Practical Analysis 4 Biaxil Column

Embed Size (px)

Citation preview

  • 7/30/2019 Practical Analysis 4 Biaxil Column

    1/9

    2011 SLOVAK UNIVERSITY OF TECHNOLOGY24

    T. BOUZID, K. DEMAGH

    PRACTICAL METHOD FOR

    ANALYSIS AND DESIGN OF

    SLENDER REINFORCEDCONCRETE COLUMNS

    SUBJECTED TO BIAXIAL

    BENDING AND AXIAL LOADS

    KEY WORDS

    slender, Bi-axial,

    bending,

    RC column,

    encased composite columns,

    composite columns.

    ABSTRACT

    Reinforced and concrete-encased composite columns of arbitrarily shaped cross sectionssubjected to biaxial bending and axial loads are commonly used in many structures. For this

    purpose, an iterative numerical procedure for the strength analysis and design of short and

    slender reinforced concrete columns with a square cross section under biaxial bending and an

    axial load by using an EC2 stress-strain model is presented in this paper. The computational

    procedure takes into account the nonlinear behavior of the materials (i.e., concrete and

    reinforcing bars) and includes the second - order effects due to the additional eccentricity of

    the applied axial load by the Moment Magnification Method. The ability of the proposed

    method and its formulation has been tested by comparing its results with the experimental ones

    reported by some authors. This comparison has shown that a good degree of agreement and

    accuracy between the experimental and theoretical results have been obtained. An average

    ratio (proposed to test) of 1.06 with a deviation of 9% is achieved.

    T. BOUZID,

    K. DEMAGH

    email:[email protected],[email protected]

    Research field: concrete columns, axial and biaxial

    loads

    DepartmentofCivilEngineering,

    FacultyofSciences,

    UniversityofBatnavinAlgeria,

    5thAvenueChahidMedBoukhlouf,

    Batna05000,Algeria

    2011/1 PAGES 24 32 RECEIVED 15. 2. 2010 ACCEPTED 20. 5. 2010

    1. INTRODUCTION

    Reinforcedandconcrete-encasedcompositecolumnsofarbitrarily

    shaped cross sections subjected to biaxial bending and an axial

    load are commonly used in many structures, such as buildings

    and bridges. Acomposite column is acombination of concrete,

    structuralsteelandreinforcedsteeltoprovideforanadequateload

    carrying capacity of the member. Such composite members can

    therefore provide rigidity, usable floor areasand saving for mid-

    to-tall buildings. Many experimental and analytical studies have

    beencarried outonreinforced andcompositemembersin thepast.

    Furlong [1] has carried out analytical and experimental studies

    onreinforced concretecolumnsusingthewell-known rectangular

    stress block for the concrete compression zone in the analysis.

    Brondum-Nielsen [2] has proposed amethod of calculating the

    ultimatestrength capacity of cracked polygonal concretesections

    usingarectangularstressblockintheconcretecompressionzone

    of asection under biaxial bending. Hsu [3, 4] has presented

    theoretical and experimental results for L-shaped and channel

    - shaped reinforced concrete sections. Dundar [5] has studied

    reinforcedconcreteboxsectionsunderbiaxialbendingandanaxial

    load.Rangan[6]haspresentedamethodtocalculatethestrength

    ofreinforcedconcreteslendercolumns,includingcreepdeflection

    due to asustained load as an additional eccentricity; the method

    Bouzid.indd 24 15. 3. 2011 12:49:54

  • 7/30/2019 Practical Analysis 4 Biaxil Column

    2/9

    2011/1 PAGES 24 32

    25PRACTICAL METHOD FOR ANALYSIS AND DESIGN OF SLENDER REINFORCED...

