175
Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients Etienne Rassart Massachusetts Institute of Technology October 8, 2003 Joint work with Sara Billey and Victor Guillemin I GT VPF SPF SG KA P F LR 1

Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

Polynomiality properties of theKostka numbers and

Littlewood-Richardson coefficients

Etienne Rassart

Massachusetts Institute of Technology

October 8, 2003

Joint work with Sara Billey and Victor Guillemin

• I • GT • VPF • SPF • SG • KA • P • F • LR • 1

Page 2: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

Outline

Introduction with pictures

A partition function for the Kostka numbers

Some symplectic geometry

The Kostant arrangements

Polynomiality in the chamber complex

Factorization patterns

Littlewood-Richardson coefficients

• I • GT • VPF • SPF • SG • KA • P • F • LR • 2

Page 3: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

Introduction

Kostka numbers appear in combinatorics andrepresentation theory.

The Kostka number Kλβ is the number ofsemistandard Young tableaux of shape λ andcontent β.

Kλβ is also the multiplicity with which theweight β appears in the irreduciblerepresentation of GLkC (or SLk(C)) withhighest weight λ.

• I • GT • VPF • SPF • SG • KA • P • F • LR • 3

Page 4: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

Introduction

Kostka numbers appear in combinatorics andrepresentation theory.

The Kostka number Kλβ is the number ofsemistandard Young tableaux of shape λ andcontent β.

Kλβ is also the multiplicity with which theweight β appears in the irreduciblerepresentation of GLkC (or SLk(C)) withhighest weight λ.

• I • GT • VPF • SPF • SG • KA • P • F • LR • 3

Page 5: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

Introduction

Kostka numbers appear in combinatorics andrepresentation theory.

The Kostka number Kλβ is the number ofsemistandard Young tableaux of shape λ andcontent β.

Kλβ is also the multiplicity with which theweight β appears in the irreduciblerepresentation of GLkC (or SLk(C)) withhighest weight λ.

• I • GT • VPF • SPF • SG • KA • P • F • LR • 3

Page 6: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

Schur functions

sλ(x1, . . . , xk) =∑

T ∈ SSYT(λ; k)

xT .

1 1

2

1 1

3

1 2

2

1 2

3

1 3

2

1 3

3

2 2

3

2 3

3

x2

1x2 x2

1x3 x1x

2

2x1x2x3 x1x2x3 x1x

2

3x2

2x3 x2x

2

3

• I • GT • VPF • SPF • SG • KA • P • F • LR • 4

Page 7: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

Schur functions

sλ(x1, . . . , xk) =∑

T ∈ SSYT(λ; k)

xT .

1 1

2

1 1

3

1 2

2

1 2

3

1 3

2

1 3

3

2 2

3

2 3

3

x2

1x2 x2

1x3 x1x

2

2x1x2x3 x1x2x3 x1x

2

3x2

2x3 x2x

2

3

s (x1, x2, x3) = x2

1x2 + x2

1x3 + x2

2x3 + x1x

2

2+ x1x

2

3+ x2x

2

3

+ 2x1x2x3 .

• I • GT • VPF • SPF • SG • KA • P • F • LR • 4

Page 8: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

Kostka numbers

From the definition of the Schur functions, wehave that

sλ =∑

β

Kλβ xβ ,

where Kλβ is the number of ways of filling aSSYT of shape λ with integers distributedaccording to composition β.

The set of β’s for which Kλβ 6= 0 consists ofthe lattice points inside the convex hull of theorbit of λ under Sk. This convex hull is apermutahedron.

• I • GT • VPF • SPF • SG • KA • P • F • LR • 5

Page 9: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

Kostka numbers

From the definition of the Schur functions, wehave that

sλ =∑

β

Kλβ xβ ,

where Kλβ is the number of ways of filling aSSYT of shape λ with integers distributedaccording to composition β.

The set of β’s for which Kλβ 6= 0 consists ofthe lattice points inside the convex hull of theorbit of λ under Sk. This convex hull is apermutahedron.

