28
EECS 247 Lecture 17: Data Converters © 2004 H.K. Page 1 EE247 Lecture 17 ADC Converters Sampling Sampling switch induced distortion Sampling switch conductance dependence on input voltage Sampling switch charge injection Complementary switch Use of dummy device Bottom-plate switching Track & hold circuit S/H circuit incorporating gain ESD protection impact on converter performance EECS 247 Lecture 17: Data Converters © 2004 H.K. Page 2 Practical Sampling 2 2 1 12 B B FS C kT V - ( 1 for in ON o o ox DD th DD th W V g g g C V V V V L m = - = - - ( 1 1 2 ln 2 1 B s R fC << - - kT/C noise Finite R sw limited bandwidth •g sw = f(V in ) distortion Switch charge injection Clock jitter v IN v OUT C M1 f 1

Practical Sampling - University of California, Berkeleyee247/fa04/fa04/lectures/L17_f04.pdfEECS 247 Lecture 17: Data Converters © 2004 H.K. Page 15 Complete Circuit Ref: A. Abo et

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

  • EECS 247 Lecture 17: Data Converters © 2004 H.K. Page 1

    EE247Lecture 17

    ADC Converters• Sampling

    – Sampling switch induced distortion• Sampling switch conductance dependence on input voltage

    – Sampling switch charge injection• Complementary switch• Use of dummy device• Bottom-plate switching

    – Track & hold circuit– S/H circuit incorporating gain

    • ESD protection impact on converter performance

    EECS 247 Lecture 17: Data Converters © 2004 H.K. Page 2

    Practical Sampling

    22 1

    12B

    BFS

    C k TV

    −≥

    ( )1 for inON o o ox DD thDD th

    WVg g g C V V

    V V Lµ = − = − −

    ( )1 1

    2 ln 2 1BsR

    f C

  • EECS 247 Lecture 17: Data Converters © 2004 H.K. Page 3

    Sampling Distortion

    10bit ADC & T/τ = 10VDD – Vth = 4V VFS = 1V

    10bit ADC & T/τ = 10VDD – Vth = 2V VFS = 1V

    • Effect of lower supply voltage on sampling distortionà HD3 increases by (VDD1/VDD2)2

    àHD2 increases by (VDD1/VDD2)

    EECS 247 Lecture 17: Data Converters © 2004 H.K. Page 4

    Sampling Distortion

    10bit ADC T/τ = 20VDD – Vth = 2V VFS = 1V

    • SFDR is sensitive to sampling distortion to improve distortion

    • Larger VDD • Higher sampling

    bandwidth• Solutions:

    • Overdesignà Larger switchesà Increased switch

    charge injectionà Increased nonlinear S &D junction C

    • Maximize VDD/VFSàDecreased dynamic range if VDD const.

    • Complementary switch• Constant & max. VGS ?

    f(Vin)

  • EECS 247 Lecture 17: Data Converters © 2004 H.K. Page 5

    Complementary Switch

    φ1φ1B

    φ1

    φ1Bgon

    gop

    goT =gon + gopgo

    •Complementary n & p switch advantages:•Increases the overall conductance•Linearize the switch conductance for the range Vtp< Vin

  • EECS 247 Lecture 17: Data Converters © 2004 H.K. Page 7

    Complementary SwitchEffect of Supply Voltage Scaling

    gon

    gop

    goT =gon + gopgo

    •As supply voltage scales down input voltage range for constant go shrinksà Complementary switch not effective when VDD becomes comparable to Vth

    φ1φ1B

    φ1

    φ1B

    EECS 247 Lecture 17: Data Converters © 2004 H.K. Page 8

    Boosted & Constant VGS Sampling

    • Increase gate overdrive voltage as much as possible + keep VGS constantØSwitch overdrive voltage is independent of signal levelØError from finite RON is linear (to first order)ØLower Ron achieved à lower time constant

    VGS=const.