    compares with the ACI 318-Building Code Method [7]. Dundar

    and Sahin [8] have researched arbitrarily - shaped reinforced

    concrete sections subjectedto biaxial bending and an axial load

    using Whitneys stress block [9] in the compression zone of

    aconcretesection.RodriguezandOchoa[10]andFafitis[11]have

    suggested numerical methods for the computation of the failure

    surfaceofreinforcedconcretesectionsofanarbitraryshape.Hong

    [12]hasproposedasimpleapproachforestimatingthestrengthof

    slender reinforced concrete columns withan arbitrarily - shaped

    cross section using anonlinear stressstrain relationship for thematerials. SaatciogluandRazvi[13] havepresentedexperimental

    researchthatinvestigatesthebehaviorofhigh-strengthconcrete

    columns confinedby arectilinear reinforcement under concentric

    compression. Furlong, et al. [14] have examined several design

    proceduresfor anultimatestrength analysisof reinforcedconcrete

    columnsandcomparedarangeofshortandslenderexperimental

    columnsunderashort-termaxialloadandbiaxial bending.Mirza

    [15]hasexaminedtheeffectsofvariablessuchastheconfinement

    effect,theratioofstructuralsteeltoagrossarea,thecompressive

    strengthofconcrete,theyieldstrengthofsteelandtheslenderness

    ratio,ontheultimatestrengthofcompositecolumns.Lachance[16],

    Chen,etal.[17]andSfakianakis[18]haveproposedanumerical

    analysis method for short composite columns with an arbitrarily- shaped cross section.The confinement provided by lateral ties

    increasestheultimatestrengthcapacityandductilityofreinforced

    concrete columns under combined biaxial bending and an axial

    load. Thegainsin strengthand ductility inconcreteare obtained

    by many confinement parameters, e.g., the compressive strength

    of the concrete, the longitudinal reinforcement, the typeand the

    yieldstrengthofthelateralties,thetiespacing,etc.Duetosuch

    parameters,adeterminationofthemechanicalbehaviorofconfined

    concrete is not as easy as that with unconfined concrete. Some

    researchers,forinstance,KentandPark[19],SheikhandUzumeri

    [20],SaatciogluandRazvi[21],Chung,etal.[22]havepresented

    astressstrain relationship to describe the confined concretes

    behavior. Dundar, et al. [23] have carried out an experimental

    investigationof thebehavior ofreinforcedconcretecolumns,and

    atheoretical procedure for an analysis of both short and slender

    reinforcedandcompositecolumnswithanarbitrarily-shapedcross

    sectionsubjectedtobiaxialbendingandanaxialloadispresented.

    In the proposed procedure, nonlinear stressstrain relations are

    assumedforconcrete,reinforcedsteelandstructuralsteelmaterials.

    Thecompressionzoneoftheconcretesectionandtheentiresection

    of the structural steel are divided into an adequate number of

    segmentsinordertousevariousstressstrainmodelsfortheanalysis.

    Theslendernesseffectofthememberistakenintoaccountbyusing

    theMomentMagnificationMethod(MMM).Thetestresultswere

    compared with the theoretical results obtained by adeveloped

    computerprogramwhichusesvariousstressstrainmodelsforthe

    confined or unconfined concrete in the compression zoneof the

    member. The comparison shows agood degree agreementof the

    resultsobtainedbytheproposedprocedure.

    Themainobjectiveofthispaperistopresentaniterativecomputing

    procedure for the rapid design and ultimate strength analysis

    of asquare cross-section for both short and slender reinforced

    concrete elements subjected to biaxial bending and an axial

    load. For this aim asimple model has been developed, which

    considers various unconfined concrete stressstrain models foraconcretecompressionzoneforbothshortandslenderreinforced

    concrete columns. Asimple formula to predict the resistance

    capacityofbiaxiallyloadedshortreinforcedconcretecolumnswith

    asquarecross-sectionisintroduced.Basedonanumericalanalysis,

    acapacity factor which represents the ratio of PM interaction

    diagramsinauniaxialloadingcolumntoabiaxialloadingcolumn

    is proposed. The relationships between the capacity factor (K)

    andallthedesignvariablesare establishedby regression,and the

    required P-M interactiondiagramof the biaxial RC column can

    be easily constructed without conducting refined analyses. The

    slendernesseffectofthe memberis thentakenintoaccountusing

    theMomentMagnificationMethod.Finally,thetheoreticalresults

    obtained from using the proposed model is compared with thetheoretical andexperimentalresultsavailable in theliterature for

    shortandslendercolumns.

    2. ANALYTIC METHOD

    2.1. Assumptions

    Theproposedmethodisbasedonthefollowingassumptions:

    1.Theplanesectionsremainplaneafteranydeformation(Bernoullis

    assumption).

