46
Post Silicon Patchable Hardware Post-Silicon Patchable Hardware Masahiro F jita Masahiro F ujita VLSI Design and Education Center (VDEC ) VLSI Design and Education Center (VDEC) The University of Tokyo July 22 nd , 2011

Post-Silicon Patchable HardwareSilicon Patchable Hardware · Power/timing analysis: Synopsys PrimeTime PX Si lti lt df lltiSimulation results are used for power calculation Energy

  • Upload
    others

  • View
    33

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Post-Silicon Patchable HardwareSilicon Patchable Hardware · Power/timing analysis: Synopsys PrimeTime PX Si lti lt df lltiSimulation results are used for power calculation Energy

Post Silicon Patchable HardwarePost-Silicon Patchable Hardware

Masahiro F jitaMasahiro Fujita

VLSI Design and Education Center (VDEC)VLSI Design and Education Center (VDEC)The University of Tokyo

July 22nd, 2011

Page 2: Post-Silicon Patchable HardwareSilicon Patchable Hardware · Power/timing analysis: Synopsys PrimeTime PX Si lti lt df lltiSimulation results are used for power calculation Energy

Respin Statistics (North America)100%

80%ce

ss Respin is becoming more frequent

60% 48%44%on

Suc

c more frequent

40%

44%39%

33%st S

ilico

20%

Firs

1998 2000 2002 20040%

Fujita Lab. – VLSI Design and Education Center - University of Tokyo 2

1998 2000 2002 2004[G. S. Spirakis, DATE 2006]

Page 3: Post-Silicon Patchable HardwareSilicon Patchable Hardware · Power/timing analysis: Synopsys PrimeTime PX Si lti lt df lltiSimulation results are used for power calculation Energy

Manufacturing Cost$5M

$4MU

S$)

$3M

Cost

(U

$2M

sk S

et C

$1M

Mas Respin risk is

increasing

90nm 65nm 45nm 32nm

dramatically

Fujita Lab. – VLSI Design and Education Center - University of Tokyo 3

90nm 65nm 45nm 32nm[Nikkei Electronics, 2008]

Page 4: Post-Silicon Patchable HardwareSilicon Patchable Hardware · Power/timing analysis: Synopsys PrimeTime PX Si lti lt df lltiSimulation results are used for power calculation Energy

Causes for RespinsLogic/Function

Cl k91%

36%ClockFast Path

Slow Path

36%

32%

26%Slow PathDelay/Glitch

Power

26%

26%

21% Logic and functional errors Yield

AnalogFi

19%

19%

are the leading cause

FirmwareMixed Signal

IR Drop

17%

15%

15%IR Drop

0% 20% 40% 60% 80% 100%

15%

IC/ASIC Designs Having One or More Re spins by Type of Flaw

Fujita Lab. – VLSI Design and Education Center - University of Tokyo 4

IC/ASIC Designs Having One or More Re-spins by Type of Flaw[Collett International Research 2005]

Page 5: Post-Silicon Patchable HardwareSilicon Patchable Hardware · Power/timing analysis: Synopsys PrimeTime PX Si lti lt df lltiSimulation results are used for power calculation Energy

Conventional SoC Design FlowHigh-LevelDescription

Bug Fix

75% of the whole development time[Source: Intel 2007]

High-Level Synthesis

Machine-Generated

[Source: Intel 2007]Synthesis

Bug Localization

Logic Synthesis

RTL Bug Fix

BugVerification/Simul

ation Logic SynthesisPlace & Route

Pre-SiliconRTL Verification

Need to Understand RTL

Bug Localization

E

ation

Post-Silicon

SoCError

Detection

Fujita Lab. – VLSI Design and Education Center - University of Tokyo 5

Design RTL Validation

Page 6: Post-Silicon Patchable HardwareSilicon Patchable Hardware · Power/timing analysis: Synopsys PrimeTime PX Si lti lt df lltiSimulation results are used for power calculation Energy

Proposed Patchable SoC Design Flow

High-Leveli i

Bug FixDescription

g

Bug Localization High Level Error

Verification/Simulation

High-Level Synthesis of

Patchable HWB

Error Detection

Logic SynthesisPlace & Route

Pre-SiliconHigh-Level Verification

ation Bug Localization

Bug Fix

P t h

NoRespin

Needed!