• I • GT • VPF • SPF • SG • KA • P • F • LR • 5

Page 10: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

λ = (18, 7, 2)

Kλβ = 1

• I • GT • VPF • SPF • SG • KA • P • F • LR • 6

Page 11: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

λ = (18, 7, 2)

Kλβ = 2

• I • GT • VPF • SPF • SG • KA • P • F • LR • 6

Page 12: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

λ = (18, 7, 2)

Kλβ = 3

• I • GT • VPF • SPF • SG • KA • P • F • LR • 6

Page 13: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

λ = (18, 7, 2)

Kλβ = 4

• I • GT • VPF • SPF • SG • KA • P • F • LR • 6

Page 14: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

λ = (18, 7, 2)

Kλβ = 5

• I • GT • VPF • SPF • SG • KA • P • F • LR • 6

Page 15: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

λ = (18, 7, 2)

Kλβ = 6

• I • GT • VPF • SPF • SG • KA • P • F • LR • 6

Page 16: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

λ = (18, 7, 2)

• I • GT • VPF • SPF • SG • KA • P • F • LR • 6

Page 17: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

As λ varies

Up to deformation: two “generic” cases

8 polynomials suffice to describe all theKostka numbers for partitions with at mostthree parts

Central region (lacunary) in which the Kostkanumbers are constant

• I • GT • VPF • SPF • SG • KA • P • F • LR • 7

Page 18: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

As λ varies

Up to deformation: two “generic” cases

8 polynomials suffice to describe all theKostka numbers for partitions with at mostthree parts

Central region (lacunary) in which the Kostkanumbers are constant

• I • GT • VPF • SPF • SG • KA • P • F • LR • 7

Page 19: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

As λ varies

Up to deformation: two “generic” cases

8 polynomials suffice to describe all theKostka numbers for partitions with at mostthree parts

Central region (lacunary) in which the Kostkanumbers are constant

• I • GT • VPF • SPF • SG • KA • P • F • LR • 7

Page 20: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

λ = (23, 7, 5, 1)

Kλβ = 1

• I • GT • VPF • SPF • SG • KA • P • F • LR • 8

Page 21: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

λ = (23, 7, 5, 1)

Kλβ = 2

• I • GT • VPF • SPF • SG • KA • P • F • LR • 8

Page 22: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

λ = (23, 7, 5, 1)

Kλβ = 3

• I • GT • VPF • SPF • SG • KA • P • F • LR • 8

Page 23: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

λ = (23, 7, 5, 1)

Kλβ = 4

• I • GT • VPF • SPF • SG • KA • P • F • LR • 8

Page 24: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

λ = (23, 7, 5, 1)

Kλβ = 5

• I • GT • VPF • SPF • SG • KA • P • F • LR • 8

Page 25: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

λ = (23, 7, 5, 1)

Kλβ = 7

• I • GT • VPF • SPF • SG • KA • P • F • LR • 8

Page 26: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

λ = (23, 7, 5, 1)

Kλβ = 9

• I • GT • VPF • SPF • SG • KA • P • F • LR • 8

Page 27: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

λ = (23, 7, 5, 1)

Kλβ = 10

• I • GT • VPF • SPF • SG • KA • P • F • LR • 8

Page 28: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

λ = (23, 7, 5, 1)

Kλβ = 12

• I • GT • VPF • SPF • SG • KA • P • F • LR • 8

Page 29: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

λ = (23, 7, 5, 1)

Kλβ = 15

• I • GT • VPF • SPF • SG • KA • P • F • LR • 8

Page 30: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

λ = (23, 7, 5, 1)

Kλβ = 18

• I • GT • VPF • SPF • SG • KA • P • F • LR • 8

Page 31: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

λ = (23, 7, 5, 1)

Kλβ = 19

• I • GT • VPF • SPF • SG • KA • P • F • LR • 8

Page 32: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

λ = (23, 7, 5, 1)

Kλβ = 22

• I • GT • VPF • SPF • SG • KA • P • F • LR • 8

Page 33: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

λ = (23, 7, 5, 1)