  • EECS 247 Lecture 17: Data Converters © 2004 H.K. Page 9

    Constant VGS Sampling

    EECS 247 Lecture 17: Data Converters © 2004 H.K. Page 10

    Constant VGS Sampling Circuit

    C11pF

    C21pF

    M110 / 0.35

    M210 / 0.35

    VDD=3V

    VP1100ns

    M310 / 0.35

    C31pF

    M1210 / 0.35

    M510 / 0.35

    M410 / 0.35

    M810 / 0.35

    10 / 0.35

    M9

    10 / 0.35

    M610 / 0.35

    M11

    10 / 0.35

    M11

    10 / 0.3510 / 0.35

    M11

    10 / 0.35

    VS11.5V1MHz

    Chold1pF

    P

    P

  • EECS 247 Lecture 17: Data Converters © 2004 H.K. Page 11

    Clock Voltage Doubler

    C11pF

    C21pF

    M110 / 0.35

    M210 / 0.35

    VDD=3V

    VP1100ns

    P

    P_N

    P_Boost

    EECS 247 Lecture 17: Data Converters © 2004 H.K. Page 12

    Constant VGS Sampler: Φ LOW

    • Sampling switch M11 is OFF

    • C3 charged to VDD

    Input voltagesource

    Constant Vgs Switch: P is LOW

    VDD

    M310 / 0.35

    C31pF

    M1210 / 0.35

    M410 / 0.35

    OFF

    VS11.5V1MHz

    Chold1pF

    ~ 2 VDD

    (boosted clock)VDD

    VDD

    VDD

    OFF M11OFF

    DeviceOFF

  • EECS 247 Lecture 17: Data Converters © 2004 H.K. Page 13

    Constant VGS Sampler: Φ HIGH

    • C3 previously charged to VDD

    • M8 & M9 are on:C3 across G-S of M11

    • M11 on with constant VGS = VDD

    Constant Vgs Switch: P is HIGH

    C31pF

    M810 / 0.35

    10 / 0.35

    M9

    10 / 0.35 10 / 0.3510 / 0.3510 / 0.35

    M11

    10 / 0.35

    VS11.5V1MHz

    Chold1pF

    VDD

    EECS 247 Lecture 17: Data Converters © 2004 H.K. Page 14

    Constant VGS Sampling

  • EECS 247 Lecture 17: Data Converters © 2004 H.K. Page 15

    Complete Circuit

    Ref: A. Abo et al, “A 1.5-V, 10-bit, 14.3-MS/s CMOS Pipeline Analog-to-Digital Converter,” JSSC May 1999, pp. 599.

    Clock Multiplierfor M3

    Switch

    M7 & M13 for reliability

    EECS 247 Lecture 17: Data Converters © 2004 H.K. Page 16

    Advanced Clock Boosting

    [H. Pan et al., "A 3.3-V 12-b 50-MS/s A/D converter in 0.6um CMOS with over 80-dB SFDR," IEEE J. Solid-State Circuits, pp. 1769-1780, Dec. 2000]

  • EECS 247 Lecture 17: Data Converters © 2004 H.K. Page 17

    Advanced Clock Boosting

    • Gate tracks average of input and output, reduces effect of I·R drop at high frequencies

    • Bulk also tracks signal ⇒ reduced body effect (technology used allows connecting bulk to S)

    • SFDR = 76.5dB at fin=200MHz (measured)

    [M. Waltari et al., "A self-calibrated pipeline ADC with 200MHz IF-sampling frontend," ISSCC 2002, Dig. Techn. Papers, pp. 314.]

    EECS 247 Lecture 17: Data Converters © 2004 H.K. Page 18

    Switch Off-Mode Feedthrough Cancellation

    Ref: [M. Waltari et al., "A self-calibrated pipeline ADC with 200MHz IF-sampling frontend," ISSCC 2002, Dig. Techn. Papers, pp. 314.]

  • EECS 247 Lecture 17: Data Converters © 2004 H.K. Page 19

    Practical Sampling

    vIN vOUT

    CM1

    φ1

    • Rsw = f(Vin) à distortion• Switch charge injection

    EECS 247 Lecture 17: Data Converters © 2004 H.K. Page 20

    Sampling Switch Charge Injection

    VIN VO

    Cs

    M1

    VG

    • First assume VIN is a DC voltage• When switch turns off à offset voltage induced on Cs• Why?