Post-SiliconPatchable SoC

Patch Compilation

Fujita Lab. – VLSI Design and Education Center - University of Tokyo 6

Design High-Level ECO

Page 7: Post-Silicon Patchable HardwareSilicon Patchable Hardware · Power/timing analysis: Synopsys PrimeTime PX Si lti lt df lltiSimulation results are used for power calculation Energy

Proposed Patchable HardwareEfficeum

offers behavioral-level programmability

Custom Datapath

Patchable Controller

using a patchable controller

HardwiredHardwired PatchPatch

Patchable Controller

ALU1ALU1 ALU2ALU2

Hardwired FSM

Hardwired FSM

PatchFSM

PatchFSM

ALU1ALU1 ALU2ALU2

Partially-Programmable Circuit (PPC)offers logic-level programmability

Fujita Lab. – VLSI Design and Education Center - University of Tokyo 7

offers logic level programmabilityusing a mixed gate/LUT circuit

Page 8: Post-Silicon Patchable HardwareSilicon Patchable Hardware · Power/timing analysis: Synopsys PrimeTime PX Si lti lt df lltiSimulation results are used for power calculation Energy

Effice mEfficeum:An Energy-Efficient Patchable AcceleratorAn Energy-Efficient Patchable Accelerator

For Post-Silicon Engineering Changes

Fujita Lab. – VLSI Design and Education Center - University of Tokyo 8

Page 9: Post-Silicon Patchable HardwareSilicon Patchable Hardware · Power/timing analysis: Synopsys PrimeTime PX Si lti lt df lltiSimulation results are used for power calculation Energy

Energy Efficiency vs. Programmability

Energy Efficiency of 90nm OFDMEnergy Efficiency of 90nm OFDMFixed-function HW: 200GOPS/WE b dd d P 4GOPS/W 50X!Embedded Proc.: 4GOPS/W 50X!Laptop Proc.: 0.05GOPS/W 4,000X!

>100GOPS High Performance1W P /Th l C i〜1W Power/Thermal Constraints

Energy efficiency (in [GOPS/W] or [J/op])Energy efficiency (in [GOPS/W] or [J/op]) How much computation can be done in a given energy Sl i d th hi d b t t ffi i

Fujita Lab. – VLSI Design and Education Center - University of Tokyo 9

Slowing down the chip reduces power but not efficiency

Page 10: Post-Silicon Patchable HardwareSilicon Patchable Hardware · Power/timing analysis: Synopsys PrimeTime PX Si lti lt df lltiSimulation results are used for power calculation Energy

Fixed-Function Accelerator Achieves high energy efficiency by customization:Hardwired controller → No reprogrammabilityHighly-customized datapath → Low flexibility

Local StoreLocal Store

Hardwired ControllerHardwired ControllerReg

1Reg

1Reg

2Reg

2Reg

3Reg

3 ・・・

Control

Sparse Interconnect NetworkSparse Interconnect Network

Comp-t

Comp-t

Multi-li

Multi-liALU2ALU2ALU1ALU1 ・・・

Fujita Lab. – VLSI Design and Education Center - University of Tokyo 10

aratorarator plierplier

Page 11: Post-Silicon Patchable HardwareSilicon Patchable Hardware · Power/timing analysis: Synopsys PrimeTime PX Si lti lt df lltiSimulation results are used for power calculation Energy

Proposed Patchable Accelerator Behavioral reprogrammability by control patching Increased flexibility by adding register file via data bus