Kλβ = 26

• I • GT • VPF • SPF • SG • KA • P • F • LR • 8

Page 34: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

λ = (23, 7, 5, 1)

Kλβ = 30

• I • GT • VPF • SPF • SG • KA • P • F • LR • 8

Page 35: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

λ = (23, 7, 5, 1)

Kλβ = 31

• I • GT • VPF • SPF • SG • KA • P • F • LR • 8

Page 36: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

λ = (23, 7, 5, 1)

Kλβ = 35

• I • GT • VPF • SPF • SG • KA • P • F • LR • 8

Page 37: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

λ = (23, 7, 5, 1)

Kλβ = 40

• I • GT • VPF • SPF • SG • KA • P • F • LR • 8

Page 38: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

λ = (23, 7, 5, 1)

Kλβ = 45

• I • GT • VPF • SPF • SG • KA • P • F • LR • 8

Page 39: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

λ = (23, 7, 5, 1)

Kλβ = 50

• I • GT • VPF • SPF • SG • KA • P • F • LR • 8

Page 40: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

λ = (23, 7, 5, 1)

Kλβ = 55

• I • GT • VPF • SPF • SG • KA • P • F • LR • 8

Page 41: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

λ = (23, 7, 5, 1)

Kλβ = 60

• I • GT • VPF • SPF • SG • KA • P • F • LR • 8

Page 42: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

λ = (23, 7, 5, 1)

• I • GT • VPF • SPF • SG • KA • P • F • LR • 9

Page 43: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

λ = (23, 7, 5, 1)

• I • GT • VPF • SPF • SG • KA • P • F • LR • 9

Page 44: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

λ = (23, 7, 5, 1)

• I • GT • VPF • SPF • SG • KA • P • F • LR • 9

Page 45: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

λ = (23, 7, 5, 1)

• I • GT • VPF • SPF • SG • KA • P • F • LR • 9

Page 46: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

λ = (23, 7, 5, 1)

• I • GT • VPF • SPF • SG • KA • P • F • LR • 9

Page 47: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

λ = (23, 7, 5, 1)

• I • GT • VPF • SPF • SG • KA • P • F • LR • 9

Page 48: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

λ = (23, 7, 5, 1)

• I • GT • VPF • SPF • SG • KA • P • F • LR • 9

Page 49: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

λ = (23, 7, 5, 1)

• I • GT • VPF • SPF • SG • KA • P • F • LR • 9

Page 50: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

λ = (23, 7, 5, 1)

• I • GT • VPF • SPF • SG • KA • P • F • LR • 9

Page 51: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

λ = (23, 7, 5, 1)

• I • GT • VPF • SPF • SG • KA • P • F • LR • 9

Page 52: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

λ = (23, 7, 5, 1)

• I • GT • VPF • SPF • SG • KA • P • F • LR • 9

Page 53: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

λ = (23, 7, 5, 1)

• I • GT • VPF • SPF • SG • KA • P • F • LR • 9

Page 54: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

λ = (23, 7, 5, 1)

• I • GT • VPF • SPF • SG • KA • P • F • LR • 9

Page 55: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

λ = (23, 7, 5, 1)

• I • GT • VPF • SPF • SG • KA • P • F • LR • 9

Page 56: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

λ = (23, 7, 5, 1)

• I • GT • VPF • SPF • SG • KA • P • F • LR • 9

Page 57: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

λ = (23, 7, 5, 1)

• I • GT • VPF • SPF • SG • KA • P • F • LR • 9

Page 58: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

λ = (23, 7, 5, 1)

• I • GT • VPF • SPF • SG • KA • P • F • LR • 9

Page 59: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

λ = (23, 7, 5, 1)

• I • GT • VPF • SPF • SG • KA • P • F • LR • 9

Page 60: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

λ = (23, 7, 5, 1)

• I • GT • VPF • SPF • SG • KA • P • F • LR • 9

Page 61: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

λ = (23, 7, 5, 1)

• I • GT • VPF • SPF • SG • KA • P • F • LR • 9

Page 62: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

λ = (23, 7, 5, 1)

• I • GT • VPF • SPF • SG • KA • P • F • LR • 9

Page 63: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

λ = (23, 7, 5, 1)

• I • GT • VPF • SPF • SG • KA • P • F • LR • 9

Page 64: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

Roots and weights for Ak−1

Roots∆ = {ei − ej : 1 ≤ i 6= j ≤ k} .