    2.Arbitrary monotonic stressstrainrelationships for eachof the

    threematerials(i.e.,concrete,structuralsteelandthereinforcing

    bars)maybeassumed.

    3. Thelongitudinalreinforcingbarsareidenticalindiameterandare

    subjectedtothesameamountofstrainastheadjacentconcrete.

    4.Theeffectofcreepandthetensilestrengthofconcreteandany

    directtensionstressesduetoshrinkage,etc.,areignored.

    5.Sheardeformationisignored.

    2.2. Stressstrain models for the materials

    Theanalysisutilizeswellestablishedmodelsforconcrete(confined,

    and unconfined) and reinforcing steel. Figure 1 and 2 show the

    stressstrainmodelsfortheconcreteandsteel.

    Bouzid.indd 25 15. 3. 2011 12:49:54

  • 7/30/2019 Practical Analysis 4 Biaxil Column

    3/9

    26 PRACTICAL METHOD FOR ANALYSIS AND DESIGN OF SLENDER REINFORCED...

    2011/1 PAGES 24 32

    2.3. Capacity Factor

    SincetheultimateresistingcapacityofanRCcolumnisgoverned

    by many variables and is gradually reduced as the degree of

    axial load increases (P/Agf

    c), it is necessary in many cases to

    conduct arefined numerical analysis that considers the material

    nonlinearitiesin order to accurately predict the ultimatestrength

    ofabiaxial RCcolumn.In order toanalyseand design(directly)

    biaxialRCcolumns,acapacityfactorK,whichrepresentsthe ratio

    of the PM interaction diagrams in an uniaxial loading column

    to abiaxial loading column, is introduced. If the dimensions of

    the concrete cross-section and the material properties have been

    selected, the interaction diagrams for uniaxial loading are then

    easilyconstructedbyintroducingthecapacityfactor(K).Onecan

    easilyobtaintheinteractiondiagramsforbiaxialloadingwithany

    angle ofaresultant bendingmomentMBIA

    .The strengthcapacity

    factor(SCF)isdefinedastheratioofthedistancefromtheorigin

    (eccentricity)forauniaxialinteractiondiagramtoabiaxialloading

    interactiondiagram atthesamedegreeofaxialloadlevel(P/P0),

    Fig.2:

    PUNI

    =PBIA

    (1)

    (2)

    (3)

    Where Kis the Capacityfactor, MUNI

    is the equivalent uniaxial

    moment,andMBIA

    istheresultantmomentforthebiaxialloading.

    Fig. 1 Stress- strain relationship of confined and unconfined concrete in compression.

    Fig. 2Elastic -Plastic bilinear behavior for steel.

    Fig. 3Determination of the strength resistance factor K.

    AxialloadP/P0

    Bouzid.indd 26 15. 3. 2011 12:49:54

  • 7/30/2019 Practical Analysis 4 Biaxil Column

    4/9

    2011/1 PAGES 24 32

    27PRACTICAL METHOD FOR ANALYSIS AND DESIGN OF SLENDER REINFORCED...

    In order to introduce aformulafor thecapacityfactor(K), some

    difficulties must be overcome, because the interaction diagrams

    mustbedeterminedforthebiaxialanduniaxialcross-sectionswith

    thesamedesignvariablesusedbyDundaretal.[8];moreoveran

    infinitenumberofpossibleRCsectionscanbeselectedforthesame

    setofexternalforcesapplied.Hence,indeterminingRCinteraction

    diagrams, all the variables need to be assumed on the basis of

    practical limitations and the design code requirements, R.P.A.99-

    03[2003].The commonly usedcompressive strengthof concrete

    andstressofsteelfordesignarefc=25,30and40MPafornormalconcreteandf

    y= 400MParespectively.Inaddition,thesteelratio

    rangesfrom1%to4%inthecurrentzones.Duetothesymmetryof

    thesectionandthereinforcement,theangleofloadingissupposed

    tovaryfrom0 (uniaxial) to45 (biaxial) with anincrement of

    15.Table1givestherangeofvariablesadoptedforthedesignof

    experimentalplanstobeincludedintheanalysis.

