Prediction and Testing document

Embed Size (px)

Citation preview

  • 8/10/2019 Prediction and Testing document

    1/27

    Analyzing, Predictingand Testing the durationvarious paper airplanemodels will stay in theair.

    Racer King Fisher 526

    Racer 524 Blue Jay

    Canard

    By: Yana Charoenboonvivat

    1

  • 8/10/2019 Prediction and Testing document

    2/27

    Contents

    Table of ContentsINTR!"CTIN..................................................................................................................#ANA$%&IN' RAC(R )*+ IN' -I/(R.................................................................................#ANA$%&IN' RAC(R )*0 $"( 2A%........................................................................................3ANA$%&IN' CANAR!........................................................................................................1#CNC$"IN - ANA$%I...............................................................................................13PR(!ICTIN.....................................................................................................................14T(TIN' AN! R("$T....................................................................................................*5CNC$"IN A(! N PR(!ICTIN AN! T(TIN' R("$T.........................................*#T(6P$AT( - 7N PAP(R AIRP$AN( 6!($ !(I'N......................................................*0T(TIN' - 7N8!(I'N(! PAP(R AIRP$AN( 6!($, R("$T AN! CNC$"IN -T(TIN'...........................................................................................................................*)

    INTRODUCTIONIn this document, the Racer )*+ ing -isher, Racer )*0 lue 2ay and Canard paperairplane model plane designs will 9e analyzed according to their wing type, dihedral

    *

  • 8/10/2019 Prediction and Testing document

    3/27

    angle, !C "ean !erodyna#i$ Chord%, aspe$t ratio, s&rfa$e area of thehori'ontal stabili'erand s&rfa$e area of the verti$al stabili'erto predict which o:the three paper airplane models will stay in the air :or the longest duration. To testagainst the listed aspects, e;uations and :ormulas which were derived 9y scientists will9e used< these e;uations were ta=en :rom sources such as 9oo=s and we9sites. The three

    model paper airplane designs will then 9e created and tested to o9serve how long theystay in the air and conclude i: it matches the prediction. ased on the analysis, predictionand testing completed, a paper airplane model which aims to stay in the air longer thanthe three paper airplane models analyzed>tested will 9e designed, created and tested tosee i: it does so. The template as well as the result o: testing o: the designed paperairplane model will also 9e included in this document.

    !naly'ing to see whi$h paper glider will stay in the airlongest:

    !N!(Y)IN* R!C+R -. /IN* 0I12+R

    34ing type

    a? wept89ac= wings

    Produces less drag

    5Dihedral angle

    0ig&re 6

    ta9ility and !ihedral angle

    a? Racer )*+ ing8-isher has a dihedral angle o: 15@see Bgure 1?

    7ing position and suita9le dihedral angle

    9? 7ing position o: Racer )*+ ing -isher /igh wing see Bgure 1?

    c? uita9le dihedral angle :or high wing )@ 8 15@

    d? 15@see 5a? is in the range o: )@ 8 15@

    D The dihedral angle is in the suita9le range

    #

    15 15

  • 8/10/2019 Prediction and Testing document

    4/27

    7 !C "ean !erodyna#i$ Chord% and Center of gravity

    0ig&re -

    6AC

    a? "sing the :ormula to Bnd 6AC length

    i? rc Root Chord rc?0.)cmsee Bgure *?ii? t Taper Ratio t? Tip Chord E Root Chord?*.)cm>0.)cmiii? 6AC rc F *># F 1 G t G t*? E 1 G t??

    9? u9stituteH 6AC0.)cm F *># F 1G*.)>0.)?G*.)>0.)? *?E1G*.)>0.)??89.$#rounded to #s.:?

    Centre o: gravity

    c? "sing the ruleH Center o: gravity must 9e at )5 o: the 6AC :rom the leading edge?:or 9est long duration Jight

    i? )5 o: 6AC)5>155 F #.+5cm1.3cm

    0ig&re 8

    ii? Center o: gravity is not at )5 o: the 6AC :rom the leading edge see Bgure #?

    DThe center o: gravity is notat the 9est location :or the 9est long durationJight.