Positive roots∆+ = {ei − ej : 1 ≤ i < j ≤ k} .

Simple rootsΠ = {ei − ei+1

︸ ︷︷ ︸αi

: 1 ≤ i ≤ k − 1} .

Fundamental weights : ω1, . . . , ωk−1 definedby 〈αi, ωj〉 = δij .

• I • GT • VPF • SPF • SG • KA • P • F • LR • 10

Page 65: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

ωi ≡ (1, 1, . . . , 1︸ ︷︷ ︸

i times

, 0, 0, . . . , 0︸ ︷︷ ︸

k − i times

)

The normals to the facets of thepermutahedron conv(Sk · λ) are theconjugates θ(ωi) of the fundamental weights.

δ =1

2

α∈∆+

α

• I • GT • VPF • SPF • SG • KA • P • F • LR • 11

Page 66: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

Kostant’s multiplicity formula

The Kostant partition function is the function

K(v) =∣∣∣

{

(kα)α∈∆+∈ N

|∆+| :∑

α∈∆+

kαα = v}∣∣∣ ,

i.e. K(v) is the number of ways that v can bewritten as a sum of positive roots.

• I • GT • VPF • SPF • SG • KA • P • F • LR • 12

Page 67: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

Kostant’s multiplicity formula

The Kostant partition function is the function

K(v) =∣∣∣

{

(kα)α∈∆+∈ N

|∆+| :∑

α∈∆+

kαα = v}∣∣∣ ,

i.e. K(v) is the number of ways that v can bewritten as a sum of positive roots.

Kostant’s multiplicity formulaKλβ =

σ∈Sk

(−1)inv(σ)K(σ(λ+ δ) − (β + δ)) .

• I • GT • VPF • SPF • SG • KA • P • F • LR • 12

Page 68: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

Gelfand-Tsetlin diagrams

A Gelfand-Tsetlin diagram is an array of integersof the form

λ(k)1 λ

(k)2 · · · λ

(k)k−1 λ

(k)k

λ(k−1)1 λ

(k−1)2 · · · λ

(k−1)k−1

. . . ... · · ·

λ(2)1 λ

(2)2

λ(1)1

such that

and

λ(i+1)j λ

(i+1)j+1

≥≥≥

≥≥≥

λ(i)j

for every such triangle in the diagram.

• I • GT • VPF • SPF • SG • KA • P • F • LR • 13

Page 69: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

Gelfand-Tsetlin diagramsλ

(k)1 λ

(k)2 · · · λ

(k)k−1 λ

(k)k

λ(k−1)1 λ

(k−1)2 · · · λ

(k−1)k−1

. . . ... · · ·

λ(2)1 λ

(2)2

λ(1)1

andλ

(i+1)j λ

(i+1)j+1

≥≥≥

≥≥≥

λ(i)j

for every such triangle in the diagram.

• I • GT • VPF • SPF • SG • KA • P • F • LR • 13

Page 70: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

Gelfand-Tsetlin diagramsλ1 λ2 · · · λk−1 λk

λ(k−1)1 λ

(k−1)2 · · · λ

(k−1)k−1

. . . ... · · ·

λ(2)1 λ

(2)2

λ(1)1

andλ

(i+1)j λ

(i+1)j+1

≥≥≥

≥≥≥

λ(i)j

for every such triangle in the diagram.