    VG

    t

    VH

    VIN

    VL

    VIN -Vth

    VOVIN

    toff

    ∆V

    t

  • EECS 247 Lecture 17: Data Converters © 2004 H.K. Page 21

    SamplingSwitch Charge Injection

    • Channel à distributed RC network• Channel to substrate junction capacitance à distributed & variable• Over-lap capacitance Cov = LDxWxCox associated with GS & GD overlap

    MOS xtor operating in triode regionCross section view

    Distributed channel resistance & gate & junction capacitances

    S

    G

    D

    B

    LD

    L

    Cov Cov

    EECS 247 Lecture 17: Data Converters © 2004 H.K. Page 22

    Switch Charge InjectionSlow Clock

    • Since clock fall time >> device speed à During the period (t- to toff) current in channel discharges channel charge into source

    • Only source of error à Charge transfer from Cov into Cs

    VG

    t

    VH

    VIN

    VL

    VIN -Vth

    VOVIN

    toff

    ∆V

    tt-

  • EECS 247 Lecture 17: Data Converters © 2004 H.K. Page 23

    Switch Charge InjectionSlow Clock

    VG

    t

    VH

    VIN

    VL

    VIN -Vth

    VOVIN

    toff

    ∆V

    t

    D

    Cov

    VG

    ( )

    ( )

    ( )

    ( )

    ovi th L

    ov s

    ovi th L

    s

    o i os

    ov ovos th L

    s s

    CV V V V

    C C

    CV V V

    CV V 1 V

    C Cwhere ; V V V

    C C

    ε

    ε

    ∆ = − + −+

    ≈ − + −

    = + +

    = − = − −

    t-

    Cs

    EECS 247 Lecture 17: Data Converters © 2004 H.K. Page 24

    Switch Charge InjectionSlow Clock- Example

    ( )

    2ov ox th

    ov

    s

    ovos th L

    s

    C 0.3 fF / C 5 fF / V 0.5V

    C 12 x0.3 fF /.36% 7 bit

    C 1pF

    CV V V 1.8mV

    C

    µ µ

    µ µε

    = = =

    = − = − = − → −

    = − − = −

    VG

    t

    VH

    VIN

    VL

    VIN +Vth

    VOVIN

    toff

    ∆V

    t

    VIN VO

    Cs=1pF

    M1

    VG 12µ/0.35µ

    t-

  • EECS 247 Lecture 17: Data Converters © 2004 H.K. Page 25

    Switch Charge InjectionFast Clock

    VG

    t

    VH

    VIN

    VL

    VIN +Vth

    VOVIN

    toff

    ∆V

    t

    VIN VO

    Cs=1pF

    M1

    VG

    • Sudden gate voltage drop à no gate voltage to establish current in channel àchannel charge has no choice but to escape out towards S & D

    EECS 247 Lecture 17: Data Converters © 2004 H.K. Page 26

    Switch Charge InjectionFast Clock

    ( )

    ( ) ( ) ( )( )

    ( )

    ( ) ( )

    ov cho H L

    ov s s

    ox H i thov DH L

    ov s s

    o i os

    ox

    s

    ov ox H thos H L

    s s

    C 1 QV V V

    C C 2 C

    WC V V VC 1 L 2LV V

    C C 2 C

    V V 1 V

    1 WC Lwhere

    2 C

    C 1 WC L V VV V V

    C 2 C

    ε

    ε

    ∆ = − − − ×+

    − −−≈ − − − ×

    +

    = + +

    = − ×

    −= − − − ×

    • Assumption à channel charge divided between S & D 50% & 50%• Source of error à channel charge transfer + charge transfer from Cov into Cs

    VG

    t

    VH

    VIN

    VL

    VIN -Vth

    VOVIN

    toff

    ∆V

    t

  • EECS 247 Lecture 17: Data Converters © 2004 H.K. Page 27

    Switch Charge InjectionFast Clock- Example

    ( ) ( )