    Theeffectofthe differentparametersonthe interactiondiagrams

    canbesummarizedas:

    - the cross-sections capacity increases with the increase in the

    concretesstrengthinthe sameproportionbetween0.1to0.7,but

    especiallyintheregion0.2P/P00.5aroundthebalancedpoint;

    -thesectionscapacityincreaseswiththeincreaseinthesteelratio

    overthelengthofthecurves;

    -thesectioncapacitydecreaseswhentheangleofloadingincreases

    overthecurve,especiallyintheregionoftensioncontrolanduntil

    P/P0=0.6,overthisvaluetheresistancecapacityisthesameforthe

    differentangles.Foralltheexperimentplans,thecalculatedcapacity

    factorsKforthedifferentparametersselectedandasafunctionof

    theaxialloadlevelaredepictedinFigs.2-4.Ninetypicalresults

    ofthestrengthcapacityfactorKcalculatedwith3 ratios,3angles

    and3typesofconcretewitharangeofaxialloadsequalto0,1P0to

    0,7P0

    areobtained.

    Figures4to6showthatthestrengthcapacityfactorK:

    Decreases for large values of compressive strength, especially

    intheregionoftensioncontrolP0.4P0.Inthecompression

    Tab. 1Parameters variation.

    Parameters Values

    Cross-sectionshape Square

    Biaxialbendingangle()with

    respecttoastrongaxis

    =0,15,30,45

    Reinforcementdistribution Uniformlydistributedatfourfaces

    AxialloadP/P0whereP0=fcAg 10 values from 0,1P0 to 0,7P0

    Compressiveconcretestrength fc=25,30,40MPa

    Steelstrength fy=400Mpa

    Geometricreinforcementratio s=1%,2%,4%

    K

    factor

    Fig. 4 Variation of K factor in accordance with concrete compression

    strength.

    Fig. 5 Variation of K factor in accordance with the steel ratio.

    K

    factor

    Fig. 6 Variation of K factor in accordance with the loading angle.

    Bouzid.indd 27 15. 3. 2011 12:49:55

  • 7/30/2019 Practical Analysis 4 Biaxil Column

    5/9

    28 PRACTICAL METHOD FOR ANALYSIS AND DESIGN OF SLENDER REINFORCED...

    2011/1 PAGES 24 32

    controlregion,thefactordecreasesproportionallytolargeaxial

    loadvalues;

    Increases withlargevaluesofthesteel ratio,butthevaluesof

    Karelowerintheregionofcompressioncontrol;

    Increaseswithlargevaluesofaloadingangle,especiallyinthe

    regionoftensioncontrol.

    Inordertodetermineareasonableregressionformula,theeffectofeachdesignvariablewas studied,Figs.4-6.Sincethe coefficients

    aregraduallyincreasedordecreasedaccordingtochangesineach

    design variable and represent anonlinear characteristic, asecond

    orderpolynomialisassumedintermsofthedesignvariables.The

    regressionformularepresentedinEq.4isfinallyselectedforthe

    capacityfactorK:

    K=a0+a

    1f

    c+a

    2

    s+a

    3 ( ) + a

    4+a

    5f

    c+a

    6

    s+a

    7( )2+

    a82+a

    9fc

    s+a

    10f

    c ( ) + a

    11fc+a

    12

    s( ) + a

    13

    s+

    a14

    ( ) (4)

    Wherefcisthe compressivestrengthofconcrete(MPa),P/P

    0the

    loadingleveloftheaxialforce,sthesteelratio(100.A

    st/A

    c)and

    theloadingangle(),thevariablestakethevalues:

    3. SHORT COLUMNS

    An experimental analysisis carried out inorder tocompare the

    numerical results obtained by the proposed formula with the

    experimentsresults.Forthispurpose,acomparisonofthecapacity

    factor (K) iscalculated with the proposed formula and those of

    tests for the specimens selected. Table 3 shows the comparison

    withthe experiment resultsin Hsu[1988]; itappearsclearlythat

    theproposedformulationgivesgoodresults:anerrorof7%forthe

    specimens governedbytensioncontroland6% forthespecimens

    governedbycompressioncontrol,withadeviationof3%.

