53
Portfolio Selection: Recent Approaches Optimization and Design with R Bernhard Pfaff [email protected] Invesco Asset Management Deutschland GmbH, Frankfurt am Main 7th R/Rmetrics Meielisalp Workshop June 30 – July 4, 2013, Meielisalp, Lake Thune Switzerland Pfaff (Invesco) Portfolio R/Rmetrics 1 / 53

Portfolio Selection: Recent Approaches Optimization and ... · 7th R/Rmetrics Meielisalp Workshop June 30 { July 4, 2013, Meielisalp, Lake Thune Switzerland Pfa (Invesco) Portfolio

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

  • Portfolio Selection: Recent ApproachesOptimization and Design with R

    Bernhard [email protected]

    Invesco Asset Management Deutschland GmbH, Frankfurt am Main

    7th R/Rmetrics Meielisalp WorkshopJune 30 – July 4, 2013,

    Meielisalp, Lake Thune Switzerland

    Pfaff (Invesco) Portfolio R/Rmetrics 1 / 53

  • Contents

    1 Overview

    2 R Resources

    3 Risk-Parity/Budget

    4 Optimal Draw Down

    5 Probabilistic Utility

    6 Optimal Risk/Reward

    7 Summary

    8 Bibliography

    Pfaff (Invesco) Portfolio R/Rmetrics 2 / 53

  • Overview

    1 Overview

    2 R Resources

    3 Risk-Parity/Budget

    4 Optimal Draw Down

    5 Probabilistic Utility

    6 Optimal Risk/Reward

    7 Summary

    8 Bibliography

    Pfaff (Invesco) Portfolio R/Rmetrics 3 / 53

  • Overview

    Overview

    Seminal work by Markowitz (1952), i.e., ‘Modern Portfolio Theory’.

    Since then, advances in terms of1 estimators for population parameters.2 optimization methods.

    In general:return-risk space 6= mean-variance space.Purpose of this talk: Selective survey of more recent portfoliooptimization techniques and how these can be utilized in R.

    Pfaff (Invesco) Portfolio R/Rmetrics 4 / 53

  • R Resources

    1 Overview

    2 R Resources

    3 Risk-Parity/Budget

    4 Optimal Draw Down

    5 Probabilistic Utility

    6 Optimal Risk/Reward

    7 Summary

    8 Bibliography

    Pfaff (Invesco) Portfolio R/Rmetrics 5 / 53

  • R Resources

    R Resources IKnowing your friends

    Solver-related R packages:DEoptim (Mullen et al., 2011), glpkAPI (Gelius-Dietrich, 2012),limSolve (Soetaert et al., 2009), linprog (Henningsen, 2010), lpSolve(Berkelaar, 2011), lpSolveAPI (Konis, 2011), quadprog (Turlach andWeingessel, 2011), RcppDE (Eddelbuettel, 2012), Rglpk (Theussl andHornik, 2012), rneos (Pfaff, 2011), Rsocp (Chalabi and Würtz, 2010),Rsolnp (Ghalanos and Theussl, 2012; Ye, 1987), Rsymphony (Harteret al., 2012)

    Portfolio-related R packages:fPortfolio (Würtz et al., 2010a), fPortfolioBacktest (Würtz et al.,2010b), FRAPO (Pfaff, 2012), parma (Ghalanos, 2013),PerformanceAnalytics (Carl et al., 2012), PortfolioAnalytics (Boudtet al., 2011b), rportfolios (Novomestky, 2012), tawny (Rowe, 2012)

    Pfaff (Invesco) Portfolio R/Rmetrics 6 / 53

  • R Resources

    R Resources IIKnowing your friends

    This should be viewed as a ‘selective’ summary of R packages, thereare more! Hence, check CRAN Task Views on ‘Finance’ and‘Optimization’ and R-Forge for what is available else and for recentadditions.

    In a nutshell: All kind of portfolio optimization tasks can be accomplishedfrom/within R.

    Pfaff (Invesco) Portfolio R/Rmetrics 7 / 53

  • Risk-Parity/Budget

    1 Overview

    2 R Resources

    3 Risk-Parity/Budget

    4 Optimal Draw Down

    5 Probabilistic Utility

    6 Optimal Risk/Reward

    7 Summary

    8 Bibliography

    Pfaff (Invesco) Portfolio R/Rmetrics 8 / 53

  • Risk-Parity/Budget

    Risk-Parity/BudgetMotivation

    Characteristic: Diversification directly applied to the portfolio riskitself.