• I • GT • VPF • SPF • SG • KA • P • F • LR • 13

Page 71: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

Gelfand-Tsetlin diagramsλ1 λ2 · · · λk−1 λk

λ(k−1)1 λ

(k−1)2 · · · λ

(k−1)k−1

. . . ... · · ·

λ(2)1 λ

(2)2

λ(1)1

andλ

(i+1)j λ

(i+1)j+1

≥≥≥

≥≥≥

λ(i)j

for every such triangle in the diagram.

• I • GT • VPF • SPF • SG • KA • P • F • LR • 13

Page 72: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

GT-diagrams and Kostka numbers

Lemma (Gelfand-Tsetlin)

The Kostka number Kλβ is the number ofGelfand-Tsetlin diagrams with top row λ and rowsums satisfying

m∑

i=1

λ(m)i = β1 + · · · + βm for 1 ≤ m ≤ k.

• I • GT • VPF • SPF • SG • KA • P • F • LR • 14

Page 73: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

Gelfand-Tsetlin polytopes

λ1 λ2 · · · λk−1 λk

λ(k−1)1 λ

(k−1)2 · · · λ

(k−1)k−1

. . . ... · · ·

λ(2)1 λ

(2)2

λ(1)1

GTλ GTλβ

• I • GT • VPF • SPF • SG • KA • P • F • LR • 15

Page 74: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

GT-diagrams and SSYTs

7 5 4 1 β1 + β2 + β3 + β4 = 17

6 5 2 β1 + β2 + β3 = 13

5 3 β1 + β2 = 8

3 β1 = 3

• I • GT • VPF • SPF • SG • KA • P • F • LR • 16

Page 75: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

GT-diagrams and SSYTs

7 5 4 1 β1 + β2 + β3 + β4 = 17

6 5 2 β1 + β2 + β3 = 13

5 3 β1 + β2 = 8

3 β1 = 3

1 1 1

(3)

• I • GT • VPF • SPF • SG • KA • P • F • LR • 16

Page 76: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

GT-diagrams and SSYTs

7 5 4 1 β1 + β2 + β3 + β4 = 17

6 5 2 β1 + β2 + β3 = 13

5 3 β1 + β2 = 8

3 β1 = 3

1 1 1 2 22 2 2

(5, 3)

• I • GT • VPF • SPF • SG • KA • P • F • LR • 16

Page 77: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

GT-diagrams and SSYTs

7 5 4 1 β1 + β2 + β3 + β4 = 17

6 5 2 β1 + β2 + β3 = 13

5 3 β1 + β2 = 8

3 β1 = 3

1 1 1 2 2 32 2 2 3 33 3

(6, 5, 2)

• I • GT • VPF • SPF • SG • KA • P • F • LR • 16

Page 78: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

GT-diagrams and SSYTs

7 5 4 1 β1 + β2 + β3 + β4 = 17

6 5 2 β1 + β2 + β3 = 13

5 3 β1 + β2 = 8

3 β1 = 3

1 1 1 2 2 3 42 2 2 3 33 3 4 44

(7, 5, 4, 1)

• I • GT • VPF • SPF • SG • KA • P • F • LR • 16

Page 79: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

Vector partition functions

Let M be a d× n matrix over the integers. Thevector partition function associated to M is thefunction

φM : Zd −→ N

b 7→ |{x ∈ Nn : Mx = b}|

• I • GT • VPF • SPF • SG • KA • P • F • LR • 17

Page 80: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

Vector partition functions

Let M be a d× n matrix over the integers. Thevector partition function associated to M is thefunction

φM : Zd −→ N

b 7→ |{x ∈ Nn : Mx = b}|

Example

If M =

(

1 0 2 2

0 1 0 1

)

and b =

(3

1

)

then φM(b) = 3

since b =

(1

0

)

+

(0

1

)

+

(2

0

)

=

(1

0

)

+

(2

1

)

= 3

(1

0

)

+

(0

1

)

.

• I • GT • VPF • SPF • SG • KA • P • F • LR • 17

Page 81: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

Polytopes and partition functions

If M is such that kerM ∩ Rn≥0 = 0, then

Pb = {x ∈ Rn≥0 : Mx = b}

is a polytope.