    0

    $eading edge

    Ti chord*.)c

    Root

    0.)cm

    Centre o: gravity that is1.3cm :rom leading

    Actual center o:gravity

  • 8/10/2019 Prediction and Testing document

    5/27

    ;!spe$t ratio

    0ig&re < $ength o: wing span

    a? $ength o: wing span :or Racer )*+ ing Bsher6.9$# ee Bgure 0?

    7ing area

    9? ne side o: the wing AC! see Bgure 0?

    c? AC! :orm a trapezium 9ecause A>>!C

    i? Area o: trapezium AG!C F height

    d? u9stitute into c i?H Area o: trapezium0.)cmG*.)cm F 3.5cm *3cm*

    e? ince A is the center line, trapezium AC!trapezium (-A

    D The wing area* F the area o: trapezium AC! * F *3cm* .$#-

    :? "sing :ormulaH Aspect ratio$ength o: wing span?*

    i? u9stitute into :?H 1+cm?* *)+cm*

  • 8/10/2019 Prediction and Testing document

    6/27

    >1&rfa$e area of the hori'ontal stabili'er

    0ig&re

    ur:ace area o: the horizontal sta9ilizer

    a? ne side o: horizontal sta9ilizerAC! see Bgure )?

    9? AC! :orm a trapezium 9ecause A>>!C

    c? Area o: trapezium AG!C F height #cmG*cm F #.)cm3.K)cm*

    d? ince A is the center line, trapezium AC!trapezium (-A

    D The horizontal sta9ilizer area* F the area o: trapezium AC! * F

    3.K)cm*:rom >c? 6=9$#-

    est sur:ace are o: the horizontal sta9ilizer :or long duration Jight

    e? "sing the :ormulaH

    est horizontal sur:ace area :or long duration Jight5.+ F t

    6ain wing sur:ace area )+cm* :rom Le?

    tChord length or 6AC :or any wing shape not rectangular#.+5cm:rom 79?

    M/!istance :rom center o: gravity to horizontal sta9ilizer15cmmeasured?

    i? u9stitute into e?H 5.+ )+cm*F #.+5cm 6-96$#-rounded to # s.:?

    1K.)cm*actual area o: horizontal sta9ilizer8:rom >d?? 1*.1cm* calculated 9est area :orhorizontal sta9ilizer :or long duration Jight8:rom >e i??

    DThe horizontal sta9ilizer sur:ace area is not the 9est :or long duration Jight

    A9solute diOerence 9etween actual area o: horizontal sta9ilizer and calculated

    9est area :or horizontal sta9ilizer :or long duration Jight.

    a? "sing :ormulaH l calculated 9est area :or horizontal sta9ilizer :or long duration Jight

    8Actual area o: horizontal sta9ilizer l

    +

    A

    -

    (

    #.)c

    *cm

    #cm

    !

    C

    **

    M/

    15c

  • 8/10/2019 Prediction and Testing document

    7/27

    i? u9stitute into a?H l 1K.)cm*:rom >d?81*.1cm* :rom >e i?? l 9>!C

    c?Area o: trapezium AG!C F height 5.4cmG1.+cm F 1.)cm1.3K)cm*

    d? ince trapezium AC!trapezium (-'/ :rom ?a?

    D The vertical sta9ilizer sur:ace area* F the area o: trapezium AC! * F

    1.3K)cm*:rom?c? 89=$#-

    est sur:ace area o: the ertical sta9ilizer

    e? "sing the :ormulaH

    est vertical sta9ilizer areaslightly more than 5.5) F 9

    6ain wing sur:ace area)+cm*

    :rom Le?

    96ain wing span1+cm:rom ;a?

    Mv!istance :rom center o: gravity to vertical sta9ilizer11cmmeasured?

    i? u9stitute into e?H 5.5) )+cm* F 1+cm

  • 8/10/2019 Prediction and Testing document

    8/27

    :? "sing :ormulaH l calculated 9est area :or vertical sta9ilizer :or long 8Actual area o:vertical sta9ilizer l

    i? u9stitute into :?H l 0.5Kcm*:rom ?d i??8#.K)cm* ?d? l 98-$#-

    !N!(Y)IN* R!C+R -< B(U+ @!Y34ing type

    a? Tapered wings

    6ore li=ely to stall $ess drag than rectangular wings

    5Dihedral angle

    0ig&re =

    ta9ility and !ihedral angle

    a? Racer )*0 lue 2ay has a dihedral angle o: 1)@see Bgure K?