    Motivation: Empirical observation that the risk contributions are agood predictor for actual portfolio losses. Hence, portfolio losses canpotentially be limited compared to an allocation which witnesses ahigh risk concentration on one or a few portfolio constituents.

    Risk concepts:1 Volatility-based, i.e. standard deviation (see Qian, 2005, 2006, 2011;

    Maillard et al., 2009, 2010)2 Downside-based, i.e., CVaR/ES (see Boudt et al., 2007, 2008; Peterson

    and Boudt, 2008; Boudt et al., 2010, 2011a; Ardia et al., 2010),budgeting (BCC) or min-max (MRC).

    Pfaff (Invesco) Portfolio R/Rmetrics 9 / 53

  • Risk-Parity/Budget

    Risk-Parity/BudgetProblem Delineation

    Starting point general definition of risk contribution:

    CiMω∈Ω = ωi∂Mω∈Ω∂ωi

    (1)

    whereby Mω∈Ω signify a linear homogeneous risk measure and ωi isthe weight of the i-th asset.

    For volatility-based risk measure:

    ∂σ(ω)

    ∂ωi=ωiσ

    2i +

    ∑Ni 6=j ωjσij

    σ(ω)(2)

    For downside-based risk measure:

    Ci CVaRω∈Ω,α = ωi

    [µi +

    (Σω)i√ω′Σω′

    φ(zα)

    α

    ](3)

    whereby α signify the confidence level pertinent to the downside risk.

    Pfaff (Invesco) Portfolio R/Rmetrics 10 / 53

  • Risk-Parity/Budget

    Risk-Parity/BudgetExample Risk-Parity vs GMV: R Code

    > library(FRAPO)

    > library(Rsolnp)

    > ## Loading data and computing returns

    > data(MultiAsset)

    > R ## GMV

    > wGmvAll ## ERC for all assets

    > SigmaAll wErcAll ## Two-step, by asset class

    > SigmaEq wErcEq rEq SigmaBd wErcBd rBd rAsset SigmaCl wErcCl wErcTwoStage ## comparing the two approaches

    > W ## concentration measure

    > Concentration

  • Risk-Parity/Budget

    Risk-Parity/BudgetExample Risk-Parity vs GMV: Results

    Assets GmvAll ErcAll ErcTwoStage

    EquityS&P 500 4.55 3.72 3.06Russell 3000 0.00 3.59 2.92DAX 4.69 3.47 2.57FTSE 100 0.00 4.12 3.45Nikkei 225 1.35 3.38 2.68MSCI EM 0.00 2.14 1.92∑

    ωEquityi

    10.59 20.43 16.60

    BondUS Treasury 0.00 16.42 18.57German REX 88.72 42.44 31.97UK Gilts 0.40 15.93 21.37∑

    ωBondi 89.12 74.79 71.91

    CommodityGold 0.29 4.78 11.49

    Concentration∑ω2i 0.79 0.24 0.20

    Table: ERC vs GMV Allocation

    Pfaff (Invesco) Portfolio R/Rmetrics 12 / 53

  • Risk-Parity/Budget

    Risk-Parity/BudgetExample BCC and MRC vs GMV: R Code

    library(PortfolioAnalytics)

    ## Defining constraints and objective for CVaR budget

    C1

  • Risk-Parity/Budget

    Risk-Parity/BudgetExample BCC and MRC vs GMV: R Code

    Assets Weights Risk-ContributionsGMV ERC BCC MCC GMV ERC BCC MCC

    S&P 500 4.55 3.72 5.84 2.02 9.83 16.63 12.73 6.53Russell 3000 0.00 3.59 2.42 1.01 0.00 16.80 5.57 3.30DAX 4.69 3.47 10.74 1.01 12.19 14.34 18.98 3.20FTSE 100 0.00 4.12 15.85 4.04 0.00 11.20 19.94 10.10Nikkei 225 1.35 3.38 2.90 1.01 3.16 22.36 8.99 4.12MSCI EM 0.00 2.14 5.72 1.01 0.00 14.22 18.65 5.36US Treasury 0.00 16.42 15.45 18.18 0.00 5.40 2.31 18.88German REX 88.72 42.44 18.11 66.67 74.75 −17.60 −3.42 39.61UK Gilts 0.40 15.93 13.95 1.01 0.50 5.00 0.49 1.18Gold 0.29 4.78 9.03 4.04 −0.43 11.63 15.78 7.70

