25
Power Conscious Test Synthesis and Scheduling for BIST RTL Data Paths Nicola Nicolici and Bashir M. Al- Hashimi

Power Conscious Test Synthesis and Scheduling for BIST RTL Data Paths Nicola Nicolici and Bashir M. Al-Hashimi

Embed Size (px)

Citation preview

Page 1: Power Conscious Test Synthesis and Scheduling for BIST RTL Data Paths Nicola Nicolici and Bashir M. Al-Hashimi

Power Conscious Test Synthesis and

Scheduling for BIST RTL Data

PathsNicola Nicolici and Bashir M. Al-Hashimi

Page 2: Power Conscious Test Synthesis and Scheduling for BIST RTL Data Paths Nicola Nicolici and Bashir M. Al-Hashimi

Purpose

• Investigate power dissipation during testing

• Propose novel power conscious– Test synthesis algorithms– Test scheduling algorithms

Page 3: Power Conscious Test Synthesis and Scheduling for BIST RTL Data Paths Nicola Nicolici and Bashir M. Al-Hashimi

Outline

• Motivation

• Built-in self-test (BIST) – Register-transfer level (RTL) data paths

• Power dissipation classification

• Power conscious design space exploration:– Test synthesis– Test scheduling

• Experimental results

• Conclusion

Page 4: Power Conscious Test Synthesis and Scheduling for BIST RTL Data Paths Nicola Nicolici and Bashir M. Al-Hashimi

Motivation

• Low power synthesis assumptions– Primary input transition probabilities– State transition probabilities

• High power dissipation during testing– High temperature => reliability decrease– Power/ground noise => yield loss

Page 5: Power Conscious Test Synthesis and Scheduling for BIST RTL Data Paths Nicola Nicolici and Bashir M. Al-Hashimi

Motivation (cont)

S1

S2S5

C

SS3S4

State CodeS1 000S2 011S3 001S4 010S5 100

000 001 1

Functional Transitionstransition nt

000 100 1011 010 1001 011 1010 000 1100 010 2

scan sequential circuit

100 010 2010 101 3101 010 3

transition nt

Scan Transitions Shift out S5=100Shift in S4=010

NO correlation

PROBLEM!

Page 6: Power Conscious Test Synthesis and Scheduling for BIST RTL Data Paths Nicola Nicolici and Bashir M. Al-Hashimi

Motivation (cont)

• Scan BIST environment– Test vector inhibiting techniques– Modified scan cell design– Low transition test pattern generator

• Standard scan design for test (DFT)– Test vector / scan latch ordering– Extra primary input vectors– New test application strategies

Page 7: Power Conscious Test Synthesis and Scheduling for BIST RTL Data Paths Nicola Nicolici and Bashir M. Al-Hashimi

Motivation (cont)

*1

-1

+2 -2

*2

+1

v1 v2

v3 v4 v5 v6

v7 v8 v9 v10

v11 v12

v13

Register VariablesR1 v1,v11R2 v2,v12R3 v7 R4 v5 R5 v6, v8 R6 v3 R7 v9 R8 v4,v10,v13

Clock 1

Clock 2

Clock 3

Clock 4

Clock 5

Page 8: Power Conscious Test Synthesis and Scheduling for BIST RTL Data Paths Nicola Nicolici and Bashir M. Al-Hashimi

Motivation (cont)

R1

*

R2 R3 R4 R5 R6 R7 R8

+ -

Clock 1 and 4Clock 2 and 3

Clock 2Clock 3

Note: R8 and – are active in clock 5

Page 9: Power Conscious Test Synthesis and Scheduling for BIST RTL Data Paths Nicola Nicolici and Bashir M. Al-Hashimi

BIST for RTL data paths

Library

HDL

RTL synthesis

netlist

netlist

layout

logic optimization

layoutsynthesis

BIST structures:• LFSR• MISR• BILBO• CBILBO +test controller

Page 10: Power Conscious Test Synthesis and Scheduling for BIST RTL Data Paths Nicola Nicolici and Bashir M. Al-Hashimi

BIST for RTL data paths (cont)

Test register allocation determines test schedule

LFSR2

M1 M2 M1 M2

T1 T2 T1

T2INTERRELATION NEEDS TO BE CONSIDERED!

• Previous power conscious test scheduling

– No relation: test scheduling and test synthesis

R1 LFSR2LFSR1

Page 11: Power Conscious Test Synthesis and Scheduling for BIST RTL Data Paths Nicola Nicolici and Bashir M. Al-Hashimi

Power dissipation classification

• According to necessity for test efficiency– Necessary power dissipation– Useless power dissipation

• According to occurrence during testing– Test application power dissipation– Shifting power dissipation

Page 12: Power Conscious Test Synthesis and Scheduling for BIST RTL Data Paths Nicola Nicolici and Bashir M. Al-Hashimi

Power dissipation classification (cont)

• Previous test scheduling approaches assume:– fixed amount of power for each module– not applicable to BIST RTL data paths

C0 C1

MISR0 R2MISR1

Necessary powerUseless power

Inactive resources

+0 +1

Page 13: Power Conscious Test Synthesis and Scheduling for BIST RTL Data Paths Nicola Nicolici and Bashir M. Al-Hashimi