    7ing position and suita9le dihedral angle

    9? 7ing position o: Racer )*0 lue 2ay /igh wing see Bgure K ?

    c? uita9le dihedral angle :or high wing )@ 8 15@

    d? 1)@see 5a? is notin the range o: )@ 8 15@

    D The dihedral angle is notin the suita9le range

    3

    1) 1)

  • 8/10/2019 Prediction and Testing document

    9/27

    7 !C "ean !erodyna#i$ Chord% and Center of gravity

    0ig&re A

    6AC

    a? "sing the :ormula to Bnd 6AC length

    i? rc Root Chord rc?)cmsee Bgure 3?ii? t Taper Ratio t? Tip Chord E Root Chord?*.5cm>).5cm5.0iii? 6AC rc F *># F 1 G t G t *? E 1 G t??

    9? u9stituteH 6AC)cm F *># F 1G5.0G5.0?*?E1G5.0?89=6$#rounded to # s.:?

    Center o: gravity

    c? "sing the ruleH Center o: gravity must 9e at )5 o: the 6AC :rom the leading edge?:or 9est long duration Jight

    i? )5 o: 6AC)5>155 F #.K1cm1.3+rounded to #s.:?

    0ig&re

    ii? Center o: gravity is not at )5 o: the 6AC :rom the leading edge see Bgure 4?

    DThe center o: gravity is notat the 9est location :or the 9est long durationJight.

    4

    $eading

    Root Ti chord*cm

    )cm

    Centre o: gravity that is1.3+ cm :rom leading

    Actual center o:gravity

  • 8/10/2019 Prediction and Testing document

    10/27

    ;!spe$t ratio

    0ig&re 6 $ength o: wing span

    a? $ength o: wing span :or Racer )*0 lue 2ay-$#see Bgure 15?

    7ing area

    9? ne side o: the wingAC! see Bgure 15?

    c? AC! :orm a trapezium 9ecause A>>!C

    i? Area o: trapezium AG!C F height

    d? u9stitute into c i?H )cmG*cm F 15cm8$#-

    e? ince A is the center line, trapezium AC!trapezium (-A

    D The wing area* F the area o: trapezium AC! * F #)cm* =$#-

    :? "sing :ormulaH Aspect ratio$ength o: wing span?*

    i? u9stitute into :?H *5cm?* 055cm* 9=6rounded to # s.:?

    K5cm* K5cm*

    15

    A

    7ing span

    -

    (

    15cm

    *cm)cm

    C

    !

    *

    *

    7ing area

  • 8/10/2019 Prediction and Testing document

    11/27

    >1&rfa$e area of the hori'ontal stabili'er

    0ig&re 66

    ur:ace area o: the horizontal sta9ilizer

    a? ne side o: horizontal sta9ilizerAC! see Bgure 11?

    9? AC! :orm a trapezium 9ecause A>>!C

    c? Area o: trapezium AG!C F height 0cmG*cm F ).*)cm1).K)cm*

    d? ince A is the center line, trapezium AC!trapezium (-A

    D The horizontal sta9ilizer area* F the area o: trapezium AC! * F1).K)cm*:rom >c? 869$#-

    est sur:ace are o: the horizontal sta9ilizer :or long duration Jight

    e? "sing the :ormulaH

    est horizontal sur:ace area :or long duration Jight5.+ F t

    6ain wing sur:ace area K5cm* :rom Le?

    tChord length or 6AC :or any wing shape not rectangular#.K1cm:rom 79?

    M/!istance :rom center o: gravity to horizontal sta9ilizer1#cmmeasured?

    i? u9stitute into e?H 5.+ K5cm*F #.K1cm 6-9$#-rounded to # s.:?