    Pfaff (Invesco) Portfolio R/Rmetrics 14 / 53

  • Optimal Draw Down

    1 Overview

    2 R Resources

    3 Risk-Parity/Budget

    4 Optimal Draw Down

    5 Probabilistic Utility

    6 Optimal Risk/Reward

    7 Summary

    8 Bibliography

    Pfaff (Invesco) Portfolio R/Rmetrics 15 / 53

  • Optimal Draw Down

    Optimal Draw DownDefinition

    The draw-down of a portfolio at time t is defined as the difference betweenthe maximum uncompounded portfolio value prior to t and its value attime period t. More formally, let W (ω, t) = y′tω signify theuncompounded portfolio value at time t and ω are the portfolio weightsfor the N assets included in it and yt the cumulated returns, then thedraw-down, D(ω, t), is defined as:

    D(ω, t) = max0≤τ≤t

    {W (ω, τ)} −W (ω, t) (4)

    The draw down is as such a functional risk measure.

    Pfaff (Invesco) Portfolio R/Rmetrics 16 / 53

  • Optimal Draw Down

    Optimal Draw DownProblem Formulations

    With respect to portfolio optimization, the following problemformulations have been introduced by Chekhlov et al. (2000, 2003,2005):

    1 Maximum draw down (MaxDD)2 Average draw down (AvDD)3 Conditional draw down at risk (CDaR)

    The three portfolio optimization approaches can be formulated as alinear program (maximizing average annualized returns and drawdowns are included as constraints).

    Implemented in package FRAPO as functions PMaxDD(), PAveDD()and PCDaR(), respectively.

    Pfaff (Invesco) Portfolio R/Rmetrics 17 / 53

  • Optimal Draw Down

    Optimal Draw DownLP: Maximum Draw Down

    The linear program for the MaxDD is given as:

    PMaxDD = arg maxω∈Ω,u∈R

    R(ω) =1

    dCy′Tω

    uk − y′kω ≤ ν1Cuk ≥ y′kωuk ≥ uk−1u0 = 0

    (5)

    whereby the maximum allowed draw down in nominal terms is defined as afraction of the available capital/wealth (ν1C ) and u signify a (T + 1× 1)vector of slack variables in the program formulation, i.e., the maximumportfolio values up to time period k with 1 ≤ k ≤ T .

    Pfaff (Invesco) Portfolio R/Rmetrics 18 / 53

  • Optimal Draw Down

    Optimal Draw DownLP: Average Draw Down

    Similarly, the linear program for the AveDD is given as:

    PAvDD = arg maxω∈Ω,u∈R

    R(ω) =1

    dCy′Tω

    1

    T

    T∑k=1

    (uk − y′kω

    )≤ ν2C

    uk ≥ y′kωuk ≥ uk−1u0 = 0

    (6)

    Pfaff (Invesco) Portfolio R/Rmetrics 19 / 53

  • Optimal Draw Down

    Optimal Draw DownLP: Conditional Draw Down at Risk

    PCDaR = arg maxω∈Ω,u∈R,z∈R,ζ∈R

    R(ω) =1

    dCy′Tω

    ζ +1

    (1− α)T

    T∑k=1

    zk ≤ ν3C

    zk ≥ uk − y′kω − ζzk ≥ 0uk ≥ y′kωuk ≥ uk−1u0 = 0

    (7)

    whereby ζ signify the threshold draw-down value dependent on the priorchoosen confidence level α and the (T × 1) vector z represent thethreshold exceedances.

    Pfaff (Invesco) Portfolio R/Rmetrics 20 / 53

  • Optimal Draw Down

    Optimal Draw Down IExample Stock Portfolio: GMV vs. CDaR

    > library(FRAPO)

    > library(fPortfolio)

    > library(PerformanceAnalytics)

    > ## Loading of data set

    > data(EuroStoxx50)

    > ## Creating timeSeries of prices and returns

    > pr NAssets RDP ## Backtest of GMV vs. CDaR

    > ## Start and end dates

    > to from ## Portfolio specifications

    > ## CDaR portfolio

    > DDbound DDalpha ## GMV portfolio

    > mvspec BoxC ## Initialising weight matrices

    > wMV for(i in 1:length(to)){

    + series

  • Optimal Draw Down

    Optimal Draw Down IIExample Stock Portfolio: GMV vs. CDaR

    + cd MVRetFac MVRetFac[1] MVPort CDRetFac CDRetFac[1] CDPort ## Portfolio returns

