Power Divider, Combiner and Coupler

Embed Size (px)

Citation preview

  • 8/12/2019 Power Divider, Combiner and Coupler

    1/60

    Power divider, combiner and

    coupler

    ByProfessor Syed Idris Syed Hassan

    Sch of Elect. & Electron Eng

    Engineering Campus USM

    Nibong Tebal 14300SPS Penang

  • 8/12/2019 Power Divider, Combiner and Coupler

    2/60

    Power divider and combiner/coupler

    divider combinerP1

    P2= nP1

    P3=(1-n)P1

    P1

    P2

    P3=P1+P2

    Divide into 4 output

    Basic

  • 8/12/2019 Power Divider, Combiner and Coupler

    3/60

    S-parameter for power divider/coupler

    333231

    232221

    131211

    SSS

    SSSSSS

    SGenerally

    For reciprocal and lossless network

    jiforSSN

    kkjki

    0

    1

    *1

    1

    *

    N

    kki kiSS

    1131211 SSS

    1232221 SSS

    1333231 SSS

    0*2313*2212

    *2111 SSSSSS

    0*3323*3222

    *3121 SSSSSS

    0*3313*3212

    *3111 SSSSSS

    Row 1x row 2

    Row 2x row 3

    Row 1x row 3

  • 8/12/2019 Power Divider, Combiner and Coupler

    4/60

    Continue

    If all ports are matched properly , then Sii= 0

    0

    00

    2313

    2312

    1312

    SS

    SSSS

    S

    For Reciprocal

    networkFor lossless network, must satisfy unitary

    condition

    1

    2

    13

    2

    12 SS

    12

    232

    12 SS

    12

    232

    13 SS

    012*

    23SS

    023*13 SS

    013

    *

    12 SS

    Two of (S12, S13, S23) must be zero but it is not consistent. If S12=S13= 0, then

    S23should equal to 1 and the first equation will not equal to 1. This is invalid.

  • 8/12/2019 Power Divider, Combiner and Coupler

    5/60

    Another alternative for reciprocal network

    332313

    2312

    1312

    0

    0

    SSS

    SS

    SS

    S

    Only two ports are matched , then for reciprocal network

    For lossless network, must satisfy unitary

    condition

    12

    13

    2

    12 SS

    12

    232

    12 SS

    12

    332

    232

    13 SSS 013*3312

    *23 SSSS

    023

    *

    13

    SS033

    *2313

    *12 SSSS

    The two equations show

    that |S13|=|S23|thus S13=S23=0

    and |S12|=|S33|=1

    These have satisfied all

  • 8/12/2019 Power Divider, Combiner and Coupler

    6/60

    Reciprocal lossless network of two matched

    S21

    =ej

    S12=ej

    S33

    =ej

    1

    3

    2

    j

    j

    j

    e

    ee

    S

    00

    00

    00

  • 8/12/2019 Power Divider, Combiner and Coupler

    7/60

    For lossless network, must satisfy unitary

    condition

    12

    132

    12 SS

    12

    23

    2

    21

    SS

    12

    322

    31 SS

    032*

    31SS

    023

    *

    21 SS

    013*

    12SS

    Nonreciprocal network (apply for circulator)

    0

    0

    0

    3231

    2321

    1312

    SS

    SS

    SS

    S

    0312312 SSS

    0133221 SSS

    1133221 SSS

    1312312 SSS

    The above equations must satisfy the following either

    or

  • 8/12/2019 Power Divider, Combiner and Coupler

    8/60

    Circulator (nonreciprocal network)