    #1.)cm*actual area o: horizontal sta9ilizer8:rom >d?? 1*.5cm* calculated 9est area :orhorizontal sta9ilizer :or long duration Jight8:rom >e i??

    DThe horizontal sta9ilizer sur:ace area is not the 9est :or long duration Jight

    A9solute diOerence 9etween actual area o: horizontal sta9ilizer and calculated

    9est area :or horizontal sta9ilizer :or long duration Jight.

    11

    A

    *cm

    0cm

    ).*)c

    -

    ( !

    C

    **

    M/

    1#c

  • 8/10/2019 Prediction and Testing document

    12/27

    :? "sing :ormulaH l calculated 9est area :or horizontal sta9ilizer :or long duration Jight

    8Actual area o: horizontal sta9ilizer l

    i? u9stitute into :?H l #1.)cm*:rom >d?81*.5cm* >e i?? l 69$#-

    ?1&rfa$e area of verti$al stabili'er

    0ig&re 6-

    ur:ace area o: the ertical sta9ilizer

    a? ertical sta9ilizer AC! see Bgure 1*?

    9? AC! :orm a trapezium 9ecause A!>>C

    c?

    Area o: trapezium A!GC F height

    i? u9stitute into c?H 1.)cmG0.)cm F #.)cm15.)cm*

    D The vertical sta9ilizer sur:ace area 69$#-

    est sur:ace area o: the ertical sta9ilizer

    d? "sing the :ormulaH

    est vertical sta9ilizer areaslightly more than 5.5) F 9

    6ain wing sur:ace areaK5cm* :rom Le?

    96ain wing span*5cm:rom ;a?

    Mv!istance :rom center o: gravity to vertical sta9ilizer11cmmeasured?

    i? u9stitute into e?H 5.5) K5cm* F *5cm .98.$#-rounded to # s.:?

    15.)cm*actual area o: vertical sta9ilizer8:rom ?c i?? is slightly more than+.#+cm*calculated 9est area :or the vertical sta9ilizer8:rom ?d i??

    DThe vertical sta9ilizer sur:ace area is the 9est

    1*

    A

    #.)c

    1.)c

    0.)c

    !

    C

    *

    *

    Mv

    1

  • 8/10/2019 Prediction and Testing document

    13/27

  • 8/10/2019 Prediction and Testing document

    14/27

    7 !C "ean !erodyna#i$ Chord% and Center of gravity

    0ig&re 6155 F #.#1cm1.++rounded to #s.:?

    0ig&re 6

    ii? Center o: gravity is not at )5 o: the 6AC :rom the leading edge see Bgure1)?

    DThe center o: gravity is notat the 9est location :or the 9est long durationJight.

    10

    $eading

    0.5c

    Ti chord*.)c

    Root

    Centre o: gravity that is1.++cm :rom leading edge

    Actual center o:gravity

  • 8/10/2019 Prediction and Testing document

    15/27

    ;!spe$t ratio

    0ig&re 6.

    $ength o: wing span

    a? $ength o: wing span :or Racer )*0 lue 2ay6=$#see Bgure 1+?

    7ing area

    9? ne side o: the wingA!(-'A see Bgure 1+?

    c? AC( :orms a trapezium and C(! :orms a right angle triangle

    i? AC( :orm a trapezium 9ecause A>>C(

    ii? Area o: trapezium AC(AGC( F height

    iii? u9stitute into c ii?H 0cmG*.)cm F 3cm-.$#-

    iv? Area o: right angle triangle C(! ase F /eight C! F (!

    v? u9stitute into c iv?H 5.) F *.#9=$#-

    d? AC(GC(!A!( see Bgure 1+?

    DThe area o: A!(AC(GC(!*+cm*:rom ;c iii??G5.)K)cm*:rom ;c v??

    -.9=$#-

    e? ince A is the center line, A!(-'A see Bgure 1+?