φM(b) is the number of integral points in Pb .

φM vanishes outside of pos(M) .

• I • GT • VPF • SPF • SG • KA • P • F • LR • 18

Page 82: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

Polytopes and partition functions

If M is such that kerM ∩ Rn≥0 = 0, then

Pb = {x ∈ Rn≥0 : Mx = b}

is a polytope.

φM(b) is the number of integral points in Pb .

φM vanishes outside of pos(M) .

• I • GT • VPF • SPF • SG • KA • P • F • LR • 18

Page 83: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

The structure of partition functions

φM is piecewise quasipolynomial of degreen− rank(M) . (Sturmfels)

The domains of quasipolynomiality form acomplex of convex polyhedral cones, thechamber complex of φM .

Alekseevskaya, Gelfand and Zelevinskydescribed how to determine the chambercomplex of a partition function from its matrix.

• I • GT • VPF • SPF • SG • KA • P • F • LR • 19

Page 84: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

The structure of partition functions

φM is piecewise quasipolynomial of degreen− rank(M) . (Sturmfels)

The domains of quasipolynomiality form acomplex of convex polyhedral cones, thechamber complex of φM .

Alekseevskaya, Gelfand and Zelevinskydescribed how to determine the chambercomplex of a partition function from its matrix.

• I • GT • VPF • SPF • SG • KA • P • F • LR • 19

Page 85: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

The structure of partition functions

φM is piecewise quasipolynomial of degreen− rank(M) . (Sturmfels)

The domains of quasipolynomiality form acomplex of convex polyhedral cones, thechamber complex of φM .

Alekseevskaya, Gelfand and Zelevinskydescribed how to determine the chambercomplex of a partition function from its matrix.

• I • GT • VPF • SPF • SG • KA • P • F • LR • 19

Page 86: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

Determining the chamber complex

We can assume without loss of generality that Mhas full rank d .

Find all the d× d nonsingular submatrices Mσ

of M .

Determine the cone τσ = pos(Mσ) spanned bythe columns of Mσ .

The chamber complex of φM is the commonrefinement of the τσ .

• I • GT • VPF • SPF • SG • KA • P • F • LR • 20

Page 87: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

Determining the chamber complex

We can assume without loss of generality that Mhas full rank d .

Find all the d× d nonsingular submatrices Mσ

of M .

Determine the cone τσ = pos(Mσ) spanned bythe columns of Mσ .

The chamber complex of φM is the commonrefinement of the τσ .

• I • GT • VPF • SPF • SG • KA • P • F • LR • 20

Page 88: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

Determining the chamber complex

We can assume without loss of generality that Mhas full rank d .

Find all the d× d nonsingular submatrices Mσ

of M .

Determine the cone τσ = pos(Mσ) spanned bythe columns of Mσ .

The chamber complex of φM is the commonrefinement of the τσ .

• I • GT • VPF • SPF • SG • KA • P • F • LR • 20

Page 89: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

The Kostant partition function for A3

∆(A3)+ = {α1, α2, α3, α1 + α2, α2 + α3, α1 + α2 + α3}

• I • GT • VPF • SPF • SG • KA • P • F • LR • 21

Page 90: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

The Kostant partition function for A3

∆(A3)+ = {α1, α2, α3, α1 + α2, α2 + α3, α1 + α2 + α3}

K(v) = φMA3(v) for

MA3=

1 0 0 1 0 10 1 0 1 1 10 0 1 0 1 1

• I • GT • VPF • SPF • SG • KA • P • F • LR • 21

Page 91: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

The Kostant partition function for A3

∆(A3)+ = {α1, α2, α3, α1 + α2, α2 + α3, α1 + α2 + α3}

K(v) = φMA3(v) for

MA3=

1 0 0 1 0 10 1 0 1 1 10 0 1 0 1 1

B = {123, 125, 126, 134, 135, 136, 145, 146,

234, 236, 245, 246, 256, 345, 356, 456} .