Local StoreLocal Store

Hardwired C t llHardwired C t llRegReg RegReg RegReg PatchPatch

y y g g

StoreStore ControllerControllerReg1

Reg1

Reg2

Reg2

Reg3

Reg3 ・・・

Patch LogicPatch Logic

Control

Sparse Interconnect NetworkSparse Interconnect Network

Control Bus

Sparse Interconnect NetworkSparse Interconnect Network

Data Bus

Comp-aratorComp-arator

Multi-plier

Multi-plierALU2ALU2ALU1ALU1

・・・

Register Register

Fujita Lab. – VLSI Design and Education Center - University of Tokyo

aratorarator plierplier gFilegFile

11

Page 12: Post-Silicon Patchable HardwareSilicon Patchable Hardware · Power/timing analysis: Synopsys PrimeTime PX Si lti lt df lltiSimulation results are used for power calculation Energy

Patch Logicer

PC1=?=?

Coun

te

PC2

>PCpatch?>PCpatch?

=?=?

ogra

m C ・

Sign

alHardwired ControllerHardwired ControllerPC1’

Pro

・・

・ ・・

ontr

ol S

Control PC2’

Co

MemorySignal

Memory

Program Counter Patch Control Signal Patch

P h M

Fujita Lab. – VLSI Design and Education Center - University of Tokyo

Patch Memory

12

Page 13: Post-Silicon Patchable HardwareSilicon Patchable Hardware · Power/timing analysis: Synopsys PrimeTime PX Si lti lt df lltiSimulation results are used for power calculation Energy

Patching Example (1/2)Scheduling Result of Initial Design

PC ALU1 ALU2 MUL1 Next PC

1 2

2 3

wir

edic

3 1 Har

dw log

4

ogic

5Dataflow graph for

Initial Design

Patc

h loFujita Lab. – VLSI Design and Education Center - University of Tokyo 13

Page 14: Post-Silicon Patchable HardwareSilicon Patchable Hardware · Power/timing analysis: Synopsys PrimeTime PX Si lti lt df lltiSimulation results are used for power calculation Energy

Patching Example (2/2)Scheduling Result After Engineering Change

PC ALU1 ALU2 MUL1 NextPC

1 2 4

2 3

wir

edic

3 1 Har

dw logi

4 3

5Dataflow graph

After ECPatc

hlo

gic

Fujita Lab. – VLSI Design and Education Center - University of Tokyo 14

Page 15: Post-Silicon Patchable HardwareSilicon Patchable Hardware · Power/timing analysis: Synopsys PrimeTime PX Si lti lt df lltiSimulation results are used for power calculation Energy

Patching-Based Post-Silicon ECO Flow

P t Sili ECOPost-ECO Program

Post-Silicon ECO(Spec. Change & Bug Fix)

C Program

High-LevelS h i +

-x

<<x

+Synthesis

x

Computing the DifferenceBetween Two ProgramsFixed-Function HW

+ x<<

+Writing into

Patch MemoryInserting RF &

Patch Logic- <<

x

Patch Compilation

Patch

Fujita Lab. – VLSI Design and Education Center - University of Tokyo

Patch CompilationEfficeum

15

Page 16: Post-Silicon Patchable HardwareSilicon Patchable Hardware · Power/timing analysis: Synopsys PrimeTime PX Si lti lt df lltiSimulation results are used for power calculation Energy

Experimental SetupExample: 8x8 IDCTT h l F PDK 45Technology: FreePDK 45nmLogic Synthesis: Synopsys Design Compiler Ultrag y y p y g pHigh effort options with gated clock optimization

P&R Cadence SoC Enco nterP&R: Cadence SoC EncounterSimulation: Synopsys VCSy p yPower/timing analysis: Synopsys PrimeTime PXSi l ti lt d f l l tiSimulation results are used for power calculation