    D The wing area* F the area o: A!( * F *+.)K)cm* 896$#-

    :? "sing :ormulaH Aspect ratio$ength o: wing span?*

    i? u9stitute into :?H 1Kcm?* *34cm* 9

  • 8/10/2019 Prediction and Testing document

    16/27

    )#.1)cm* )#.1)cm*

    >1&rfa$e area of the hori'ontal stabili'er

    0ig&re 6=

    QThe horizontal sta9ilizer :or the canard is its :ront wing

    ur:ace area o: the horizontal sta9ilizer

    a? Canard horizontal sta9ilizer emi8circle AC see Bgure 1K?

    9? Area o: a semicircle r*

    i? u9stitute into 9?H #?*4 6

  • 8/10/2019 Prediction and Testing document

    17/27

    :? "sing :ormulaH l calculated 9est area :or horizontal sta9ilizer :or long duration Jight

    8Actual area o: horizontal sta9ilizer l

    i? u9stitute into :?H l 1).1cm*:rom >c i??810.1cm* >9?? l 6$#-

    ?1&rfa$e area of verti$al stabili'er

    0ig&re 6A

    ur:ace area o: the ertical sta9ilizer

    a? ertical sta9ilizerA!(- see Bgure 13?

    9? AC- :orms a trapezium and -C!( :orms a rectangle

    i? AC- :orms a trapezium 9ecause A>>-C

    ii? Area o: trapezium AC-AGC- F height

    iii? u9stitute into 9 ii?H 1.)cmG)cm F #cm9=$#-

    iv? Area o: rectangle -C!($ength F 7idth-C F C!

    v? u9stitute into c iv?H )cm F 1.)cm =9$#-

    c? AC-G-C!(A!(- see Bgure 13?

    DThe area o: A!(-AC-GC(!4.K)cm*:rom ?9 iii??GK.)5cm*:rom ?9v??6=9-$#-

    est sur:ace area o: the ertical sta9ilizer

    d? "sing the :ormulaH

    est vertical sta9ilizer areaslightly more than 5.5) F 9

    6ain wing sur:ace area)#.1)cm* :rom Le?

    96ain wing span1Kcm:rom ;a?

    Mv!istance :rom center o: gravity to vertical sta9ilizer3cmmeasured?

    1K

    (-

    #.cm

    )cm

    1.)c'

    1.)c

    !C

    A

    *

    *

    Mv

  • 8/10/2019 Prediction and Testing document

    18/27

    i? u9stitute into e?H 5.5) )#.1)cm* F 1Kcm 9.$#-Rounded to # s.:?

    1K.*)cm*actual area o: vertical sta9ilizer8:rom ?c? is notslightlymore than).+)cm*calculated 9est area :or the vertical sta9ilizer8:rom ?d i??, it is a lot more.

    DThe vertical sta9ilizer sur:ace area is the not 9est

    A9solute diOerence 9etween actual area o: the vertical sta9ilizer and calculated

    9est area :or the vertical sta9ilizer

    e? "sing :ormulaH l calculated 9est area :or vertical sta9ilizer :or long 8Actual area o:vertical sta9ilizer l

    i? u9stitute into e?H l ).+)cm*:rom ?d i??81K.*)cm* ?c? l 669.$#-

    CONC(U1ION O0 !N!(Y1I1(ach design is ran=ed 18# :or each criteria 9ased on the mathematical>physics prediction, 1 9eingthe 9est and # 9eing the worst. The design with the lowest sum o: ran= will 9e predicted to stay in

    the air the longest.

    34ing type

    Design 4ing type Ran "68%Racer ing8-isher )*+ wept89ac= *Racer lue 2ay )*0 Tapered 1Canard Tapered 15Dihedral angle

    1tability

    Design Dihedral angle "E% Ran "68%

    Racer ing8-isher )*+ 15 #

    Racer lue 2ay )*0 1) 1

    Canard 1# *

    FThe more the dihedral, the higher the ran=ing

    1&itable dihedral angle for wing position

    Design In s&itable range for wing positionG"YesHNo%

    Ran "6-%

    Racer ing8-isher )*+ %es 1Racer lue 2ay )*0 No #Canard No #FI: the dihedral is in the suita9le range, the higher the ran=