• I • GT • VPF • SPF • SG • KA • P • F • LR • 21

Page 92: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

456356345256246245236234

146145136135134126125123

• I • GT • VPF • SPF • SG • KA • P • F • LR • 22

Page 93: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

2α + α1 2α + α3

2 3α + α + α1

3α1α

• I • GT • VPF • SPF • SG • KA • P • F • LR • 22

Page 94: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

Unimodularity

A d× n matrix of full rank d is unimodular if all itsd× d submatrices have determinant 0 or ±1.

Vector partitions functions of unimodularmatrices are polynomial over the cones of theirchamber complexes. (Sturmfels)

Lemma (well-known) The matrix MAnis

unimodular for all n.

Corollary The Kostant partition function for Ak−1

is polynomial of degree(k−12

)over the cones of

its chamber complex.

• I • GT • VPF • SPF • SG • KA • P • F • LR • 23

Page 95: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

Unimodularity

A d× n matrix of full rank d is unimodular if all itsd× d submatrices have determinant 0 or ±1.

Vector partitions functions of unimodularmatrices are polynomial over the cones of theirchamber complexes. (Sturmfels)

Lemma (well-known) The matrix MAnis

unimodular for all n.

Corollary The Kostant partition function for Ak−1

is polynomial of degree(k−12

)over the cones of

its chamber complex.

• I • GT • VPF • SPF • SG • KA • P • F • LR • 23

Page 96: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

Unimodularity

A d× n matrix of full rank d is unimodular if all itsd× d submatrices have determinant 0 or ±1.

Vector partitions functions of unimodularmatrices are polynomial over the cones of theirchamber complexes. (Sturmfels)

Lemma (well-known) The matrix MAnis

unimodular for all n.

Corollary The Kostant partition function for Ak−1

is polynomial of degree(k−12

)over the cones of

its chamber complex.

• I • GT • VPF • SPF • SG • KA • P • F • LR • 23

Page 97: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

A partition function for the Kλβ

Theorem A

For every k, we can find integer matrices Ek andBk such that the Kostka numbers for partitionswith at most k parts can be written as

Kλβ = φEk

(

Bk

(

λ

β

))

.

• I • GT • VPF • SPF • SG • KA • P • F • LR • 24

Page 98: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

Example: A2

Gelfand-Tsetlin diagrams for A2 have the form

λ1 λ2 λ3

µ1 µ2

ν

• I • GT • VPF • SPF • SG • KA • P • F • LR • 25

Page 99: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

Example: A2

Gelfand-Tsetlin diagrams for A2 have the form

λ1 λ2 λ3

µ1 µ2

ν

Row sums:

ν = β1

µ1 + µ2 = β1 + β2

λ1 + λ2 + λ3 = β1 + β2 + β3 .

• I • GT • VPF • SPF • SG • KA • P • F • LR • 25

Page 100: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

µ1 ≤ λ1

−µ1 ≤ −λ2

−µ1 ≤ λ2 − β1 − β2

µ1 ≤ β1 + β2 + λ1 + λ2

−µ1 ≤ −β1

−µ1 ≤ −β2 .

• I • GT • VPF • SPF • SG • KA • P • F • LR • 26

Page 101: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

µ1 + s1 = λ1

−µ1 + s2 = −λ2

−µ1 + s3 = λ2 − β1 − β2

µ1 + s4 = β1 + β2 + λ1 + λ2

−µ1 + s5 = −β1

−µ1 + s6 = −β2 .

• I • GT • VPF • SPF • SG • KA • P • F • LR • 26

Page 102: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

µ1 + s1 = λ1

−µ1 + s2 = −λ2

−µ1 + s3 = λ2 − β1 − β2

µ1 + s4 = β1 + β2 + λ1 + λ2

−µ1 + s5 = −β1

−µ1 + s6 = −β2 .

The si are constrainted to be nonnegative.

• I • GT • VPF • SPF • SG • KA • P • F • LR • 26

Page 103: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

µ1 + s1 = λ1

−µ1 + s2 = −λ2

−µ1 + s3 = λ2 − β1 − β2

µ1 + s4 = β1 + β2 + λ1 + λ2

−µ1 + s5 = −β1

−µ1 + s6 = −β2 .