    010

    001

    100

    S

    001

    100

    010

    S

    1

    2

    3

    1

    2

    3

  • 8/12/2019 Power Divider, Combiner and Coupler

    9/60

    Four port network

    44434241

    34

    24

    14

    333231

    232221

    131211

    SSSS

    SS

    S

    SSSSSS

    SSS

    SGenerally

    For reciprocal and lossless network

    jiforSS

    N

    kkjki 01*

    1

    1

    *

    N

    kki kiSS

    114131211 SSSS

    124232221 SSSS

    134333231 SSSS

    0*2414*2313

    *2212

    *2111 SSSSSSSS

    0*4424*4323

    *4222

    *4121 SSSSSSSS

    0*3414*3313

    *3212

    *3111 SSSSSSSS

    R 1x R 2

    R 2x R3

    R1x R4

    144434241 SSSS

    0*4414*4313*4212*4111 SSSSSSSS

    0*3424*3323

    *3222

    *3121 SSSSSSSS

    0*4434

    *4333

    *4232

    *4131 SSSSSSSS

    R1x R3

    R2x R4

    R3x R4

  • 8/12/2019 Power Divider, Combiner and Coupler

    10/60

    Matched Four port network

    0

    0

    00

    342414

    34

    24

    14

    2313

    2312

    1312

    SSS

    S

    SS

    SS

    SSSS

    S

    The unitarity condition become

    1141312 SSS

    1242312 SSS

    1342313 SSS

    0*2414*2313 SSSS

    0*3423*1412 SSSS

    0*3414*2312 SSSS

    1342414 SSS

    0*3413

    *2412 SSSS

    0*3424*1312 SSSS

    0*

    2423

    *

    1413 SSSS

    Say all ports are matched and symmetrical network, then

    *

    **

    @@@

    #

    ##

  • 8/12/2019 Power Divider, Combiner and Coupler

    11/60

    To check validity

    Multiply eq. * by S24

    * and eq. ## by S13

    *, and substract to obtain

    02

    142

    13*14

    SSS

    Multiply eq. # by S34 and eq. @@ by S13, and substract to obtain

    02

    342

    1223

    SSS

    %

    $

    Both equations % and $ will be satisfy if S14 = S23= 0 . This meansthat no coupling between port 1 and 4 , and between port 2 and 3 as

    happening in most directional couplers.

