERENCES CITED Continued

U.S. Array Corps of Engineers, Pittsburgh District, 1976, Tygart River Lake water quality report: 70 p.

1978, Youghiogheny River lake water quality report: 69 p.

1980, Crooked Creek Lake water quality: 48 p.

1982, Loyalhanna Lake water quality report: 57 p.

U.S. Department of Agriculture, Agricultural Stabilization and Conservation Service, 1985, Conestoga Headwaters Rural Clean Water Program: Progress Report, p. 44.

U.S. Environmental Protection Agency, 1976, Quality criteria for water: Washington, D.C., 256 p.

1980, Water quality criteria documents-Availability: Federal Register, v. 45, no. 231, p. 79318-79341.

Vallentyne, J. R., 1970, Phosphorus and the control of eutrophication: Canadian Research Development, (May-June, 1970), p. 36-43, 49.

Vollenweider, R. A., 1975, Input-Output Models in Schweiz Z. Hydrology, 37: p. 53-84.

Wetzel, R. G., 1975, Limnology: W. B. Saunders Company, Philadelphia, p. 243.

108