    4. SLENDER COLUMNS

    AccordingtotheACI318-99provisionsforthedesignofslender

    columns,strength isdefinedas thecross-section strength; on the

    otherhand,theappliedexternalmomentismagnifiedduetosecond

    ordereffects,i.e.,themomentmagnificationmethodisused.

    Tab. 2 Values of coefficients.

    a1

    a2

    a3

    a4

    a5

    a6

    a7

    0,002271 0,009508 0,796264 0,006587 0,000005 -0,010319 -1,177950

    a8

    a9

    a10

    a11

    a12

    a13

    a14

    -0,000022 0,000268 -0,010901 -0,000054 0,126399 0,000725 -0,007453

    Tab. 3 Comparison with experimental results Hsu [23].

    Experimental

    investigation

    Column

    specimen

    Values

    from

    Tests

    Ktest

    Values

    from

    Formula

    KK

    Ratio

    Ktest

    / KK

    Error

    %

    Tension Control

    Hsu

    U-1 1,025 1,102 0,930 7

    U-2 1,024 1,122 0,913 9

    U-3 1,015 1,138 0,892 11

    U-6 0,859 0,912 0,942 6

    Ramamurthy

    B-3 1,061 1,081 0,98 2

    B-4 1,086 1,095 0,992 0

    B-7 1,032 1,123 0,919 8

    B-8 1,03 1,151 0,895 10

    average 7%

    Compression Control

    Hsu

    S-1 1,198 1,092 1,097 10

    S-2 1,118 1,084 1,031 3

    U-4 1,047 1,148 0,912 9

    RamamurthyB-1 0,97 0,995 0,975 2

    B-6 1,063 1,151 0,923 8

    Heimdahland

    Bianchini

    BR-3 1,108 1,059 1,046 5

    BR-4 1,173 1,059 1,107 11

    CR-3 1,164 1,131 1,026 3

    CR-4 1,184 1,134 1,044 4

    ER-1 0,946 1,042 0,907 9ER-2 1,09 1,055 1,033 3

    Fr-1 1,054 1,124 0,938 6

    Fr-2 1,13 1,154 0,979 2

    average 6%

    Bouzid.indd 28 15. 3. 2011 12:49:55

  • 7/30/2019 Practical Analysis 4 Biaxil Column

    6/9

    2011/1 PAGES 24 32

    29PRACTICAL METHOD FOR ANALYSIS AND DESIGN OF SLENDER REINFORCED...

    4.1 Cross-section strength

    Fordesignpurposes,whenamemberissubjectedtoanaxialload

    PandmomentM,itisusuallyconvenienttoreplacetheaxialload

    andmomentwithanequalloadPappliedateccentricitye=M/P.The

    computationofthedesignstrengthisthenobtainedthroughastrain

    compatibilityanalysis.Theactualcompressivestressdistributionis

    replacedbyanequivalentrectangulardistribution.Incomputingthe

    valueofPandM,whichproducethestateofincipientfailure,the

    widthofthestressblockistakenas0,85f candthedepthisa=1.c(cisthedepthoftheneutralaxis).Thefactor

    1isgivenby(with

    theconcretecompressivestrengthfcgiveninMPa):

    1=1.09-0.008f

    c (5)

    With:0.651

    0.85

    Thesolutionoftheequationsstatingtheequilibriumbetweenthe

    external and internal forces as well as the external and internal

    moments,withintheconstraintsofstraincompatibility,determines

    thenominalaxialloadPn,whichcanbeappliedataneccentricitye

    foranyeccentricallyloadedcolumn.

    4.2 Magnified moments

    Forashort column,the momentmagnificationdue toslenderness

    effects is negligibly small; on the other hand, if the column is

    sufficientlyslender, themaximummomentactingon thecolumn

    increases nonlinearly as P increases. For the same externally

    appliedmomentM,thestrengthoftheslendercolumnisreducedas

    comparedtothestockycolumn.