  • 8/12/2019 Power Divider, Combiner and Coupler

    12/60

    Directional coupler

    00

    0

    00

    00

    0

    3424

    34

    24

    13

    12

    1312

    SS

    S

    S

    S

    S

    SS

    S

    If all ports matched , symmetry and S14=S23=0 to be satisfied

    The equations reduce to 6 equations

    11312 SS

    12412 SS

    13413 SS

    13424 SS

    0*3413*2412 SSSS

    0*3424*1312 SSSS

    2413 SS By comparing these equations yield

    *

    *

    **

    **

    By comparing equations * and ** yield 3412 SS

  • 8/12/2019 Power Divider, Combiner and Coupler

    13/60

    Continue

    00

    0

    00

    00

    0

    j

    j

    j

    j

    S

    Simplified by choosing S12= S34= ; S13=ej and S24= e

    j

    Where += p+ 2np

    00

    0

    0000

    0

    S

    1. Symmetry Coupler == p/2

    2. Antisymmetry Coupler =0 ,=p

    2 cases

    Both satisfy 2 +2 =1

  • 8/12/2019 Power Divider, Combiner and Coupler

    14/60

    Physical interpretation

    |S13|2= coupling factor = 2

    |S12|2= power deliver to port 2= 2=1- 2

    Characterization of coupler

    Directivity= D= 10 log

    dB

    P

    Plog20

    3

    1 Coupling= C= 10 log

    dBSP

    P

    144

    3 log20

    Isolation = I= 10 log dBSP

    P14

    4

    1 log20

    I = D + C dB

    1

    4 3

    2

    Input Through

    CoupledIsolated

    For ideal case

    |S14

    |=0

  • 8/12/2019 Power Divider, Combiner and Coupler

    15/60

    Practical coupler

    Hybrid 3 dB couplers

    Magic -T and Rat-race couplers

    == p/2

    010

    1

    0

    00

    001

    10

    2

    1

    j

    j

    j

    j

    S

    0110

    1

    1

    0

    001

    001

    110

    2

    1S

    =0 ,=p

    = = 1 / 2

    = = 1 / 2

  • 8/12/2019 Power Divider, Combiner and Coupler

    16/60

    T-junction power divider

    E-plane TH-plane T

    Microstrip T

  • 8/12/2019 Power Divider, Combiner and Coupler

    17/60

    T-model

    jB

    Z1

    Z2

    Vo

    Yin

    21

    11

    ZZjBYin

    21

    11

    ZZYin

    Lossy line

    Lossless line

    If Zo= 50,then for equally

    divided power, Z1= Z2=100

  • 8/12/2019 Power Divider, Combiner and Coupler

    18/60

    Example

    If source impedance equal to 50 ohm and thepower to be divided into 2:1 ratio. Determine Z1

    and Z2

    ino P

    ZVP

    31

    21

    1

    21

    ino P

    Z

    VP

    3

    2

    2

    1

    2

    2

    2 752

    3

    2

    oZZ

    15031 oZZ

    o

    oin

    Z

    VP

    2

    2

    1 50// 21 ZZZo

  • 8/12/2019 Power Divider, Combiner and Coupler

    19/60

    Resistive divider

    V2

    V3

    V1

    Zo

    Zo

    P1

    P2

    P3

    Zo V

    oo Z

    ZZ

    3

    Zo/3Zo/3

    Zo/3

    ooo

    in ZZZ

    Z 3

    2

    3

    VVZZ

    ZV

    oo

    o

    3

    2

    3/23/

    3/21

    VVVZZ

    ZVV

    oo

    o

    2

    1

    4

    3

    3/32

    oin

    Z

    VP

    21

    2

    1

    in

    o

    PZ

    VPP

    4

    12/1

    2

    1 2132

  • 8/12/2019 Power Divider, Combiner and Coupler

    20/60

    Wilkinson Power Divider

    50

    50

    50

    100

    70.7

    70.7

    /4

    Zo

    /2 Zo

    /2 Zo

    2Zo

    Zo

    Zo

    /4

    2

    2Te ZZ

    in

    oT ZZ 2

    For even mode

    Therefore

    For Zin=Zo=50

    7.70502T

    Z

    And shunt resistor R =2 Zo= 100

  • 8/12/2019 Power Divider, Combiner and Coupler

    21/60

    Analysis (even and odd mode)

    2

    2

    1

    1

    Port 1

    Port 2

    Port 3

    Vg2

    Vg3

    Z

    Z

    4

    +V2

    +V3

    r/2

    r/2

    4

    For even mode Vg2= Vg3and

    for odd mode Vg2= -Vg3. Since

    the circuit is symmetrical , we

    can treat separately twobisection circuit for even and

    odd modes as shown in the next

    slide. By superposition of these

    two modes , we can find S -

    parameter of the circuit. Theexcitation is effectively Vg2=4V

    and Vg3= 0V.For simplicity all values are

    normalized to line characteristic

    impedance , I.e Zo =50 .

  • 8/12/2019 Power Divider, Combiner and Coupler

    22/60

    Even modeVg2=Vg3= 2V

    Looking at port 2

    Zine= Z2/2

    Therefore for matching

    2Z

    then V2e= V since Zin

    e=1 (the circuit acting like voltage divider)

    2

    1

    Port 1

    Port 2

    2V

    Z

    4

    +V2e

    r/2+V1e

    O.CO.C outinZZZ

    2

    Note:

    2ZIf

    To determine V2e, using transmission line equation V(x) = V+ (e-jx+Ge+jx) , thus

    VjVVVe G )1()4

    (2

    1

    1)1()0(

    1 GG

    G jVjVVVe

    Reflection at port 1, refer to is

    22

    22

    G

    2Z

    Then 21

    jVVe

  • 8/12/2019 Power Divider, Combiner and Coupler

    23/60

    Odd modeVg2= - Vg3= 2V

    2

    1

    Port 1

    Port 2

    2V

    Z

    4

    +V2o

    r/2+V1o

    At port 2, V1o =0 (short) ,

    /4 transformer will belooking as open circuit ,

    thus Zino= r/2 . We choose

    r =2 for matching. Hence

    V2o= 1V (looking as a

    voltage divider)