    7 !C "ean !erodyna#i$ Chord% and Center of gravity

    Design Is the $enter of gravity at of the !Cfro# the leading edgeG "YesHNo%

    Ran "68%

    Racer ing8-isher )*+ No #Racer lue 2ay )*0 No #Canard No #

    FI: the center o: gravity is at )5 o: the 6AC :rom the leading edge, the higher the ran=

    ;!spe$t ratio

    Design !spe$t ratio Ran "68%Racer ing8-isher )*+ 0.)K #

    Racer lue 2ay )*0 ).K1 1Canard ).00 *

    QThe higher the aspect ratio, the higher the ran=

    13

    3c

  • 8/10/2019 Prediction and Testing document

    19/27

    >1&rfa$e area of the hori'ontal stabili'er

    Design Is the a$t&al s&rfa$e areathe sa#e as the $al$&latedbest s&rfa$e area of thehori'ontal stabili'er for

    long d&ration JightG"YesHNo%

    "If KnoL% !bsol&tediMeren$e between a$t&als&rfa$e area and the$al$&lated best s&rfa$e

    area for long d&rationJight "$#-%

    Ran "68%

    Racer ing8-isher)*+

    No ).0 *

    Racer lue 2ay )*0 No 14.) #Canard No 1.5 1QThe lower the diOerence 9etween the a9solute diOerence 9etween actual sur:ace area and thecalculated 9est sur:ace area :or long duration Jight, the higher the ran=ing

    QR the highest ran=ing 1? i: the actual sur:ace area is the same as the calculated 9est sur:ace area o:the horizontal sta9ilizer :or long duration Jight

    ?1&rfa$e area of verti$al stabili'er

    Design Is the s&rfa$e areaslightly more thanthe $al$&lated bests&rfa$e area for theverti$al stabili'er"YesHNo%

    "If KnoL% !bsol&tediMeren$e betweena$t&al s&rfa$e areaand the $al$&latedbest s&rfa$e areafor the verti$alstabili'er "$#-%

    Ran "68%

    Racer ing8-isher )*+ No 5.#* *Racer lue 2ay )*0 %es 8 1Canard No 11.+ #

    QThe lower the diOerence 9etween the a9solute diOerence 9etween the actual sur:ace area and thecalculated 9est sur:ace area :or the vertical sta9ilizer, the higher the ran=

    QR, the highest ran= 1? i: the actual sur:ace area is slightly more than the calculated 9est sur:acearea :or the vertical sta9ilizer.

    Table to show the s of raning

    R+DICTIONased on the results o: the analysis, I can ma=e a prediction>conecture thatH

    "The Racer Blue Jay 524 will stay in the air for the longest duration

    followed by the Canard then the Racer King-isher 52!"

    14

    Design 1 of raningRacer ing8-isher )*+ 1+Racer lue 2ay )*0 1#Canard 1)

  • 8/10/2019 Prediction and Testing document

    20/27

    45S

    F cm

    T+1TIN* !ND R+1U(T1(;uipmentH Protractor, #5cm ruler, 7ooden rod, Ru99er catapult, Racer )*+ ing Bsher, Canard, Racer )*0 lue2ay, topwatch.

    Controlled varia9les

    Controlledvariable

    2ow it will be $ontrolled

    (nvironmentalcondition

    (nsuring the same environmental condition each timedescription o: what the environmental condition is li=e?

    Angle glider isreleased at

    Released at an angle o: 0)S or 45S:or the Racer )*+ ing-isher? using a protractor to measure the angle

    The :orce theglider is launchedwith

    "sing a ru99er catapult to release the glider :rom the samestretched length each time the most the ru99er 9and canstretch?

    R!4 D!T!Ra$er -. /ing 0isher

    Controlled varia9le chec=H

    Controlled variable Des$ription(nvironmental condition unny, slight windAngle glider is released at S? 45see diagram 1?8 angle it should 9e

    released at :or per:ormance at its :ullpotential.tretched length o: the catapultthat the glider is released with

    The most the ru99er 9and canstretch see diagram 1?

    Diagra# 6

    *5

  • 8/10/2019 Prediction and Testing document

    21/27

    Raw data ta9le to show how long Racer )*+ ing -isher can stay in the air:or ) trials seconds?

    Trial 6 Trial - Trial8

    Trial