Energy efficiencies (GOPS/W) are compared

Fujita Lab. – VLSI Design and Education Center - University of Tokyo 16

Page 17: Post-Silicon Patchable HardwareSilicon Patchable Hardware · Power/timing analysis: Synopsys PrimeTime PX Si lti lt df lltiSimulation results are used for power calculation Energy

Energy Efficiency Comparison No Patching

Fully-Patched

6%

48%

89%

8x8 IDCT (FreePDK 45nm technology)

Fujita Lab. – VLSI Design and Education Center - University of Tokyo 17

( gy)Offers a tradeoff between efficiency and programmability

Page 18: Post-Silicon Patchable HardwareSilicon Patchable Hardware · Power/timing analysis: Synopsys PrimeTime PX Si lti lt df lltiSimulation results are used for power calculation Energy

Area & Performance Comparison20%5%

5XSmaller

Up to 40%Up to 40%Increase

Fujita Lab. – VLSI Design and Education Center - University of Tokyo 18

Page 19: Post-Silicon Patchable HardwareSilicon Patchable Hardware · Power/timing analysis: Synopsys PrimeTime PX Si lti lt df lltiSimulation results are used for power calculation Energy

Area Comparison

4x reduction4x reduction

18% increase

Fully-programmable accelerator

Single-functionHardwired accelerator Effi

Fujita Lab. – VLSI Design and Education Center - University of Tokyo 19(Technology: FreePDK 45nm (NCSU/Nangate), Operating Frequency: 200MHz)

Hardwired accelerator Efficeum

Page 20: Post-Silicon Patchable HardwareSilicon Patchable Hardware · Power/timing analysis: Synopsys PrimeTime PX Si lti lt df lltiSimulation results are used for power calculation Energy

Power Comparison

6x reduction6x reduction

13% increase

Fully-programmable accelerator

Single-functionHardwired accelerator Effi

Fujita Lab. – VLSI Design and Education Center - University of Tokyo 20

(Technology: FreePDK 45nm (NCSU/Nangate), Operating Frequency: 200MHz)

Hardwired accelerator Efficeum

Page 21: Post-Silicon Patchable HardwareSilicon Patchable Hardware · Power/timing analysis: Synopsys PrimeTime PX Si lti lt df lltiSimulation results are used for power calculation Energy

Incremental High Le el S nthesisIncremental High-Level Synthesis and Patch Compilationand Patch Compilation

For High-Level ECOg

Fujita Lab. – VLSI Design and Education Center - University of Tokyo 21

Page 22: Post-Silicon Patchable HardwareSilicon Patchable Hardware · Power/timing analysis: Synopsys PrimeTime PX Si lti lt df lltiSimulation results are used for power calculation Energy

Conventional High-Level SynthesisSeveral phases are applied separatelyThis prevents incremental synthesisThis prevents incremental synthesis

SchedulingAllocationBinding

+ x +

g

Step 1+ x+

AD

D1

AD

D2

MU

L1

SHFT

1

ADD1

ADD2

Step 1+ <<x

Step 2

Step 3

++

x<<

x

+MUL1

SHFT1

Step 1

Step 2

Step 3

Registers

FSM DatapathD t th FSM

Fujita Lab. – VLSI Design and Education Center - University of Tokyo 22

DatapathDatapathDatapath

Page 23: Post-Silicon Patchable HardwareSilicon Patchable Hardware · Power/timing analysis: Synopsys PrimeTime PX Si lti lt df lltiSimulation results are used for power calculation Energy

Incremental High-Level Synthesis Each operation is scheduled and bound incrementally,

and the hardware is enhanced accordinglyIncremental

Scheduling & BindingIncremental

Scheduling & Binding

Step 1+ +

AD

D1

AD

D2

MU

L1

SHFT

1

+ +

AD

D1

AD

D2

MU

L1

SHFT

1

Step 1Step 2

++ <<+ +

+ <<x

+Step 1

Step 2Step 3

Registers Registers

S

Registers

S

Registers

Fujita Lab. – VLSI Design and Education Center - University of Tokyo 23

FSMDatapath

FSMDatapath

Page 24: Post-Silicon Patchable HardwareSilicon Patchable Hardware · Power/timing analysis: Synopsys PrimeTime PX Si lti lt df lltiSimulation results are used for power calculation Energy