    S-parameters

    S11= 0 (matched Zin=1 at port 1)

    S22= S33= 0 (matched at ports 2 and 3 both even and odd modes)

    S12= S21=2/

    22

    11 jVV

    VV

    oe

    oe

    S13= S31= 2/j

    S23

    = S32

    = 0 ( short or open at bisection , I.e no

    coupling)

  • 8/12/2019 Power Divider, Combiner and Coupler

    24/60

    Example

    Design an equal-split Wilkinson power divider for a 50 W systemimpedance at frequency fo

    The quarterwave-transformer characteristic is

    7.702 oZZ

    1002 oZR

    r

    o

    4The quarterwave-transformer length is

  • 8/12/2019 Power Divider, Combiner and Coupler

    25/60

    Wilkinson splitter/combiner

    application

    /4

    100

    70.7

    50

    matching

    networks

    /4

    100 50

    70.7

    70.7

    70.7

    Splittercombiner

    Power Amplifier

  • 8/12/2019 Power Divider, Combiner and Coupler

    26/60

    Unequal power Wilkinson

    Divider

    3

    2

    031

    K

    KZZ o

    )1( 2032

    02 KKZZKZ o

    KKZR o

    1

    R2=Z

    o/K

    R

    R3=Z

    o/K

    Z02

    Z03

    Zo

    2

    3

    2

    32

    portatPower

    portatPower

    P

    PK

    1

    2

    3

  • 8/12/2019 Power Divider, Combiner and Coupler

    27/60

    Parad and Moynihan power divider

    4/1

    201 1

    KKZZ o

    2

    3

    2

    32

    portatPower

    portatPower

    P

    PK

    K

    KZR o1

    4/124/302 1 KKZZ o

    4/5

    4/12

    031

    K

    KZZ o

    KZZ o04 KZZ o05

    Zo

    Zo

    Zo

    Z05

    Zo4Zo2

    Zo3

    Zo1

    R1

    2

    3

  • 8/12/2019 Power Divider, Combiner and Coupler

    28/60

    Cohn power divider

    VSWR at port 1 = 1.106VSWR at port 2 and port 3 = 1.021

    Isolation between port 2 and 3 = 27.3 dB

    Center frequency fo = (f1+ f2)/2

    Frequency range (f2

    /f1

    ) = 2

    1

    2

    3

  • 8/12/2019 Power Divider, Combiner and Coupler

    29/60

    Couplers

    /4

    /4

    Yo

    Yo

    Yo

    Yo

    Yse

    Ysh Y

    sh

    Branch line coupler 2sh

    2se Y1Y

    2se

    2sh

    sh

    2

    3

    YY1

    2Y

    E

    E

    20

    1

    3 10E

    E x

    x dB coupling

    23

    22

    21 EEE

    2

    1

    3

    2

    1

    2

    E

    E

    E

    E1

    or

    E1E2

    E3

  • 8/12/2019 Power Divider, Combiner and Coupler

    30/60

    Couplers

    input

    isolate

    Output

    3dB

    Output

    3dB 90oout of phase

    3 dB Branch line coupler

    /4

    /4

    Zo

    Zo

    Zo

    Zo

    2/Zo

    2/Zo

    Zo Zo

    32 EE

    1Ysh

    2Y1Y 22se sh

    1.414Yse

    50oZ

    50shZ

    5.35seZ

  • 8/12/2019 Power Divider, Combiner and Coupler

    31/60

    Couplers9 dB Branch line coupler

    355.010 209

    1

    3 E

    E

    22

    1

    2 355.01

    E

    E

    935.0355.01 21

    2

    E

    E

    38.0935.0

    355.0

    2

    3

    E

    E

    8.0shYLet say we choose

    38.0

    8.01

    8.02

    1

    22222

    sesesh

    sh

    YYY

    Y

    962.136.038.0

    6.1seY

    500Z

    5.628.0/50shZ

    5.25962.1/50seZ

    Note: Practically upto 9dB coupling

  • 8/12/2019 Power Divider, Combiner and Coupler

    32/60

    Couplers

    /4

    /4

    /4

    /4

    Input

    Output in-phase

    Output in-phase

    isolated

    1

    2

    3

    4

    Can be used as splitter , 1 as input and 2 and 3

    as two output. Port is match with 50 ohm.

