2
Precise Measurement of Repeater Transmission THADDEUS SLONCZEWSKI MEMBER AIEE I ONG TOLL trans- _j mission lines passing wide frequency bands must meet severe require- ments of equalization of loss with frequency. A new wide- band coaxial system under development will have a large number of repeater sections in tandem. The over-all equalizadon required is such that systematic variations in the transmission characteristic from 0.2 to 8 megacycles of one section must be known within 1/1,000 of a decibel. On the other hand, a range of only ±0.05 decibel needs to be covered. The experimental work is carried on in a temperature- controlled laboratory housing the repeater, together with a section of cable wound up on reels. Thus the trans- mission of a typical section can be measured by connecting its input and output to a transmission-measuring instru- ment in the laboratory. To fill the need for measurement of transmission to the required precision the circuit shown on Figure 1 was developed. An oscillator and detector whose impedances are equalized to match the coaxial cable impedance are alternately strapped together or connected through the repeater section. The variation in the detector output voltage is a measure of the insertion loss, or gain, of the unknown. The difficulty that has to be overcome is that in the time it takes to switch between the unknown and the strap and X s The transmission of a repeater section consisting of 4 miles of coaxial cable and a repeater includ- ing equalizing networks was measured in the laboratory. The measuring circuit was switched between the unknown and a short reference strap at a rapid rate. This reduced the eflFects of level drifts in the measuring oscil- lator amplifier and detector to a point where an accuracy of =*= 0.001 decibel over a range of =t0.05 decibel was obtained. The measure- ments were automatically recorded in pen and ink over a frequency range of 0.1 to 8.3 mega- cycles. to observe the voltage varia- tion, both the oscillator level and the detector sensitivity may drift by more than 0.001 decibel. The solution adopted is to switch at the rate of 60 cycles. It is found that within 1/60 of a second the total 12 OF COAXIAL OSCILLATOR OSCILLATOR 0 TOO.1 db RECORDING PEN drift in the circuit is less than 0.0002 decibel. In addition to being fast- acting, the switch must be a good transmission element. The mercury switch, see Figure 2, which is a modification of a standard switch,^ meets both requirements. The switch is enclosed in a cylindrical shield separating it from the driving winding. The leads are brought out to coaxial jacks in cylindrical cavities. The diameters of the cavities are proportioned to provide a 75-ohm impedance matching that of the coaxial cable. Note the bulging out of the cavity at the point where the mercury pool increases the diameter of the inner conductor. The complete relay includes three jacks into which the unknown and the strap may be plugged. The net effect of properly distributing the capacitance and inductance of the relay is that it presents a negligible impedance irregularity at all frequencies up to 80 mega- cycles. It introduces into a circuit a transmission loss caused by the resistance in the leads, which are made of permalloy. The loss rises from about 0.01 decibel at 1 megacycle to 0.02 decibel at 10 megacycles. However, the losses for the two switch positions are matched to better than 0.0002 decibel up to 8 megacycles. When the switch is open, its gap is bridged b y a direct capacitance of about 0.3 micromicrofarad. The eflfect of this coupling is reduced to a negligible value by using for a strap 1 foot of coaxial cable. The capacitance of the cable forms the shunt arm of a network which attenuates the pickup signal that is fed through the capacitance in the open position. As seen on Figure 1, AINDUCTION MOTOR REPEATER UNDER TEST Figure 1, Block diagram of the repeater loop and measuring circuit Full text of a conference paper presented at the AIEE Summer General Meeting, Atlantic City, N. J., June 15-19, 1953, and recommended for publica- tion by the AIEE Committee on Instruments and Measurements Thaddeus Slonczewski is with Bell Telephone Labo- ratories, Inc., Murray Hill, N. J 346 Slonczewski—Precise Measurement of Repeater Transmission ELECTRICAL ENGINEERING

Precise measurement of repeater transmission

Embed Size (px)

Citation preview

Page 1: Precise measurement of repeater transmission

Precise Measurement of Repeater Transmission

T H A D D E U S S L O N C Z E W S K I M E M B E R A I E E

I O N G T O L L t r a n s -_ j miss ion l ines pass ing

w i d e f r equency b a n d s must m e e t severe r e q u i r e ­ment s of equa l i za t i on of loss wi th f requency . A n e w wide ­b a n d coaxia l system u n d e r d e v e l o p m e n t will h a v e a l a rge n u m b e r of r e p e a t e r sect ions in t a n d e m . T h e over-al l e q u a l i z a d o n r e q u i r e d is such t h a t sys temat ic va r i a t ions in the t ransmiss ion cha rac te r i s t i c from 0.2 t o 8 megacyc les of one sect ion m u s t be k n o w n w i t h i n 1 /1 ,000 of a dec ibe l . O n t h e o t h e r h a n d , a r a n g e of on ly ± 0 . 0 5 dec ibe l needs to b e cove red .