    > MVRet CDRet ## Draw down table

    > table.Drawdowns(MVRet)

    > table.Drawdowns(CDRet)

    Pfaff (Invesco) Portfolio R/Rmetrics 22 / 53

  • Optimal Draw Down

    Optimal Draw DownExample Stock Portfolio: GMV vs. CDaR

    Portfolio From Trough To Depth → ↘ ↗

    GMV1 2007-12-10 2008-03-17 NA 20.11 17 152 2007-06-04 2007-08-13 2007-10-08 9.75 19 11 83 2007-10-15 2007-11-05 2007-11-26 3.34 7 4 34 2007-03-12 2007-03-12 2007-03-19 2.30 2 1 15 2007-04-23 2007-04-23 2007-04-30 0.76 2 1 1

    CDaR1 2007-11-12 2008-01-21 NA 11.53 21 112 2007-06-04 2007-09-03 2007-10-08 5.58 19 14 53 2007-05-07 2007-05-07 2007-05-14 0.51 2 1 14 2007-03-12 2007-03-12 2007-03-19 0.49 2 1 15 2007-10-22 2007-10-29 2007-11-05 0.30 3 2 1

    Table: Overview of Draw Downs (positive, percentages)

    Pfaff (Invesco) Portfolio R/Rmetrics 23 / 53

  • Probabilistic Utility

    1 Overview

    2 R Resources

    3 Risk-Parity/Budget

    4 Optimal Draw Down

    5 Probabilistic Utility

    6 Optimal Risk/Reward

    7 Summary

    8 Bibliography

    Pfaff (Invesco) Portfolio R/Rmetrics 24 / 53

  • Probabilistic Utility

    Probabilistic UtilityMotivation

    Portfolio selection problems derived from utility functions.

    E.g. mean-variance optimisation:U = λω′µ− (1− λ)ω′Σω.Allocation sensitive to parameters µ,Σ, λ.

    Problem-solving approaches: robust/bayesian estimators and/orrobust optimization.

    Nota bene: µ and Σ are random variables; as such the allocationvector ω is a random variable itself.

    Now: probabilistic interpretation of utility functions.

    Pfaff (Invesco) Portfolio R/Rmetrics 25 / 53

  • Probabilistic Utility

    Probabilistic UtilityConcept I

    Approach introduced by Rossi et al. (2002) and Marschinski et al.(2007).

    Utility function is interpreted as the logarithm of the probabilitydensity for a portfolio.

    Optimal allocation is defined as the expected value of the portfolio’sweights with respect to that probability, i.e., the weights are viewed asparameters of this distribution.

    Pfaff (Invesco) Portfolio R/Rmetrics 26 / 53

  • Probabilistic Utility

    Probabilistic UtilityConcept II

    Given: u = u(ω,U, θ), whereby ω is weight vector, U the assumedutility function and θ a catch-all parameter vector (e.g. expectedreturns, dispersion, risk sensitivity).

    Expected utility is proportional to the logarithm of a probabilitymeasure:ω ∼ P(ω|U, θ) = Z−1(ν,U, θ) exp (νu(ω,U, θ)).Normalizing constant: Z (ν,U, θ) =

    ∫D(ω)[dω] exp (νu(ω,U, θ)).

    Convergence to maximum utility (ν →∞) or equal-weight solution(ν → 0) is controlled by: ν = pNγ .Portfolio solution is then defined as:ω̄(U, θ) = Z−1(ν,U, θ)

    ∫D(ω)[dω]ω exp (νu(ω,U, θ))

    Pfaff (Invesco) Portfolio R/Rmetrics 27 / 53

  • Probabilistic Utility

    Probabilistic UtilityExample: quadratic utility, one risky asset, I

    ## Utility function

    U1

  • Probabilistic Utility

    Probabilistic UtilityExample: quadratic utility, one risky asset, II

    0.0 0.2 0.4 0.6 0.8 1.0

    −4

    −2

    02

    Weight

    Util

    ity /

    Den

    sity

    UtilityDensityexp Utility

    Pfaff (Invesco) Portfolio R/Rmetrics 29 / 53

  • Probabilistic Utility

    Probabilistic UtilityExample: quadratic utility, one risky asset, III

    0.0 0.2 0.4 0.6 0.8 1.0

    01

    23

    45

    Asymptotic Property of Probabilistic Utility with ν = N

    Weight

    Den

    sity

    ν = 1ν = 20ν = 40ν = 60ν = 80ν = 100ν = 120

    Pfaff (Invesco) Portfolio R/Rmetrics 30 / 53

  • Probabilistic Utility

    Probabilistic UtilityMarkov Chain Monte Carlo

    Class of algorithms for sampling from a probability distribution; shapeof density suffices.