    Can be used as combiner , 2 and 3 as input

    and 1 as output.Port 4 is matched with 50 ohm.

    Hybrid-ring coupler

    OC

    1

    21

    2

    OC

    1/2

    1/2

    2

    2

    2

    2

    2

    2

    /8

    /8

    /4

    /4

    /8

    /8

    Te

    To

    Ge

    Go

  • 8/12/2019 Power Divider, Combiner and Coupler

    33/60

    AnalysisThe amplitude of scattered wave

    oeB GG2

    1

    2

    11

    oe TTB2

    1

    2

    14

    oe TTB2

    1

    2

    12

    oeB GG2

    1

    2

    13

  • 8/12/2019 Power Divider, Combiner and Coupler

    34/60

    Couple lines analysis

    Planar Stacked

    Coupled microstrip

    b

    w wsw

    s

    w ws

    b

    d

    r

    r

    r

    The coupled lines are usually assumed to operate in TEM mode.

    The electrical characteristics can be determined from effective

    capacitances between lines and velocity of propagation.

  • 8/12/2019 Power Divider, Combiner and Coupler

    35/60

    Equivalent circuits

    +V +V

    H-wall

    +V-V

    E-wall

    C11

    C22C

    11C

    22

    2C122C12

    Even mode Odd mode

    C11and C22are the capacitances between conductors and the groundrespectively. For symmetrical coupled line C11=C22. C12is the

    capacitance between two strip of conductors in the absence of ground. In

    even mode , there is no current flows between two strip conductors , thus

    C12is effectively open-circuited.

  • 8/12/2019 Power Divider, Combiner and Coupler

    36/60

    ContinueEven mode

    The resulting capacitance Ce= C11= C22

    ee

    e

    eoe

    CC

    LC

    C

    LZ

    1Therefore, the line characteristic impedance

    Odd mode

    The resulting capacitance Co= C11+ 2 C12 = C22+ 2 C12

    Therefore, the line characteristic impedanceo

    ooC

    Z

    1

  • 8/12/2019 Power Divider, Combiner and Coupler

    37/60

    Planar coupled stripline

    Refer to Fig 7.29 in Pozar , Microwave Engineering

  • 8/12/2019 Power Divider, Combiner and Coupler

    38/60

    Stacked coupled stripline

    mFsb

    bsbsb

    C oWroWroWr /42/2/ 22

    11

    w >> s and w >> b

    mFs

    C oWr /12

    mF

    sb

    bCC oWre /

    4

    2211

    mFssb

    bwCCC oro /

    1222

    221211

    oor 1

    ro

    eoe

    bwsbZ

    CZ

    41

    22

    ssbbwZ

    CZ

    r

    oo

    oo/1/22

    11

    22

  • 8/12/2019 Power Divider, Combiner and Coupler

    39/60

    Coupled microstripline

    Refer to Fig 7.30 in Pozar , Microwave Engineering

  • 8/12/2019 Power Divider, Combiner and Coupler

    40/60

    Design of Coupled line Couplers

    inputoutput

    Isolated

    (can be matched)