T h e e x p e r i m e n t a l w o r k is c a r r i e d o n in a t e m p e r a t u r e -cont ro l led l a b o r a t o r y h o u s i n g t h e r e p e a t e r , t o g e t h e r w i t h a sect ion of c a b l e w o u n d u p on reels . T h u s t h e t r a n s ­mission of a typ ica l sect ion c a n b e m e a s u r e d b y c o n n e c t i n g its i n p u t a n d o u t p u t to a t r a n s m i s s i o n - m e a s u r i n g in s t ru ­m e n t in t h e l a b o r a t o r y .

T o fill t h e n e e d for m e a s u r e m e n t of t r ansmiss ion to t he r e q u i r e d precis ion t h e c i rcui t s h o w n on F i g u r e 1 was deve loped . A n osci l la tor a n d d e t e c t o r whose i m p e d a n c e s a r e equa l i zed t o m a t c h t h e coax ia l c a b l e i m p e d a n c e a r e a l t e rna te ly s t r a p p e d t o g e t h e r o r c o n n e c t e d t h r o u g h t h e r e p e a t e r sect ion. T h e v a r i a t i o n in t h e d e t e c t o r o u t p u t vol tage is a m e a s u r e of t h e inser t ion loss, o r ga in , of t h e u n k n o w n .

T h e difficulty t h a t has to be o v e r c o m e is t h a t in t h e t i m e it takes to swi tch b e t w e e n t h e u n k n o w n a n d t h e s t r a p a n d

X s

T h e transmiss ion of a r e p e a t e r sect ion cons i s t ing of 4 mi le s of coaxial c a b l e a n d a r e p e a t e r i n c l u d ­i n g e q u a l i z i n g n e t w o r k s w a s m e a s u r e d i n t h e laboratory . T h e m e a s u r i n g c ircuit w a s s w i t c h e d b e t w e e n t h e u n k n o w n a n d a short r e f e r e n c e s trap at a r a p i d rate . T h i s r e d u c e d t h e eflFects of l e v e l drifts i n t h e m e a s u r i n g osci l­lator ampli f ier a n d d e t e c t o r to a p o i n t w h e r e a n a c c u r a c y of =*= 0 .001 d e c i b e l o v e r a r a n g e of =t0.05 d e c i b e l w a s o b t a i n e d . T h e m e a s u r e ­m e n t s w e r e automat ica l ly r e c o r d e d i n p e n a n d ink o v e r a f r e q u e n c y r a n g e o f 0 .1 to 8.3 m e g a ­

cyc les .

to observe t he vo l t age v a r i a ­t ion , b o t h t h e osci l la tor level a n d t h e de t ec to r sensi t ivi ty m a y drift b y m o r e t h a n 0.001 dec ibe l .

T h e solut ion a d o p t e d is to swi tch a t t h e r a t e of 60 cycles. I t is found t h a t w i t h i n 1/60 of a second t h e to t a l

12 OF C O A X I A L

O S C I L L A T O R O S C I L L A T O R 0 TOO.1 db Ί

R E C O R D I N G P E N

drift in t h e c i rcui t is less t h a n 0.0002 dec ibe l .

I n a d d i t i o n t o be ing fast-ac t ing , t h e swi tch m u s t be a good t r ansmiss ion e l e m e n t . T h e m e r c u r y swi tch , see

F i g u r e 2, w h i c h is a modi f i ca t ion of a s t a n d a r d switch,^ m e e t s b o t h r e q u i r e m e n t s . T h e swi tch is enc losed in a cy l indr ica l shie ld s e p a r a t i n g it f rom t h e d r iv ing w i n d i n g . T h e leads a r e b r o u g h t o u t to coax ia l j a c k s in cy l indr ica l cavi t ies . T h e d i a m e t e r s of t h e cavi t ies a r e p r o p o r t i o n e d t o p r o v i d e a 7 5 - o h m i m p e d a n c e m a t c h i n g t h a t of t h e coaxia l cab le . N o t e t h e b u l g i n g ou t of t h e cav i ty a t t h e p o i n t w h e r e t h e m e r c u r y pool increases t h e d i a m e t e r of t h e i n n e r c o n d u c t o r . T h e c o m p l e t e r e l ay inc ludes t h r e e j a c k s i n t o w h i c h t h e u n k n o w n a n d t h e s t r a p m a y b e p lugged .