    Purpose of MCMC is the numeric evaluation of multi-dimensionalintegrals, by (i) searching and (ii) evaluating the state space.

    The state space is searched by means of a Markov chain-typeprogression of the parameters.

    Evaluating proposed move (accepting/rejecting) ordinarily byMetropolis-Hastings algorithm.

    R resources: numerous R packages are available; see CRAN and taskview ‘Bayesian’ for an annotated listing.

    Book resources: Gilks et al. (1995) and Brooks et al. (2011).

    Pfaff (Invesco) Portfolio R/Rmetrics 31 / 53

  • Probabilistic Utility

    Probabilistic UtilityHybrid Monte Carlo I

    Introduced by Duane et al. (1987) (see Neal (2011) for a moretextbook-like exposition).

    Inclusion of an auxilliary momentum vector and taking the gradient ofthe target distribution into account.

    Purpose/aim:1 Moving through state space in larger steps.2 Autocorrelation in Markov Chains less pronounced compared to other

    approaches (thinning in principal not necessary).3 High acceptance rate, ideally all moves are accepted.4 Faster convergence to equilibrium distribution.

    Pfaff (Invesco) Portfolio R/Rmetrics 32 / 53

  • Probabilistic Utility

    Probabilistic UtilityHybrid Monte Carlo II

    Amending density by conjugate variables p:

    G (q,p) ∼ exp(U(q)− p

    ′p

    2

    )(8)

    Algorithm: Starting from a pair (qn,pn)1 Sample η from standard normal.2 For a time interval T , integrate Hamiltonion equations:

    dpidt

    = − δUδpi

    (9a)

    dqidt

    = pi (9b)

    together with the boundary constraints p(0) = η and q(0) = qn.3 Accept qn+1 = q(T ) with probability:

    β = min(1, exp (G (q(T ),p(T ))− G (qn,η))), (10)else set qn+1 = qn.

    Pfaff (Invesco) Portfolio R/Rmetrics 33 / 53

  • Probabilistic Utility

    Probabilistic Utility IHybrid Monte Carlo III

    See http://www.cs.utoronto.ca/~radford/GRIMS.html (adopted version)

    hybridMC

  • Probabilistic Utility

    Probabilistic Utility IIHybrid Monte Carlo III

    ## Evaluate potential and kinetic energies at start and end of trajectory

    clogDens

  • Probabilistic Utility

    Probabilistic Utility IIIHybrid Monte Carlo III

    MCMC[i, ]

  • Probabilistic Utility

    Probabilistic UtilityComparative Simulation: Design

    Michaud-type simulation (see Michaud, 1989, 1998) as in Marschinskiet al. (2007):

    1 Treat estimates of location and dispersion as true populationparameters for a given sample.

    2 Obtain optimal ‘true’ MU allocations and hence utility.3 Draw K random samples of length L from these ‘population’

    parameters and obtain MU and PU solutions.4 Compare distances of these K solutions with ‘true’ utility.

    Settings: Sample sizes (L) of 24, 30, 36, 48, 54, 60, 72, 84, 96, 108and 120 observations; length of MC 250 (150 burn-in-periods) and Kequals 100.

    Applied to end-of-month multi-asset data set contained in R packageFRAPO (see Pfaff, 2012), sample period 2004:11 – 2011:11.