    Coupling

    w

    w

    s

    2

    3 4

    1

    wc

    /4

    3 4

    1 2

    Zo

    Zo

    Zo

    Zo

    ZooZoe

    2V

    +V3

    +V2

    +V4

    +V1

    I1

    I4

    I3

    I2Schematic circuit

    Layout

  • 8/12/2019 Power Divider, Combiner and Coupler

    41/60

    Even and odd modes analysis

    3 4

    1 2

    Zo

    Zo

    Zo

    Zo

    Zoo

    V

    +V3o

    +V2o

    +V4o

    +V1o

    I1o

    I4oI

    3o

    I2o

    V

    _

    +

    +

    _

    3 4

    1 2

    Zo

    Zo

    Zo

    Zo

    Zoe

    V

    +V3e

    +V2e

    +V4e

    +V1e

    I1e

    I4eI

    3e

    I2e

    V_+

    +

    _

    I1

    e= I3

    e

    I4e= I2

    e

    Sameexcitation

    voltage

    V1e= V3

    e

    V4e= V2e

    Even

    I1o= -I3

    o

    I4o=- I2

    o

    V1o= -V3

    o

    V4o= -V2

    o

    Odd

    Reverse

    excitationvoltage

    (100)

    (99)

  • 8/12/2019 Power Divider, Combiner and Coupler

    42/60

    Analysis

    ooin

    oino

    ZZ

    ZVV

    1

    tan

    tan

    ooe

    oeo

    oe

    e

    in jZZ

    jZZ

    ZZ

    oe

    oe

    in II

    VV

    I

    V

    Z11

    11

    1

    1

    Zo= load for transmission line

    = electrical length of the line

    Zoeor Zoo= characteristic impedance of

    the line

    tan

    tan

    ooo

    ooooo

    oin

    jZZ

    jZZZZ

    By voltage division

    oein

    eine

    ZZ

    ZVV

    1

    ooin

    o

    ZZ

    VI

    1

    oein

    e

    ZZ

    VI

    1

    From transmission line equation , we have

    where

    (101)

    (102)

    (103)

    (104)

    (105)

    (106)

    (107)

  • 8/12/2019 Power Divider, Combiner and Coupler

    43/60

    continue

    Substituting eqs. (104) - (107) into eq. (101) yeilds

    ooin

    ein

    oein

    oin

    o

    ooin

    ein

    ooin

    eino

    ein

    oin

    inZZZ

    ZZZZ

    ZZZ

    ZZZZZZZ

    2

    2

    2

    2

    For matching we may consider the second term of eq. (108) will be zero , I.e

    02 oein

    oin ZZZ or

    2ooeoo

    ein

    oin ZZZZZ

    (108)

    Let oeooo ZZZ

    Therefore eqs. (102) and (103) become

    tan

    tan

    oooe

    oeoooe

    ein

    ZjZ

    ZjZZZ

    tan

    tan

    oeoo

    oooeoo

    oin

    ZjZ

    ZjZZZ

    and (108) reduces to Zin=Zo

    (110)(109)

  • 8/12/2019 Power Divider, Combiner and Coupler

    44/60

    continueSince Zin= Zo, then by voltage division V1= V. The voltage at port 3, by

    substitute (99), (100) , (104) and (105) is then

    ooin

    oin

    oein

    einoeoe

    ZZ

    Z

    ZZ

    ZVVVVVV

    11333(111)

    Substitute (109) and (110) into (111)

    tan2

    tan

    oooeo

    ooo

    ooin

    oin

    ZZjZ

    jZZ

    ZZ

    Z

    tan2

    tan

    oooeo

    oeo

    oein

    ein

    ZZjZ

    jZZ

    ZZ

    Z

    Then (111) reduces to

    tan2

    tan3

    oooeo

    oooe

    ZZjZ

    ZZjVV

    (112)

    i

  • 8/12/2019 Power Divider, Combiner and Coupler

    45/60

    continue

    We define coupling as

    oooe

    oooe

    ZZ

    ZZC

    Then V3/ V , from ( 112) will become

    oooe

    o

    ZZ

    ZC

    2

    1 2

    tan1

    tan

    tan2

    tan

    23

    jC

    jCV

    ZZ

    ZZj

    ZZ

    Z

    ZZ

    ZZj

    VV

    oooe

    oooe

    oooe

    o

    oooe

    oooe

    and

    sincos1

    1

    2

    2

    222jC

    CVVVV oe

    022444

    oeoe VVVVVSimilarly

    V1=V

  • 8/12/2019 Power Divider, Combiner and Coupler

    46/60

    Practical couple line coupler

    V3is maximum when = p/2 , 3p/2, ...