    The ACI 318-99 specifies that axial loads and end moments in

    columns may be determined by aconventional elastic frame

    analysis. The member isthen tobe designed for that axial load

    and asimultaneous magnified column moment. TheACI 318-99

    equation for amagnified moment Mc for columns in non-sway

    framesis:

    Mc=

    ns.M

    2 (6)

    thenon-swaymomentmagnificationfactorns

    isgivenby:

    ns

    =Cm

    /(1-Pu/P

    c)1 (7)

    where M2 = the larger factored end moment; C

    m = equivalent

    uniformmomentdiagramfactor(Cm

    =1forthecaseofsupportswith

    equalbendingatbothends:purecurvature);

    Pu

    =factoredaxialloadactingonthecolumn;=capacityreduction

    factor(=1toperformthiscomparativeanalysis,whichisdesigned

    toconsidertheinevitablerandomvariabilityofthematerials);Pc=

    thecriticalbucklingloadgivenby:

    Pc=EI/(kl

    u) (8)

    Where:EI=effectiverigidity;

    4.3 Magnified moments

    Forashort column,the momentmagnificationdue toslenderness

    effects is negligibly small; on the other hand, if the column is

    sufficientlyslender, themaximummomentactingon thecolumn

    increases nonlinearly as P increases. For the same externally

    appliedmomentM,thestrengthoftheslendercolumnisreduced

    ascomparedto thestockycolumn.TheACI318-99specifiesthat

    axialloads and end moments incolumns may bedeterminedby

    aconventional elastic frame analysis.The member is then to be

    designedforthataxialloadandasimultaneousmagnifiedcolumn

    moment.TheACI318-99equationforamagnifiedmomentMcfor

    columnsinnon-swayframesis:

    Mc=ns.M2 (9)

    Thenon-swaymomentmagnificationfactorns

    isgivenby:

    ns

    =Cm

    /(1-Pu/P

    c)1 (10)

    WhereM2 isthelarger factoredend moment,C

    m the equivalent

    uniformmomentdiagramfactor(Cm

    =1forthecaseofsupportswith

    equalbendingatbothends:purecurvature),Pu

    isthefactoredaxial

    loadactingonthecolumn,thecapacityreductionfactor(=1to

    performthiscomparativeanalysis,whichisdesignedtoconsiderthe

    inevitablerandomvariabilityofthematerials)andPcisthecritical

    bucklingloadgivenby:

    Pc=EI/(klu) (11)

    Where:EI=effectiverigidity;

    4.4 Computer analysis of reinforced concrete

    columns tested by Dundar et al.

    Dundar, et al. have tested [23] fifteen (15) reinforced concrete

    columns, twelve specimens of square tied columns and three

    L-shaped sections. The cross section details and dimensions of

    eachspecimenareshownintheTable3.Thereinforcedconcrete

    column specimens were cast horizontally inside aformwork in

    Bouzid.indd 29 15. 3. 2011 12:49:55

  • 7/30/2019 Practical Analysis 4 Biaxil Column

    7/9

    30 PRACTICAL METHOD FOR ANALYSIS AND DESIGN OF SLENDER REINFORCED...

    2011/1 PAGES 24 32

    Structural Laboratory at Cukurova University, Adana, Algeria.

    The longitudinal reinforcement consisted of 6mm and 8mm

    diameterdeformedbarswithayieldstrengthof630and550MPa,

    respectively.Lateralreinforcementswerearrangedusing6mmand

    6.5mmdiameterdeformedreinforcingbarswithayieldstrengthof

    630MPaforthespecimens.Theparametersofthespecimensandthe

    resultsarepresentedinTable4.Thestress-strainmodel CEC [26]isthesameoneisusedforthedeterminationofthecapacityfactorK.

    The reinforced concrete column specimens were tested with

    pinned conditions at both ends under ashort-term axial load and

    biaxial bending. These specimens were also analyzed for their

    ultimate strength capacities using acomputer program. In the

    ultimate strength analysis, various stressstrain models and the

    experimentalstressstrainrelationshipsobtainedfromthecylinder

    specimensofthecolumnsbytheauthorswereusedfortheconcrete

    compression zone in order to compute the theoretical ultimate

    strengthcapacityandtocompareitwiththeexperimentalresultsof

    thecolumn specimens.Agooddegreeof agreementwas obtained

    between the theoretical results according to each of the concrete

    stressstrainmodelsandtheexperimentalresults.Themeanratios

    ofthe comparative resultsindicatethatthe shape ofthe concretestressstrainrelationshiphas little effect on the ultimatestrength

    capacityofthecolumnmembers;ontheotherhand,themaximum

    permissible strain plays the most important role on the ultimate

    strengthcapacity.