Patch Compilation Same as incremental synthesis, except the datapath

enhancement is not allowed (only FSM is enhanced)Incremental

Scheduling & BindingIncremental

Scheduling & Binding

Step 1+ +

AD

D1

AD

D2

MU

L1

SHFT

1

+ +

AD

D1

AD

D2

MU

L1

SHFT

1

Step 1Step 2

++ <<+ +

+ <<x

+Step 1

Step 2Step 3

Registers Registers

S S

Registers Registers

Fujita Lab. – VLSI Design and Education Center - University of Tokyo 24

FSM FSMDatapath Datapath

Page 25: Post-Silicon Patchable HardwareSilicon Patchable Hardware · Power/timing analysis: Synopsys PrimeTime PX Si lti lt df lltiSimulation results are used for power calculation Energy

Incremental Scheduling ProcedureExtension of Swing Modulo Scheduling for VLIW

compilers [Llosa et al., PACT ‘96]p [ , ]Conventional Scheduling

(Top Down)Incremental Swing Scheduling

(Mix of Top Down & Bottom Up)

der

dulin

g O

rSc

hed

Very long 6 registers Shorter register Only 4 registers

Fujita Lab. – VLSI Design and Education Center - University of Tokyo 25

y gregister lifetimerequired lifetime

y grequired

Page 26: Post-Silicon Patchable HardwareSilicon Patchable Hardware · Power/timing analysis: Synopsys PrimeTime PX Si lti lt df lltiSimulation results are used for power calculation Energy

Swing Scheduling ProcedureMix of top-down and bottom-up scheduling

Phase 1: Bottom-UpScheduling of

Critical Path and

Phase 2: Top-Down Scheduling of

the Descendants of

Phase 3: Bottom-UpScheduling of

the Ancestors ofTheir Ancestors Scheduled Operations Scheduled Operations

Fujita Lab. – VLSI Design and Education Center - University of Tokyo 26

Page 27: Post-Silicon Patchable HardwareSilicon Patchable Hardware · Power/timing analysis: Synopsys PrimeTime PX Si lti lt df lltiSimulation results are used for power calculation Energy

Incremental Step InsertionA novel technique enabling incremental swing

schedulingschedulingDuring swing scheduling, a new control step is

i d b h h d l d h d dinserted between the scheduled steps when needed

Step A

Step B

Step A

Step B

Step A

Step B

Step C Step D Step E

Step DStep C Step D

Step E

Fujita Lab. – VLSI Design and Education Center - University of Tokyo 27

Page 28: Post-Silicon Patchable HardwareSilicon Patchable Hardware · Power/timing analysis: Synopsys PrimeTime PX Si lti lt df lltiSimulation results are used for power calculation Energy

Incremental Binding ProcedureFor each operation, all possible combinations of

(resource registers) are examined(resource, registers) are examinedIf no such binding is found, new interconnects

b d i i d dbetween resource and registers are introducedEnhancedDatapathDatapath Datapath

IncrementalScheduling & Binding

1 2 1 T1

Datapath

Register

Datapath

Register

DatapathEnhancement

Step 1 + +

AD

D1

AD

D2

MU

L1

SHFT

Step 2 + <<xStep 3 A multiplier exists but

no register-to-multiplier

Fujita Lab. – VLSI Design and Education Center - University of Tokyo 28

g pinterconnect exists

Page 29: Post-Silicon Patchable HardwareSilicon Patchable Hardware · Power/timing analysis: Synopsys PrimeTime PX Si lti lt df lltiSimulation results are used for power calculation Energy