    Thus for quarterwave length coupler = p/2 , the eqs V2and V3 reduce to

    V1=V

    04V

    VC

    jCjCV

    jCjCV

    jCjCVV

    2223

    11)(

    2/tan12/tanp

    p

    22

    2

    2

    2 11

    2/sin2/cos1

    1CjV

    j

    CV

    jC

    CVV

    pp C

    CZZ ooe

    1

    1

    C

    CZZ ooo

    1

    1

  • 8/12/2019 Power Divider, Combiner and Coupler

    47/60

    Example

    Design a 20 dB single-section coupled line coupler in stripline with a 0.158 cm

    ground plane spacing , dielectric constant of 2. 56, a characteristic impedance

    of 50 , and a center frequency of 3 GHz.

    Coupling factor is C = 10-20/20 = 0.1

    Characteristic impedance of even

    and odd mode are

    28.55

    1.01

    1.0150oeZ

    23.451.01

    1.0150

    ooZ

    4.88oer Z

    4.72oor Z

    From fig 7.29 , we have

    w/b=0.72 , s/b =0.34. These

    give us

    w=0.72b=0.114cm

    s= 0.34b = 0.054cm

    Then multiplied by r

  • 8/12/2019 Power Divider, Combiner and Coupler

    48/60

    Multisection Coupled line coupler (broadband)

    V1

    V3 V4

    V2

    input Through

    IsolatedCoupled

    C1

    CN-2

    C3

    C2 CN

    CN-1....

    jejCj

    jC

    jC

    jCVV

    sintan1

    tan

    tan1

    tan21

    3

    je

    jC

    C

    V

    V

    sincos1

    1

    2

    2

    1

    2

    For single section , whence C

  • 8/12/2019 Power Divider, Combiner and Coupler

    49/60

    AnalysisResult for cascading the couplers to form a multi section coupler is

    )1(21

    212113

    sin...

    sinsin

    NjjN

    jjj

    eVejC

    eVejCVejCV

    )1(

    )2(222

    )1(2113

    ...

    1sin

    NjM

    NjjNjj

    eC

    eeCeCejVV

    M

    jN

    C

    NCNCejV

    2

    1...

    3cos1cossin2 211

    Where M= (N+1)/2

    For symmetry C1=CN , C2= CN-1,

    etc

    At center frequency2/1

    3

    p

    V

    VCo

    (200)

  • 8/12/2019 Power Divider, Combiner and Coupler

    50/60

    ExampleDesign a three-section 20 dB coupler with binomial response (maximally

    flat), a system impedance 50 , and a center frequency of 3 GHz .Solution

    For maximally flat response for three section (N=3) coupler, we require

    2,10)(2/

    nforCd

    d

    n

    n

    p

    From eq (200) and M= (N+1)/2 =( 3+1)/2=2 , we have

    21

    1

    3

    2

    12cossin2 CC

    V

    VC

    sin)(3sinsinsin3sin 12121 CCCCC

    (201)

    (202)

  • 8/12/2019 Power Divider, Combiner and Coupler

    51/60

    ContinueApply (201)