    2ov ox th DD

    ox

    s

    ov ox H thos H L

    s s

    C 0.3 fF / C 5 fF / V 0.5V V 3V

    WLC 12 x0.35x5 fF /1 / 2 2.1% 4.5 bit

    C 1pF

    C 1 WC L V VV V V 9mV 26.3mV 45.3mV

    C 2 C

    µ µ

    µ µε

    = = = =

    = − = = − → −

    −= − − − × = − − = −

    VIN VO

    Cs=1pF

    M1

    VG 12µ/0.35µ VG

    t

    VH

    VIN

    VL

    VIN -Vth

    VOVIN

    toff

    ∆V

    t

    EECS 247 Lecture 17: Data Converters © 2004 H.K. Page 28

    Switch Charge Injection

    à Both errors are a function of clock fall time, input voltage level, source impedance & sampling capacitance

    Clock fall time

    ε VOS

    Clock fall time

    2.1%

    .36%

    45mV

    1.8mV

  • EECS 247 Lecture 17: Data Converters © 2004 H.K. Page 29

    Switch Charge InjectionError Reduction

    ( )

    ( )

    ( )( )

    sON s

    ox GS th

    cho

    s

    ox H i thso

    sox GS th

    2

    CR C W

    C V VL

    1 QV

    2 C

    WC L V V VC 1FOM V W 2 CC V V

    L

    LFOM

    µ

    µ

    µ

    τ

    τ

    = =−

    ∆ = −

    − −= ∆ ≈ ×

    × ×

    • How do we reduce the error?àReduce size switch?

    àReducing switch size increases τ à increased distortionà not a viable solutionàSmall τ and ∆V à use minimum chanel lengthàFor a given technology τ x ∆V=conts.

    EECS 247 Lecture 17: Data Converters © 2004 H.K. Page 30

    Sampling Switch Charge InjectionSummary

    • Extra charge injected onto sampling capacitor @ switch device turn-off– Charge sharing with Cov– Channel charge transfer

    • Issues:– DC offset– Input dependant error voltage à distortion

    • Solutions:– Complementary switch?– Addition of dummy switches?– Bottom-plate sampling?

  • EECS 247 Lecture 17: Data Converters © 2004 H.K. Page 31

    Switch Charge InjectionComplementary Switch

    • In slow clock case if area of devices are equal à effect of overlap capacitor for n & p devices cancel to first order (matching n & p area)

    φ1φ1B

    φ1

    φ1B

    VG

    t

    VH

    VIN

    VL

    EECS 247 Lecture 17: Data Converters © 2004 H.K. Page 32

    Switch Charge InjectionComplementary Switch

    • In fast clock case §Offset cancelled for equal device area§Input voltage dependant error worse!

    φ1

    φ1B

    VG

    t

    VH

    VIN

    VL

    ( )

    ( )

    ( )

    ch n n ox n H i th n

    th pch p p ox p i

    ch p ch no

    s s

    o i os

    n ox n p ox p

    s

    Q W C L V V V

    VQ W C L V VL

    Q1 QV

    2 C C

    V V 1 V

    W C L W C L1

    2 C

    ε

    ε

    − −

    −−

    − −

    = − −

    = − −

    ∆ = −

    = + +

    += − ×

  • EECS 247 Lecture 17: Data Converters © 2004 H.K. Page 33

    Switch Charge InjectionDummy Switch

    VIN VO

    Cs

    t

    VH

    VIN

    VL

    VG VGB

    • Dummy switch same L and main switch but half W • Main device clock goes low, dummy device goes high à dummy switch acquires

    same amount of channel charge main switch needs to lose§ Effective only if exactly half of the charge transferred to M2 and good matching

    between clock fall/rise

    WM2=1/2WM1VG VGB

    EECS 247 Lecture 17: Data Converters © 2004 H.K. Page 34

    Switch Charge InjectionDummy Switch

    VIN VOM1

    VG

    M2

    VGB

    § To guarantee half of charge goes to each sideà create the same environment on both sides§Add C equal to sampling capacitor to the other side of the switch + add fixed resistor