Experimental SetupThe proposed method has been implemented in

our high-level synthesis framework Cyneumour high level synthesis framework CyneumIncremental high-level synthesisP t h il f Effi iPatch compiler for Efficieum

Example: 5 benchmark designsC programs of about ~100 linesFunctions from IDCT ADPCM MPEGFunctions from IDCT, ADPCM, MPEGPost-ECO examples are generated by random graph

perturbation (next slide)perturbation (next slide)

Evaluated the quality of the method through the

Fujita Lab. – VLSI Design and Education Center - University of Tokyo

patch size and compilation time29

Page 30: Post-Silicon Patchable HardwareSilicon Patchable Hardware · Power/timing analysis: Synopsys PrimeTime PX Si lti lt df lltiSimulation results are used for power calculation Energy

Generating ECO ExamplesThe following graph perturbations are randomly

applied to CDFGapplied to CDFG

Perturbation 1: Opcode ChangeOriginal CDFG

Perturbation 1: Opcode Change

Perturbation 2: Operand Change Perturbation 3: Introducing

Fujita Lab. – VLSI Design and Education Center - University of Tokyo 30

Perturbation 2: Operand Change Perturbation 3: IntroducingA New Operation

Page 31: Post-Silicon Patchable HardwareSilicon Patchable Hardware · Power/timing analysis: Synopsys PrimeTime PX Si lti lt df lltiSimulation results are used for power calculation Energy

Evaluation of Patch Compiler For each benchmark, random CDFG perturbation is

applied M times. For each M, 100 different post-ECOapplied M times. For each M, 100 different post ECO designs are generated and then patches are compiled.

.]s)

ime

[sec

SM S

tate

lati

on T

i

Size

(#FS

e Co

mpi

l

Pat

ch S

Ave

rage

Ave

rage

Fujita Lab. – VLSI Design and Education Center - University of Tokyo 31

ECO Size M (#Perturbations)

AA

ECO Size M (#Perturbations)

Page 32: Post-Silicon Patchable HardwareSilicon Patchable Hardware · Power/timing analysis: Synopsys PrimeTime PX Si lti lt df lltiSimulation results are used for power calculation Energy

PPC:Increasing Yield Using

Partially Programmable CircuitsPartially-Programmable Circuits

A collaborative work withfProf. Shigeru Yamashita (Ritsumeikan Univ.)

Fujita Lab. – VLSI Design and Education Center - University of Tokyo 32

Page 33: Post-Silicon Patchable HardwareSilicon Patchable Hardware · Power/timing analysis: Synopsys PrimeTime PX Si lti lt df lltiSimulation results are used for power calculation Energy

Design For Yield At physical level, there are many techniques available

for yield/defect tolerance enhancementfor yield/defect tolerance enhancement At logic level, the following techniques can be applied

f h d lfor each module TMR: Voting DMR: If one module is defective, the other can be

used Reconfigurable devices: synthesize not to use

defective partsdefective parts

Too much overhead in area and performance

Fujita Lab. – VLSI Design and Education Center - University of Tokyo 33

Page 34: Post-Silicon Patchable HardwareSilicon Patchable Hardware · Power/timing analysis: Synopsys PrimeTime PX Si lti lt df lltiSimulation results are used for power calculation Energy

Objective of This WorkEnhance the defect tolerance by using a Partially-

Programmable Circuit (PPC)Programmable Circuit (PPC)PPC is a hybrid LUT/gate circuitTo correct a single defect, full programmability such

as FPGAs is unnecessaryA defective wire can be made redundant by

reprogramming LUTs in PPCp g g

Propose a design methodologyS th i f PPCSynthesis of PPCWhere to put LUTs

Fujita Lab. – VLSI Design and Education Center - University of Tokyo

How to reprogram LUTs for defective wires34

Page 35: Post-Silicon Patchable HardwareSilicon Patchable Hardware · Power/timing analysis: Synopsys PrimeTime PX Si lti lt df lltiSimulation results are used for power calculation Energy