    Pfaff (Invesco) Portfolio R/Rmetrics 37 / 53

  • Probabilistic Utility

    Probabilistic Utility IComparative Simulation: R Code

    ## Load packages

    library(FRAPO)

    library(MASS)

    library(numDeriv)

    library(parallel)

    library(compiler)

    enableJIT(3)

    ## Loading data and computing returns

    data(MultiAsset)

    Assets

  • Probabilistic Utility

    Probabilistic Utility IIComparative Simulation: R Code

    PUW

  • Probabilistic Utility

    Probabilistic Utility IIIComparative Simulation: R Code

    for(i in 1:LS){

    cat(paste("Computing for Sample Size", Samples[i], "\n"))

    SampleL

  • Probabilistic Utility

    Probabilistic UtilityComparative Simulation: R Code, Distances from true utility

    Sample Sizes

    Dev

    iatio

    n fr

    om 't

    rue'

    Util

    ity (

    mea

    n an

    d m

    ean

    +/−

    Std

    Dev

    )

    ● ●

    ●●

    ● ●●

    ● ● ●

    24 30 36 48 54 60 72 84 96 108 120

    0

    20

    40

    60

    80

    100

    120●

    ProbUtilMaxUtil

    Pfaff (Invesco) Portfolio R/Rmetrics 41 / 53

  • Optimal Risk/Reward

    1 Overview

    2 R Resources

    3 Risk-Parity/Budget

    4 Optimal Draw Down

    5 Probabilistic Utility

    6 Optimal Risk/Reward

    7 Summary

    8 Bibliography

    Pfaff (Invesco) Portfolio R/Rmetrics 42 / 53

  • Optimal Risk/Reward

    Optimal Risk/RewardDefinition

    Fractional (non-)linear programming problem:

    PRatio = arg minω∈Ω

    fRisk(R, ω, θ)

    fReward(R, ω)

    ω′i = 1

    ω ≥ 0l ≤ Aω ≤ u

    (11)

    Key developments by Charnes and Cooper (1969) (linear case) andDinkelbach (1967); Schaible (1967a,b); Stoyanov et al. (2007)(non-linear case).

    Risk measures: Variance, MAD, minimizing maximum loss, lowerpartial moment, CVaR, CDaR.

    Pfaff (Invesco) Portfolio R/Rmetrics 43 / 53

  • Optimal Risk/Reward

    Optimal Risk/RewardOptimal portfolio with LPM: Closing the loop

    Using the semi-standard deviation as risk-measure has beenmentioned in Markowitz (1952).

    The lower partial moment is defined as:

    LPMn,τ =

    ∫ τ−∞

    (τ − x)nf (x)dx , (12)

    whereby x is the random variable, f (x) the associated densityfunction, τ is the target for which the deviations are measured and nsignify the weighting of the deviations from the threshold.

    The semi-variance results as a special for τ = E(x) and n = 2.

    Pfaff (Invesco) Portfolio R/Rmetrics 44 / 53

  • Optimal Risk/Reward

    Optimal Risk/Reward IOptimal portfolio with LPM: R Code

    > library(parma)

    > rlpm parmasolve(rlpm, type = "NLP")

    +---------------------------------+

    | PARMA Portfolio |

    +---------------------------------+

    No.Assets : 10

    Problem : NLP

    Risk Measure : LPM

    Objective : optimal

    Risk : 0.6766982

    Reward : 0.5376806

    Optimal_Weights

    GREXP 0.8176

    GLD 0.1019

    GDAXI 0.0805

    > ## Charming outcome: Allocate to German Bonds & Equity and Gold :-)

    Pfaff (Invesco) Portfolio R/Rmetrics 45 / 53

  • Summary

    1 Overview

    2 R Resources

    3 Risk-Parity/Budget

    4 Optimal Draw Down

    5 Probabilistic Utility

    6 Optimal Risk/Reward

    7 Summary

    8 Bibliography

    Pfaff (Invesco) Portfolio R/Rmetrics 46 / 53

  • Summary

    Summary

    More than sixty years after seminal work of Markowitz, progress hascentred on how the risk-return space is modeled.

    Advances were driven by financial market crisis.

    Basically, all of these newly proposed portfolio optimizationapproaches can addressed within/from R.

    In a kaleidoscopic fashion, some of these advances have beenintroduced in this talk, but . . .

    Pfaff (Invesco) Portfolio R/Rmetrics 47 / 53

  • Summary

    . . . more examples in . . .

    Pfaff (Invesco) Portfolio R/Rmetrics 48 / 53

  • Bibliography

    1 Overview

    2 R Resources

    3 Risk-Parity/Budget

    4 Optimal Draw Down

    5 Probabilistic Utility

    6 Optimal Risk/Reward

    7 Summary

    8 Bibliography

    Pfaff (Invesco) Portfolio R/Rmetrics 49 / 53

  • Bibliography

    Bibliography I

    Ardia, D., K. Boudt, P. Carl, K. Mullen, and B. Peterson (2010). Differential Evolution (DEoptim) for non-convex portfoliooptimization.