    § Degrades sampling bandwidth

    CsCs

    RWM2=1/2WM1

  • EECS 247 Lecture 17: Data Converters © 2004 H.K. Page 35

    Dummy SwitchDummy Switch Effectiveness Test

    Ref: L. A. BIENSTMAN et al, “ An Eight-Channel 8 13it Microprocessor Compatible NMOS D/A Converter withProgrammable Scaling”, IEEE JSSC, VOL. SC-15, NO. 6, DECEMBER 1980

    •Dummy switch àW=1/2Wmain

    •Note large Lsà good device area matching

    EECS 247 Lecture 17: Data Converters © 2004 H.K. Page 36

    Switch Charge InjectionBottom Plate Sampling

    VI+

    VO+M1A

    VI-VO-

    M1B •Switches M2A@ B are opened slightly earlier compared to M1A&Bà Injected charge by the opening or M2AB is constant & eliminated when used differentially

    •Since bottom plate of Cs is open when M1A&B are openedà no charge injected on Cs

    φ1b

    φ1aM2B

    M2A

    φ1aVH

    VL

    t

    φ1b

  • EECS 247 Lecture 17: Data Converters © 2004 H.K. Page 37

    Flip-Around T/H

    vIN vOUT

    C

    S1A

    φ1D

    S2

    φ2

    S2A

    φ2

    S3

    φ1D

    φ1 S1

    vCM

    φ1

    φ1D

    φ2

    •Concept based on bottom-plate sampling

    EECS 247 Lecture 17: Data Converters © 2004 H.K. Page 38

    Flip-Around T/H

    vIN vOUT

    C

    S1A

    φ1D

    S2

    φ2

    S2A

    φ2

    S3

    φ1D

    φ1 S1

    vCM

    Charging C

    φ1

    φ1D

    φ2

  • EECS 247 Lecture 17: Data Converters © 2004 H.K. Page 39

    Flip-Around T/H

    vIN vOUT

    C

    S1A

    φ1D

    S2

    φ2

    S2A

    φ2

    S3

    φ1D

    φ1 S1

    vCM

    Holding

    φ1

    φ1D

    φ2

    EECS 247 Lecture 17: Data Converters © 2004 H.K. Page 40

    Flip-Around T/H - Timing

    vIN vOUT

    C

    S1A

    φ1D

    S2

    φ2

    S2A

    φ2

    S3

    φ1D

    φ1 S1

    vCM

    Sampling

    S1 opens early tosample the input"Bottom Plate Sampling"

    φ1

    φ1D

    φ2

  • EECS 247 Lecture 17: Data Converters © 2004 H.K. Page 41

    Charge Injection• At the instant of sampling, some of the

    charge stored in sampling switch S1 is dumped onto C

    • With "Bottom Plate Sampling", charge injection comes only from S1 and is to first-order independent of vIN– Only a dc offset is added to the input signal– This dc offset can be removed with a

    differential architecture

    EECS 247 Lecture 17: Data Converters © 2004 H.K. Page 42

    Flip-Around T/H

    vIN vOUT

    C

    S1A

    φ1D

    S2

    φ2

    S2A

    φ2

    S3

    φ1D

    φ1 S1

    vCM

    Constant switch VGSto minimize distortion

    φ1

    φ1D

    φ2

  • EECS 247 Lecture 17: Data Converters © 2004 H.K. Page 43

    Flip-Around T/H

    vIN vOUT

    C

    S1A

    φ1D

    S2

    φ2

    S2A

    φ2

    S3

    φ1D

    φ1 S1

    vCM

    Small Nch-only φ1

    φ1D

    φ2

    EECS 247 Lecture 17: Data Converters © 2004 H.K. Page 44

    Flip-Around T/H• S1 is an n-channel MOSFET• Since it always switches the same voltage, it’s on-

    resistance, RS1, is signal-independent (to first order) • Choosing RS1 >> RS1A minimizes the non-linear

    component of R = RS1A+ RS1– S1A is a wide (much lower resistance than S1) constant VGS

    switch– In practice size of S1A is limited by the (nonlinear) S/D

    capacitance that also adds distortion– If S1A’s resistance is negligible, aperture delay depends only

    on S1 resistance– S1 resistance is independent of vIN; hence, aperture delay is

    independent of vIN

  • EECS 247 Lecture 17: Data Converters © 2004 H.K. Page 45

    S/H Combined with Gain Stage

    Ref: S. H. Lewis, et al., “A Pipelined 5-Msample/s 9-bit Analog-to-Digital Converter” IEEE JSSC, VOL. SC-22,NO. 6, DECEMBER 1987