PPC (Partially-Programmable Circuit)

Conventional

Non-Programmable Partconsisting of conventional gates

Conventionalgates

Primar

Primary Inputs

ry OutputLUT ts

LUTLUT

MUX LUT

Programmable Part

Fujita Lab. – VLSI Design and Education Center - University of Tokyo 35

gconsisting of LUTs and MUXs

Page 36: Post-Silicon Patchable HardwareSilicon Patchable Hardware · Power/timing analysis: Synopsys PrimeTime PX Si lti lt df lltiSimulation results are used for power calculation Energy

Defect Correction in PPCFind out that

a wire c is defectivea wire ci is defectiveConventionalgates

By reprogramming LUTs, the wire ci becomes redundant

LUT

wire ci becomes redundant

LUT

LUTLUT

Call ci as Robust Connection (RC)MUX LUT

i ( )

Fujita Lab. – VLSI Design and Education Center - University of Tokyo 36

Page 37: Post-Silicon Patchable HardwareSilicon Patchable Hardware · Power/timing analysis: Synopsys PrimeTime PX Si lti lt df lltiSimulation results are used for power calculation Energy

PPC Example: Initial Circuit

P

Prim

LUT LUTN1

NN4rim

ary In

mary O

utp

N2

N5 N6N7

N N

puts

uts

LUT LUT

N8 N9

LUTs are used partially in the circuit There is no redundancy now

Fujita Lab. – VLSI Design and Education Center - University of Tokyo 37

Page 38: Post-Silicon Patchable HardwareSilicon Patchable Hardware · Power/timing analysis: Synopsys PrimeTime PX Si lti lt df lltiSimulation results are used for power calculation Energy

PPC Example: Redundancy Addition 1

LUT LUT

Primary

Primary O

N1N2

N4

N N

LUT

y Inputs

Outputs

LUT

N5 N6N7

N8 N9

By adding this wire, some wires become Robust Connections (RCs)

RC: Wires which can become redundant by reprogramming LUTsNRC: Wires which are not RCsRC: Wires which can become redundant by reprogramming LUTsNRC: Wires which are not RCs

Fujita Lab. – VLSI Design and Education Center - University of Tokyo 38

NRC: Wires which are not RCsNRC: Wires which are not RCs

Page 39: Post-Silicon Patchable HardwareSilicon Patchable Hardware · Power/timing analysis: Synopsys PrimeTime PX Si lti lt df lltiSimulation results are used for power calculation Energy

PPC Example: Redundancy Addition 2

LUT LUT

Primar

Primary

N1N2

N4

N N

ry Inputs

y OutputsLUT LUT

N5 N6N7

N8 N9

LUT LUT

Fujita Lab. – VLSI Design and Education Center - University of Tokyo 39

Page 40: Post-Silicon Patchable HardwareSilicon Patchable Hardware · Power/timing analysis: Synopsys PrimeTime PX Si lti lt df lltiSimulation results are used for power calculation Energy

PPC Example: Redundancy Addition 3

LUT LUT

Primar

Primary

N1N2

N4

N N

ry Inputs

y OutputsLUT LUT

N5 N6N7

N8 N9

LUT LUT

Fujita Lab. – VLSI Design and Education Center - University of Tokyo 40

Page 41: Post-Silicon Patchable HardwareSilicon Patchable Hardware · Power/timing analysis: Synopsys PrimeTime PX Si lti lt df lltiSimulation results are used for power calculation Energy

PPC Example: Final CircuitSince we assume a single defect, multiple redundant connections to an LUT are multiplexed