    These columns are then solved by the proposed method for the

    ultimatestrengthanalysisusingthe parabola-rectangledefinedby

    theEC2,whichisappliedtoobtainthecapacityfactorofthesection

    Tab. 4 Specimen details of RC columns.

    SpecimenL

    (mm)

    fc

    (MPa)

    ex

    (mm)

    ey

    (mm)

    /s

    (mm/cm)

    lateral

    Ratio

    = As/A

    g

    %

    Ntest

    (kN)CEC

    C1 870 19.18 25 25 6/12.5 1.13 89 88.95

    C2 870 31.54 25 25 6/15 1.13 121 126.78C3 870 28.13 25 25 6/10 1.13 125 116.51

    C4 870 26.92 30 30 6/8 1.13 99 93.57

    C5 870 25.02 30 30 6/10 1.13 94 88.83

    C11 1300 32.27 35 35 6.5/10.5 2.0 104 88.81

    C12 1300 47.86 40 40 6.5/10.5 2.0 95 91.39

    C13 1300 33.10 35 35 6.5/10.5 2.0 98 90.00

    C14 1300 29.87 45 45 6.5/12.5 2.0 58 63.02

    C21 1300 31.7 40 40 6.5/10.5 0.89 238 233.41

    C22 1300 40.76 50 50 6.5/10.5 0.89 199 208.83

    C23 1300 34.32 50 50 6.5/10.5 0.89 192 189.38

    Fig. 7 Variation of factor in accordance with slenderness. Fig. 8 Variation of factor in accordance with the value of d.

    Bouzid.indd 30 15. 3. 2011 12:49:55

  • 7/30/2019 Practical Analysis 4 Biaxil Column

    8/9

    2011/1 PAGES 24 32

    31PRACTICAL METHOD FOR ANALYSIS AND DESIGN OF SLENDER REINFORCED...

    K;thentheultimatebendingmomentofthesectionMUT

    isobtained.

    TheultimatemomentoftheslendermemberMUMS

    iscomputedby

    usingthemagnificationfactor.Thetheoreticalresultsobtainedfor

    themaximumresistingmomentcapacityaswellasthetestresults

    arepresentedinTable6forcomparison.

    Agooddegreeofaccuracyhasbeenobtainedbetweenthetheoretical

    andtheexperimentalresults;anaverageratioof1.06withavariation

    coefficientof9%wasachieved.

    CONCLUSIONS

    An iterative numerical procedure for the strength analysis and

    design of short and slender reinforced concrete columns which

    square cross sectionsunder biaxial bending andan axial load by

    using theEC2 stress-strainmodelis presentedin this paper. The

    computationalproceduretakesintoaccountthenonlinearbehavior

    ofthematerials(i.e.,concreteandreinforcingbars)andincludesthe

    secondordereffectsduetotheadditionaleccentricityoftheapplied

    axialloadbytheMomentMagnificationMethod.

    Thecapabilityoftheproposedmethodanditsformulationhasbeen

    testedbymeansofcomparisonswiththeexperimentalresultsreported

    by some authors. The theoretical and experimental results show

    thatagooddegree of accuracy hasbeen obtained;an averageratio

    (proposedtotest)of1.06withadeviationof9%hasbeenachieved.On the other hand, the compressive strength of concrete and its

    correspondingcompressivestrainarethemosteffectiveparametersof

    theultimatestrengthcapacityofcolumnmembers.Consequently,the

    proposedformulationcansimulatethebehaviorofslendermembers

    underbiaxialloadingwithagooddegreeofaccuracy.

    REFERENCES

    [1] Furlong RW. Concrete columns under biaxially eccentricthrust.ACIJournalOctober1979:1093118.

    [2] Brondum-Nielsen T. Ultimate flexural capacity of fully

    prestressed, partially prestressed, arbitrary concrete sections

    undersymmetricbending.ACIJournal1986;83:2935.

    [3] Hsu CTT. Biaxially loaded L-shaped reinforced concrete

    col umn s. J ou rn al o f Str uctu ral E ng in eeri ng A SCE

    1985;111(12):257695.