T h e ne t effect of p r o p e r l y d i s t r i b u t i n g t h e c a p a c i t a n c e a n d i n d u c t a n c e of t h e r e l ay is t h a t it p resen t s a negl ig ib le i m p e d a n c e i r r e g u l a r i t y a t all f requencies u p t o 80 m e g a ­cycles. I t i n t r o d u c e s i n t o a c i rcu i t a t r ansmiss ion loss caused by t h e res i s tance in t h e leads , w h i c h a r e m a d e of p e r m a l l o y . T h e loss rises f rom a b o u t 0.01 dec ibe l a t 1 m e g a c y c l e to 0.02 dec ibe l a t 10 megacyc le s . H o w e v e r , t h e losses for t h e t w o swi tch posi t ions a r e m a t c h e d t o b e t t e r t h a n

0.0002 dec ibe l u p t o 8 megacyc les . W h e n t h e swi tch is o p e n , its g a p

is b r i d g e d b y a d i r ec t c a p a c i t a n c e of a b o u t 0.3 m i c r o m i c r o f a r a d . T h e eflfect of th is c o u p l i n g is r e d u c e d t o a neg l ig ib le v a l u e b y us ing for a s t r a p 1 foot of coax ia l c a b l e . T h e c a p a c i t a n c e of t h e c a b l e forms t h e s h u n t a r m of a Τ n e t w o r k w h i c h a t t e n u a t e s t h e p i c k u p signal t h a t is fed t h r o u g h t h e c a p a c i t a n c e in t h e o p e n pos i t ion . As seen on F i g u r e 1,

AINDUCTION M O T O R

R E P E A T E R U N D E R T E S T

Figure 1, Block diagram of the repeater loop and measuring circuit

Full text of a conference paper presented at the AIEE Summer General Meeting, Atlantic City, N. J., June 15-19, 1953, and recommended for publica­tion by the AIEE Committee on Instruments and Measurements

Thaddeus Slonczewski is with Bell Telephone Labo­ratories, Inc., Murray Hill, N. J

346 Slonczewski—Precise Measurement of Repeater Transmission ELECTRICAL E N G I N E E R I N G

Page 2: Precise measurement of repeater transmission

+ 0.03

Figure 2. Complete coaxial switch

t he de tec to r is followed b y e i the r a fixed or a v a r i a b l e a t ­t e n u a t o r w h i c h is a l t e r n a t e l y swi tched in a n d o u t as t h e u n k n o w n or t h e s t r a p is swi t ched . T h e rectif ied s ignal , w h i c h is of t h e form of a 60-cycle s q u a r e w a v e , is n u l l e d b y adjus t ing t h e v a r i a b l e a t t e n u a t o r . W h e n a nu l l o b t a i n s , t h e r e p e a t e r loop ga in equa l s t h e se t t ing of t h e a t t e n u a t o r .

T h e t i m i n g of t he swi tches is so a r r a n g e d t h a t wh i l e t h e swi tch ing t r ans ien t s a r e b e i n g d iss ipa ted , t h e ampl i f ie r t h a t follows t h e a t t e n u a t o r is d i s connec t ed f rom t h e c i r cu i t a n d its i n p u t vo l t age is he ld c o n s t a n t b y t h e c h a r g e on a capac i to r .

W i t h such a n a r r a n g e m e n t , n o n e of t h e c i rcu i t c o n ­s tan ts is cr i t ica l . Because a s q u a r e l aw rectif ier is used , a n add i t i ona l t w o to one a d v a n t a g e is o b t a i n e d so t h e y w o u l d h a v e to v a r y by 2 pe r cen t to p r o d u c e a n e r r o r of 0.001 decibel .

I n o r d e r to o b t a i n t h e results r a p i d l y in t h e fo rm of a p e n a n d ink r ecord , t he a t t e n u a t o r , w h i c h is of t h e fo rm of a po ten t i a l d iv ider , is m o t o r d r i ven , wh i l e t h e m o t o r is energ ized b y t h e ampl i f ier fol lowing t h e a t t e n u a t o r . T h u s t h e c i rcui t nul ls itself a u t o m a t i c a l l y . T h e p a p e r d r i v e a n d t h e oscil lator a r e l inked b y a s e r v o m e c h a n i s m w h i c h insures t h a t t h e f r equency scale fits a p r e p r i n t e d l i nea r gr id .2 A s a m p l e of t h e resul t o b t a i n e d is s h o w n on F i g u r e 3.