    Berkelaar, M. (2011). lpSolve: Interface to Lp solve v. 5.5 to solve linear/integer programs. R package version 5.6.6.

    Boudt, K., P. Carl, and B. Peterson (2010, April). Portfolio optimization with cvar budgets. Presentation at r/financeconference, Katholieke Universteit Leuven and Lessius, Chicago, IL.

    Boudt, K., P. Carl, and B. Peterson (2011a, September). Asset allocation with conditional value-at-risk budgets. Technicalreport, http://ssrn.com/abstract=1885293.

    Boudt, K., P. Carl, and B. Peterson (2011b). PortfolioAnalytics: Portfolio Analysis, including Numeric Methods for Optimizationof Portfolios. R package version 0.6.1/r1849.

    Boudt, K., B. Peterson, and C. Croux (2007, September). Estimation and decomposition of downside risk for portfolios withnon-normal returns. Working Paper KBI 0730, Katholieke Universteit Leuven, Faculty of Economics and Applied Economics,Department of Decision Sciences and Information Management (KBI), Leuven.

    Boudt, K., B. Peterson, and C. Croux (2008). Estimation and decomposition of downside risk for portfolios with non-normalreturns. The Journal of Risk 11(2), 79–103.

    Brooks, S., A. Gelman, G. Jones, and X.-L. Meng (Eds.) (2011). Handbook of Markow Chain Monte Carlo. Boca Raton, FL:Chapman & Hall / CRC.

    Carl, P., B. Peterson, K. Boudt, and E. Zivot (2012). PerformanceAnalytics: Econometric tools for performance and riskanalysis. R package version 1.0.4.4.

    Chalabi, Y. and D. Würtz (2010). Rsocp: An R extenstion library to use SOCP from R. R package version 271.1/r4910.

    Charnes, A. and W. Cooper (1969). Programming with linear fractional functionals. Naval Research logistics quarterly 9(3–4),181–186.

    Chekhlov, A., S. Uryasev, and M. Zabarankin (2000). Portfolio optimization with drawdown constraints. Research report2000-5, Department of Industrial and Systems Engineering, University of Florida, Gainesville, FL.

    Pfaff (Invesco) Portfolio R/Rmetrics 50 / 53

    http://ssrn.com/abstract=1885293

  • Bibliography

    Bibliography II

    Chekhlov, A., S. Uryasev, and M. Zabarankin (2003, January). Portfolio optimization with drawdown constraints. Workingpaper, University of Florida, Gainesville, FL.

    Chekhlov, A., S. Uryasev, and M. Zabarankin (2005). Drawdown measure in portfolio optimization. International Journal ofTheoretical and Applied Finance 8(1), 13–58.

    Dinkelbach, W. (1967). On nonlinear fractional programming. Management Science 13(7), 492–498.

    Duane, S., A. Kennedy, B. Pendleton, and D. Roweth (1987). Hybrid monte carlo. Physical Letters B195, 216–222.

    Eddelbuettel, D. (2012). RcppDE: Global optimization by differential evolution in C++. R package version 0.1.1.

    Gelius-Dietrich, G. (2012). glpkAPI: R Interface to C API of GLPK. R package version 1.2.1.

    Ghalanos, A. (2013). parma: portfolio allocation and risk management applications. R package version 1.03.

    Ghalanos, A. and S. Theussl (2012). Rsolnp: General Non-linear Optimization Using Augmented Lagrange Multiplier Method. Rpackage version 1.14.

    Gilks, W., S. Richardson, and D. Spiegelhalter (1995). Markov Chain Monte Carlo in Practice. Interdisciplinary Statistics. BocaRaton, FL.: Chapman & Hall / CRC.

    Harter, R., K. Hornik, and S. Theussl (2012). Rsymphony: Symphony in R. R package version 0.1-14.

    Henningsen, A. (2010). linprog: Linear Programming / Optimization. R package version 0.9-0.

    Konis, K. (2011). lpSolveAPI: R Interface for lp solve version 5.5.2.0. R package version 5.5.2.0-5.

    Maillard, S., T. Roncalli, and J. Teiletche (2009, May). On the properties of equally-weighted risk contributions portfolios.Working paper, SGAM Alternative Investments and Lombard Odier and University of Paris Dauphine.