    0cos)(3cos32/

    121 p

    CCCd

    dC

    010sin)(3sin9 212/1212

    2

    CCCCCd

    Cd

    p

    Midband Co= 20 dB at =p/2. Thus C= 10-20/20=0.1

    From (202), we C= C2- 2C1= 0.1

    Solving and gives us C1= C3= 0.0125 (symmetry) and C2= 0.125

  • 8/12/2019 Power Divider, Combiner and Coupler

    52/60

    continue

    Using even and odd mode analysis, we have

    63.500125.01

    0125.0150

    1

    131

    C

    CZZZ ooeoe

    38.49

    0125.010125.01

    31 ooooo ZZZ

    69.56

    125.01

    125.0150

    1

    12

    C

    CZZ ooe

    1.44125.01

    125.012 ooo ZZ

  • 8/12/2019 Power Divider, Combiner and Coupler

    53/60

    continueLet say , r= 10 and d =0.7878mm

    63.5031 oeoe ZZ 38.4931 oooo ZZ

    69.562oeZ 1.442ooZ

    Plot points on graph Fig. 7.30

    We have , w/d = 1.0 and s/d = 2.5 , thus

    w = d = 0.7878mm and s = 2.5d = 1.9695mm

    Similarly we plot points

    We have , w/d = 0.95 and s/d = 1.1 , thus

    w = 0.95d = 0.748mm and s =1.1d = 0.8666mm

    For section 1 and 3

    For section 2

  • 8/12/2019 Power Divider, Combiner and Coupler

    54/60

    Couplers

    Lange Coupler

    Evolution of Lange

    coupler

    1= input

    2=output

    3=coupling

    4=isolatedw

    w

    w

    w

    w

    s

    s

    s

    s

    1

    4 3

    2

    1

    34

    2

    1

    2

    3

    4

    2

    4

    1

    3

  • 8/12/2019 Power Divider, Combiner and Coupler

    55/60

    Analysis

    1

    4 3

    2

    1

    34

    2C C

    90o

    Ze4 Zo4

    Zo4Ze4

    1

    4321

    2C

    m

    Cex

    Cex

    C

    Cex Cex

    CinCin

    CmC

    mC

    m

    Simplified circuit Equivalent circuit

    mex

    mexexin

    CC

    CCCC

    where

  • 8/12/2019 Power Divider, Combiner and Coupler

    56/60

    Continue/ 4 wire couplerEven mode

    All Cmcapacitance will be at same potential, thus the total capacitance is

    inexe CCC 4

    minexo CCCC 64

    Odd modeAll Cmcapacitance will be considered, thus the total capacitance is

    Even and Odd mode characteristic impedance

    44

    1

    ee

    CZ

    44

    1

    oo

    CZ

    lineontransmissiinvelocity

    (300)

    (301)

    (302)

  • 8/12/2019 Power Divider, Combiner and Coupler

    57/60

    continueNow consider isolated pairs. Its equivalent circuit is same as two wire line ,

    thus its even and odd mode capacitance is

    exe CC

    mexo

    CCC 2

    Substitute these into (300) and (301) ,

    we have

    oe

    oee

    e CC

    CCCC

    3

    4

    mex

    mexexin

    CC

    CCCC

    oe

    eooo

    CC

    CCCC

    34

    And in terms of impedance refer

    to (302)

    oeoeoo

    oeoo

    e Z

    ZZ

    ZZZ

    34

    oooooe

    oeooo Z

    ZZ

    ZZZ

    34

    i

  • 8/12/2019 Power Divider, Combiner and Coupler

    58/60

    continue

    oooeoeoo

    oeoooooeoeo

    ZZZZ

    ZZZZZZZ

    33

    2

    44

    Characteristic impedance of the line is

    oooeoooeoooe

    oe

    oe

    ZZZZ

    ZZZZZZC

    23

    322

    22

    44

    44

    Coupling

    The desired characteristic impedance in terms of coupling is

    ooe Z

    CCCCCZ

    1/128934

    2

    ooo Z

    CCC

    CCZ

    1/12

    8934 2

  • 8/12/2019 Power Divider, Combiner and Coupler

    59/60

    VHF/UHF Hybrid power splitter

    50input

    50output

    50output

    100C

    T1

    T21

    5

    6

    7

    8

    2

    3

    4

  • 8/12/2019 Power Divider, Combiner and Coupler

    60/60

    Guanella power divider

    (VHF/UHF)

    RL

    V2

    I2

    I1

    V1

    Rg

    Vg I

    1

    V2

    I2