T h e a c c u r a c y of t h e i n s t r u m e n t was c h e c k e d by m e a s u r -

o I ζ

1.6 1.8 FREQUENCY - MEGACYCLES

Figure 3. Portion of a record

ing k n o w n l e n g t h s of coax ia l c a b l e whose a t t e n u a t i o n for l ong s ample s h a d b e e n m e a s u r e d b y o t h e r m e t h o d s . T h e la rges t d i s c r e p a n c y w a s f o u n d to b e 0 .0009 dec ibe l .

W h i l e d e v e l o p e d p r i m a r i l y for r e p e a t e r t ransmiss ion m e a s u r e m e n t , t h e c i r cu i t m a y b e used for i n t e r c o m p a r i s o n of a n y t w o 7 5 - o h m n e t w o r k s whose t ransmiss ions diff'er f rom o n e a n o t h e r b y less t h a n t h e r a n g e of t h e i n s t r u m e n t , ± 0 . 0 5 dec ibe l , a n d var ies b y less t h a n 15 decibels w h i c h is t h e a u t o m a t i c - v o l u m e - c o n t r o l r a n g e of t h e de t ec to r . T h u s m a n u f a c t u r i n g v a r i a t i o n s in a n e t w o r k m a y b e d e t e c t e d aga ins t a n e t w o r k s t a n d a r d .

R E F E R E N C E S

1. Mercury Contact Relays, J . T. L. Brown, C. E. Pollard. Electrical Engineering, volume 66, November 1947, pages 1106-09.

2. A Servo Drive for Heterodyne Oscillators, T. Slonczewski. Electrical Engineering volume 70, August 1951, page 683.

New Betameter Design for Coating Measurement

O r i g i n a l l y des igned b y I s o t o p e P r o d u c t s L t d . , to serve a specific n e e d in t h e p a p e r i n d u s t r y , t h e b e t a m e t e r evo lved in to t h e b e t a m a t i c to p r o v i d e c o n t i n u o u s p r o d u c t i o n con ­t rol . N o w a b e t a m e t e r i n s t r u m e n t h a s b e e n d e v e l o p e d to m e a s u r e t h e mass of adhes ives o n t a p e , th ickness of c a r b o n b lack on c a r b o n tissue, o r o t h e r c o a t i n g a p p l i c a t i o n s .

F o r c o a t i n g app l i ca t i ons , t w o m e a s u r e m e n t s of shee t thickness m u s t b e m a d e , o n e of t h e shee t m a s s before coa t ing , o n e after. T h e diflference is t h e mass of c o a t i n g app l i ed . I so tope P r o d u c t s ' n e w c o a t i n g g a u g e eflfectively p rov ides diflferential m e a s u r e m e n t of c o a t i n g a p p l i c a t i o n s w i t h o n e i n s t r u m e n t . W h e r e t h e b e t a m e t e r is b a l a n c e d b y a n i n t e r n a l set of d u p l i c a t e source a n d d e t e c t o r , t h e c o a t i n g g a u g e b a l a n c e s o n e m e a s u r i n g h e a d aga ins t t h e

o t h e r . B o t h d e t e c t o r h e a d s a r e c o n n e c t e d w i t h a n a m p l i ­fier w h i c h r eco rds t h e diflference in s ignals a n d re la tes t h e c o a t i n g m e a s u r e m e n t t o a r e c o r d e r o r con t ro l system.

I n t h e b e t a m e t e r t h e c u r r e n t flowing f rom t h e ion c h a m ­b e r d e t e c t o r is b a l a n c e d aga in s t a second c i rcu i t in t h e i n t e r n a l d e t e c t o r . B o t h c i rcu i t s a r e wel l i n su la t ed w i th in t h e i n s t r u m e n t a g a i n s t e x t e r n a l in te r fe rence . B u t t h e c o a t i n g g a u g e e m p l o y s t w o d e t e c t o r h e a d s w h i c h c a n b e u p to 20 feet a p a r t . T h e t w o h e a d s feed i n t o a n ampl i f ie r a t a c e n t r a l p o i n t . T o p r o v i d e s t ab l e o p e r a t i o n free from v i b r a t i o n a n d e lec t r ica l in t e r fe rence . I s o t o p e eng ineers e m p l o y e d a flexible low-noise c a b l e w h i c h car r ies t h e t iny c i rcui t s f rom d e t e c t o r h e a d s to ampl i f ie r w i t h o u t a n y possible d i s to r t ion .

A P R I L 1 9 5 4 Slonczewski—Precise Measurement of Repeater Transmission 347