    [4] Hsu CTT. Channel-shaped reinforced concrete compression

    members under biaxial bending. ACI Structural Journal

    1987;84:20111.

    [5] Dundar C.Concreteboxsectionsunderbiaxialbendingand

    axialload.JournalofStructuralEngineering1990;116:8605.

    [6] RanganBV.Strengthofreinforcedconcreteslendercolumns.

    ACIStructuralJournal1990;87(1):328.

    [7] Buildingcoderequirementsforstructuralconcrete(ACI318-

    99).Detroit(MI):AmericanConcreteInstitute(ACI);1999.

    [8] Dundar C, Sahin B.Arbitrarily shaped reinforced concrete

    members subjected to biaxial bending and axial load.

    ComputersandStructures1993;49:64362.

    [9] Whitney CS. Plastic theory of reinforced concrete design.

    Transactions,ASCE1940;107:25160.

    [10] Rodriguez JA, Aristizabal-Ochoa JD. Biaxial interaction

    diagrams for short RC columns of any cross SECTION.

    JournalofStructuralEngineering1999;125(6):67283.

    [11] FafitisA.Interaction surfacesof reinforced-concretesectionsin biaxial bending. Journal of Structural Engineering 2001;

    127(7):8406.

    [12] Hong HP. Strength of slender reinforced concrete columns

    under biaxial bending. Journal of Structural Engineering

    2001;127(7):75862.

    [13] Saatcioglu M, Razvi SR. High-strength concrete columns

    withsquaresectionsunderconcentriccompression.Journalof

    StructuralEngineering1998;124(12):143847.

    [14] Furlong RW, Hsu CTT, Mirza SA. Analysis and design

    of concrete columns for biaxial bending- overview. ACI

    StructuralJournal2004;101(3):41323.

    [15] Mirza SA. Parametric study of composite column strength

    variability. Journal of Constructional Steel Research

    1989;14:12137.

    [16] Lachance L. Ultimate strength of biaxially loaded composite

    sections. Journalof StructuralDivision,ASCE1982;108:2313

    29.

    [17] ChenSF,TengJG,ChanSL.Designof biaxiallyloadedshort

    compositecolumnsofarbitrarysection.JournalofStructural

    Engineering2001;127(6):67885.

    [18] SfakianakisMG.Biaxialbendingwithaxialforceofreinforced,

    compositeandrepairedconcretesectionsofarbitraryshapeby

    fibermodelandcomputergraphics.AdvancesinEngineering

    Software2002;33:22742.

    Bouzid.indd 31 15. 3. 2011 12:49:56

  • 7/30/2019 Practical Analysis 4 Biaxil Column

    9/9

    32 PRACTICAL METHOD FOR ANALYSIS AND DESIGN OF SLENDER REINFORCED...

    2011/1 PAGES 24 32

    REFERENCES

    [19] KentDC,ParkR.Flexuralmemberswithconfinedconcrete.

    JournalofStructuralDivisionASCE1971;97(7):196990.

    [20] Sheikh SA, Uzumeri SM. Analytical model for concrete

    confinement in tiedcolumns. Journal of StructuralDivision

    ASCE1982;108(12):270322.[21] Saatcioglu M, Razvi SR. Strengthand ductilityof confined

    concrete.JournalofStructuralEngineering1992;118(6):1590

    607.

    [22] Chung HS,YangKH,LeeYH, EunHC.Stressstraincurve

    of laterallyconfined concrete.Engineering Structures 2002;

    24:115363.

    [23] Dundar C, Tokgoz S, Tanrikulu A.K, Baran T, Behavior of

    reinforcedandconcrete-encasedcompositecolumnssubjectedto

    biaxialbendingandaxialload.Buildingandenvironment2007.

    [24] RPA2003,rglementparasismiquealgrien(AlgerianCode,

    inFrench).MinistredelHabitat,Algeria.[25] HsuC.T.T.,AnalysisandDesignof Square andRectangular

    Columns by Equation of Failure Surface, ACI Structural

    Journal,Technicalpaper,titleno85-S20,1988,pp167-179.

    [26] CommissionoftheEuropeanCommunities(CEC).Designof

    compositesteelandconcretestructures.Brussels:Eurocode4;

    1984.