Power conscious exploration

• Novel power conscious test synthesis

• Novel power conscious test scheduling

• Exploration strategies using tabu search– Time and Area oriented – TA-TSS – Power Conscious oriented – PC-TSS

Page 14: Power Conscious Test Synthesis and Scheduling for BIST RTL Data Paths Nicola Nicolici and Bashir M. Al-Hashimi

R1

+0

LFSR0

+1

LFSR2

+2

LFSR1

+0

LFSR0

+1

R2

+2

useless power

elimination

Necessary powerUseless power

Inactive resources

Power conscious exploration (cont)

TESTSYNTHESIS

Page 15: Power Conscious Test Synthesis and Scheduling for BIST RTL Data Paths Nicola Nicolici and Bashir M. Al-Hashimi

useless power

elimination

+0 +1 +2

R3 R4

+0 +1 +2

R3 R4

Necessary powerUseless power

Inactive resources

Power conscious exploration (cont)

TESTSCHEDULING

Page 16: Power Conscious Test Synthesis and Scheduling for BIST RTL Data Paths Nicola Nicolici and Bashir M. Al-Hashimi

Power conscious exploration (cont)

• 2 test sessions: 1 for multiplier *, 1 for ALUs (+,-)

R1

*

R2 R3 R4 R5 R6 R7 R8

+ -

Page 17: Power Conscious Test Synthesis and Scheduling for BIST RTL Data Paths Nicola Nicolici and Bashir M. Al-Hashimi

Power conscious exploration (cont)

BILBO1

*

BILBO2 R3 LFSR4 LFSR7 BILBO8

+ -

C+ C-

C1 C2 C8

TA-TSS – test session 1

LFSR5 R6

Necessary powerUseless power

Inactive resources

Page 18: Power Conscious Test Synthesis and Scheduling for BIST RTL Data Paths Nicola Nicolici and Bashir M. Al-Hashimi

Power conscious exploration (cont)

LFSR1

*

LFSR2 MISR3 LFSR4 LFSR5 BILBO6 MISR7 LFSR8

+ -

C+ C-

C1 C2 C8

PC-TSS – test session 1Necessary powerUseless power

Inactive resources

Page 19: Power Conscious Test Synthesis and Scheduling for BIST RTL Data Paths Nicola Nicolici and Bashir M. Al-Hashimi

Power conscious exploration (cont)

BILBO1

*

BILBO2 R3 LFSR4 LFSR7 BILBO8

+ -

C+ C-

C1 C2 C8

TA-TSS – test session 2

LFSR5 R6

Necessary powerUseless power

Inactive resources

Page 20: Power Conscious Test Synthesis and Scheduling for BIST RTL Data Paths Nicola Nicolici and Bashir M. Al-Hashimi

Power conscious exploration (cont)

LFSR1

*

LFSR2 MISR3 LFSR4 LFSR5 BILBO6 MISR7 LFSR8

+ -

C+ C-

C1 C2 C8

PC-TSS – test session 2Necessary powerUseless power

Inactive resources

Page 21: Power Conscious Test Synthesis and Scheduling for BIST RTL Data Paths Nicola Nicolici and Bashir M. Al-Hashimi

Experimental results

EWF 17 csteps - AMS 0.35 micron

0

500

1000

1500

2000

10 11 12 13 14 15 16 17 18 19

Power constraint (Pu)

Tes

t ap

plica

tion

tim

e (c

lock

cyc

les)

TA-TSS PC-TSS

Page 22: Power Conscious Test Synthesis and Scheduling for BIST RTL Data Paths Nicola Nicolici and Bashir M. Al-Hashimi

Experimental results (cont)

EWF 17 csteps - AMS 0.35 micron

01020304050

10 11 12 13 14 15 16 17 18 19

Power constraint (Pu)

BIS

T a

rea

over

hea

d

(sqm

il)

TA-TSS PC-TSS

Page 23: Power Conscious Test Synthesis and Scheduling for BIST RTL Data Paths Nicola Nicolici and Bashir M. Al-Hashimi

Experimental results (cont)

EWF 17 csteps - AMS 0.35 micron

0102030405060

10 11 12 13 14 15 16 17 18 19

Power constraint (Pu)

Tes

t ap

plica

tion

pow

er (m

W)

TA-TSS PC-TSS

Page 24: Power Conscious Test Synthesis and Scheduling for BIST RTL Data Paths Nicola Nicolici and Bashir M. Al-Hashimi

Experimental results (cont)

EWF 17 csteps - AMS 0.35 micron

0

5

10

15

20

10 11 12 13 14 15 16 17 18 19

Power constraint (Pu)

Shif

ting

pow

er

(mW

)

TA-TSS PC-TSS

Page 25: Power Conscious Test Synthesis and Scheduling for BIST RTL Data Paths Nicola Nicolici and Bashir M. Al-Hashimi

Conclusion

• Testable design space exploration – Interrelation: test synthesis and scheduling– Variable power dissipation for each test

• Novel algorithms– Power conscious test synthesis– Power conscious test scheduling

• Ongoing and future work– Test controller: optimise area / performance– 2 chips design and manufacturing