    • Gain=4CI/Ci=4

    EECS 247 Lecture 17: Data Converters © 2004 H.K. Page 46

    S/H Combined with Gain Stage

    Ref: S. H. Lewis, et al., “A Pipelined 5-Msample/s 9-bit Analog-to-Digital Converter” IEEE JSSC, VOL. SC-22,NO. 6, DECEMBER 1987

  • EECS 247 Lecture 17: Data Converters © 2004 H.K. Page 47

    S/H Combined with Gain Stage

    Ref: S. H. Lewis, et al., “A Pipelined 5-Msample/s 9-bit Analog-to-Digital Converter” IEEE JSSC, VOL. SC-22,NO. 6, DECEMBER 1987

    • Gain=4C/C=4

    EECS 247 Lecture 17: Data Converters © 2004 H.K. Page 48

    ESD ProtectionADC Architectures

  • EECS 247 Lecture 17: Data Converters © 2004 H.K. Page 49

    What is ESD?

    • Electrostatic discharge• Example: Charge built up on human body

    while walking on carpet...• Charged objects near or touching IC pins

    can discharge through on-chip devices• Without dedicated protection circuitry, ESD

    events are destructive

    EECS 247 Lecture 17: Data Converters © 2004 H.K. Page 50

    Model and Protection Circuit

    [http://www.ce-mag.com/archive/03/ARG/dunnihoo.html]

    [http://www.idt.com/docs/AN_123.pdf]

  • EECS 247 Lecture 17: Data Converters © 2004 H.K. Page 51

    Equivalent Circuit

    • Nonlinear capacitance causes distortion• Distortion increases with frequency

    – Today's converters: High frequency, low distortion!

    [I. E. Opris, "Bootstrapped pad protection structure,"IEEE J.Solid-State Circuits, pp. 300, Feb. 1998.]

    EECS 247 Lecture 17: Data Converters © 2004 H.K. Page 52

    ESD Circuit Distortion

    [I. E. Opris, "Bootstrapped pad protection structure," IEEE J.Solid-State Circuits, pp. 300, Feb. 1998.]

    C(Vin)= 2..4pFfor Vin=2..0V

  • EECS 247 Lecture 17: Data Converters © 2004 H.K. Page 53

    ESD Circuit Distortion

    • Analysis: Volterra Series (see handout on the web)

    • Example:

    R Cj CL

    vi vo R=25ΩCjo=1pFCL=5pFVipeak=0.5V

    EECS 247 Lecture 17: Data Converters © 2004 H.K. Page 54

    ESD Circuit Distortion

    1 .106 1 .107 1 .108 1 .109 1 .1010

    100

    80

    60

    Second Order Distortion [dBc]

    Input frequency

    50−

    110−

    20 log HD 2 f( )( )⋅( )

    1010106 f

    HD3(37.5MHz) = -92dBHD3(100MHz) = -84dB

    1 .106 1 .107 1 .108 1 .109 1 .1010

    120

    100

    80

    Third Order Distortion [dBc]

    Input Frequency

    70−

    130−

    20 log HD 3 f( )( )⋅( )

    1010106 f

  • EECS 247 Lecture 17: Data Converters © 2004 H.K. Page 55

    ESD Circuit Distortion• Distortion from ESD circuits approaches state

    of-the-art ADC performance!• If you are working on a new, record breaking

    ADC, better think about ESD now...• Ref.: A. Wang, "Recent developments in ESD

    protection for RF IC," Proc. DAC Conference, Jan. 2003

    • Solutions still pre-mature• Lots of company IP