    Maillard, S., T. Roncalli, and J. Teiletche (2010). The properties of equally weighted risk contribution portfolios. The Journal ofPortfolio Management 36(4), 60–70.

    Markowitz, H. (1952, March). Portfolio selection. The Journal of Finance 7(1), 77–91.

    Marschinski, R., P. Rossi, M. Tavoni, and F. Cocco (2007). Portfolio selection with probabilistic utility. Annals of OperationsResearch 151, 223–239.

    Pfaff (Invesco) Portfolio R/Rmetrics 51 / 53

  • Bibliography

    Bibliography III

    Michaud, R. (1989). The markowitz optimization enigma: Is optimized optimal. Financial Analyst Journal 45, 31–42.

    Michaud, R. (1998). Efficient Asset Management: A Practical Guide to Stock Portfolio Optimization and Asset Allocation. NewYork: Oxford University Press.

    Mullen, K., D. Ardia, D. Gil, D. Windover, and J. Cline (2011). DEoptim: An R package for global optimization by differentialevolution. Journal of Statistical Software 40(6), 1–26.

    Neal, R. (2011). Handbook of Markov Chain Monte Carlo, Chapter MCMC using Hamiltonian dynamics, pp. 113–162.Handbooks of Modern Statistical Methods. Boca Raton, FL: Chapman & Hall / CRC.

    Novomestky, F. (2012). rportfolios: Random portfolio generation. R package version 1.0.

    Peterson, B. and K. Boudt (2008, November). Component var for a non-normal world. Risk. Reprint in Asia Risk.

    Pfaff, B. (2011). rneos: XML-RPC Interface to NEOS. R package version 0.2-6.

    Pfaff, B. (2012). Financial Risk Modelling and Portfolio Optimisation with R. London: John Wiley & Sons, Ltd.

    Qian, E. (2005). Risk parity portfolios: Efficient portfolios through true diversification. White paper, PanAgora, Bostan, MA.

    Qian, E. (2006). On the financial interpretation of risk contribution: Risk budgets do add up. Journal of InvestmentManagement 4(4), 1–11.

    Qian, E. (2011, Spring). Risk parity and diversification. The Journal of Investing 20(1), 119–127.

    Rossi, P., M. Tavoni, F. Cocco, and R. Marschinski (2002, November). Portfolio selection with probabilistic utility, bayesianstatistics and markov chain monte carlo. eprint arXiv arXiv:cond-mat/0211480, 1–27. http://arxiv.org.

    Rowe, B. (2012). tawny: Provides various portfolio optimization strategies including random matrix theory and shrinkageestimators. R package version 2.0.2.

    Schaible, S. (1967a). Fractional programming. i, duality. Management Science 22(8), 858–867.

    Schaible, S. (1967b). Fractional programming. ii, on dinkelbach’s algorithm. Management Science 22(8), 868–873.

    Soetaert, K., K. Van den Meersche, and D. van Oevelen (2009). limSolve: Solving Linear Inverse Models. R package 1.5.1.

    Stoyanov, S., S. Rachev, and F. Fabozzi (2007). Optimal financial portfolios. Applied Mathematical Finance 14(5), 401–436.

    Pfaff (Invesco) Portfolio R/Rmetrics 52 / 53

  • Bibliography

    Bibliography IV

    Theussl, S. and K. Hornik (2012). Rglpk: R/GNU Linear Programming Kit Interface. R package version 0.3-8.

    Turlach, B. A. and A. Weingessel (2011). quadprog: Functions to solve Quadratic Programming Problems. R package version1.5-4.

    Würtz, D., Y. Chalabi, W. Chen, and A. Ellis (2010a, April). Portfolio Optimization with R/Rmetrics. Rmetrics Association &Finance Online, www.rmetrics.org. R package version 2130.80.

    Würtz, D., Y. Chalabi, W. Chen, and A. Ellis (2010b, April). Portfolio Optimization with R/Rmetrics. Rmetrics Association &Finance Online, www.rmetrics.org. R package version 2110.4.

    Ye, Y. (1987). Interior Algorithms for Linear, Quadratic, and Linearly Constrained Non-Linear Programming. Ph. D. thesis,Department of ESS, Stanford University.

    Pfaff (Invesco) Portfolio R/Rmetrics 53 / 53

    OverviewR ResourcesRisk-Parity/BudgetOptimal Draw DownProbabilistic UtilityOptimal Risk/RewardSummaryBibliography