MLUT LUTN3

p

Primar

Primary

MUX

N1N2

3N4

N N

ry Inputs

y OutputsLUT LUT

N5 N6N7

N8 N9

LUT LUT

Colored wires: Robust Connection (RC)Black wires: Non-Robust Connection (NRC)Colored wires: Robust Connection (RC)Black wires: Non-Robust Connection (NRC)

Fujita Lab. – VLSI Design and Education Center - University of Tokyo 41

Black wires: Non Robust Connection (NRC)Black wires: Non Robust Connection (NRC)

Page 42: Post-Silicon Patchable HardwareSilicon Patchable Hardware · Power/timing analysis: Synopsys PrimeTime PX Si lti lt df lltiSimulation results are used for power calculation Energy

CSPF: Flexibility of Logic CircuitsLogic function

10

10

100

**0

CSPF

g1001

001

0000

0

01

01

0*

0*0

f 0

010

111

*10

**1

01

f 101

011

01*

**0

0** 1

11011

10

Truth table*

** 0

1g2

1101

1100

100

1100

10*

10*

Fujita Lab. – VLSI Design and Education Center - University of Tokyo

10 0*

42

Page 43: Post-Silicon Patchable HardwareSilicon Patchable Hardware · Power/timing analysis: Synopsys PrimeTime PX Si lti lt df lltiSimulation results are used for power calculation Energy

SPFD: Flexibility of LUT Circuits

g1

100

g101 0

1f

L1

g1

11

101

L1g2

g2101

10

1 0 0g1 's flexibility by SPFDs

010

001

110

101

Fujita Lab. – VLSI Design and Education Center - University of Tokyo

0 1 0 1

43

Page 44: Post-Silicon Patchable HardwareSilicon Patchable Hardware · Power/timing analysis: Synopsys PrimeTime PX Si lti lt df lltiSimulation results are used for power calculation Energy

Proposed Synthesis MethodBasic procedure

1 Perform a LUT mapping1. Perform a LUT mapping2. Determine LUTs to keepNeeds a better heuristicReconvergence points, non-critical nodes

3. Perform a technology re-mapping4 Adding redundant wires to LUTs4. Adding redundant wires to LUTsHow to find good wires?

fCurrently, wires are identified exhaustively

Fujita Lab. – VLSI Design and Education Center - University of Tokyo 44

Page 45: Post-Silicon Patchable HardwareSilicon Patchable Hardware · Power/timing analysis: Synopsys PrimeTime PX Si lti lt df lltiSimulation results are used for power calculation Energy

Preliminary Experiments1. Mapping to K-input LUTs (K=3,4,5)2. Re-mapping with keeping LUTs at the outputs2. Re mapping with keeping LUTs at the outputs3. For each LUT, if connecting a wire to the LUTs make another wire RC, then it is selected. Terminate if the number of LUT ,inputs is 6.

Pri

Prim

LUT

mary Inp

mary O

utp

LUT

uts

putsLUT

Fujita Lab. – VLSI Design and Education Center - University of Tokyo 45

Page 46: Post-Silicon Patchable HardwareSilicon Patchable Hardware · Power/timing analysis: Synopsys PrimeTime PX Si lti lt df lltiSimulation results are used for power calculation Energy

Experimental ResultsCircuit Stuck-at-0 Stuck-at-1

R b t N R b t N

#Connections which are robust to stuck-at-0/1

Robust Non-Robust

Robust Non-RobustOriginal Added Original Added

alu2 586 13 25 582 20 29

alu4 1093 28 92 1070 25 115

apex6 591 86 106 589 98 108

rot 421 161 218 411 172 228

too_large 472 15 256 453 9 275

d 1251 153 221 1318 213 154vda 1251 153 221 1318 213 154

C880 185 32 144 212 57 117

C1355 219 225 143 390 176 182219 225 143 390 176 182

C1908 626 37 66 599 36 93

C2670 710 59 176 704 66 182

Fujita Lab. – VLSI Design and Education Center - University of Tokyo 46

C3540 1500 63 210 1462 52 248