The si are constrainted to be nonnegative.

Finally we can use µ1 = λ1− s1 to get rid of µ1.

• I • GT • VPF • SPF • SG • KA • P • F • LR • 26

Page 104: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

s1 + s2 = λ1 − λ2

−s2 + s3 = 2λ2 − β1 − β2

s2 + s4 = β1 + β2 + λ1

−s2 + s5 = λ2 − β1

−s2 + s6 = λ2 − β2

• I • GT • VPF • SPF • SG • KA • P • F • LR • 27

Page 105: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

s1 + s2 = λ1 − λ2

−s2 + s3 = 2λ2 − β1 − β2

s2 + s4 = β1 + β2 + λ1

−s2 + s5 = λ2 − β1

−s2 + s6 = λ2 − β2

Solving for si ≥ 0 ∀ i.

• I • GT • VPF • SPF • SG • KA • P • F • LR • 27

Page 106: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

s1 + s2 = λ1 − λ2

−s2 + s3 = 2λ2 − β1 − β2

s2 + s4 = β1 + β2 + λ1

−s2 + s5 = λ2 − β1

−s2 + s6 = λ2 − β2

Solving for si ≥ 0 ∀ i.

Requiring the si’s to be integers yields allinteger solutions to the Gelfand-Tsetlinconstraints.

• I • GT • VPF • SPF • SG • KA • P • F • LR • 27

Page 107: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

So we are solving

1 1 0 0 0 00 −1 1 0 0 00 1 0 1 0 00 −1 0 0 1 00 −1 0 0 0 1

︸ ︷︷ ︸

E2

·

s1

s2

s3

s4

s5

s6

=

λ1 − λ2

2λ2 − β1 − β2

β1 + β2 + λ1

λ2 − β1

λ2 − β2

︸ ︷︷ ︸

B2(λβ)

for ~s ∈ N6.

Hence Kλβ = φE2

(

B2

(λβ

))

.

• I • GT • VPF • SPF • SG • KA • P • F • LR • 28

Page 108: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

So we are solving

1 1 0 0 0 00 −1 1 0 0 00 1 0 1 0 00 −1 0 0 1 00 −1 0 0 0 1

︸ ︷︷ ︸

E2

·

s1

s2

s3

s4

s5

s6

=

λ1 − λ2

2λ2 − β1 − β2

β1 + β2 + λ1

λ2 − β1

λ2 − β2

︸ ︷︷ ︸

B2(λβ)

for ~s ∈ N6. Hence Kλβ = φE2

(

B2

(λβ

))

.

• I • GT • VPF • SPF • SG • KA • P • F • LR • 28

Page 109: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

A chamber complex for the Kλβ

Theorem A implies that the Kostka numbersare given by quasipolynomials over the cellsof a chamber complex C(k).

The vector partition function φEkputs λ and β

on an equal footing: C(k) is a complex in(λ, β)-space.

By intersecting C(k) with the affine subspacecorresponding to fixing λ, we get the domainsof quasipolynomiality for conv(Sk · λ).

• I • GT • VPF • SPF • SG • KA • P • F • LR • 29

Page 110: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

A chamber complex for the Kλβ

Theorem A implies that the Kostka numbersare given by quasipolynomials over the cellsof a chamber complex C(k).

The vector partition function φEkputs λ and β

on an equal footing: C(k) is a complex in(λ, β)-space.

By intersecting C(k) with the affine subspacecorresponding to fixing λ, we get the domainsof quasipolynomiality for conv(Sk · λ).

• I • GT • VPF • SPF • SG • KA • P • F • LR • 29

Page 111: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

A chamber complex for the Kλβ

Theorem A implies that the Kostka numbersare given by quasipolynomials over the cellsof a chamber complex C(k).

The vector partition function φEkputs λ and β

on an equal footing: C(k) is a complex in(λ, β)-space.

By intersecting C(k) with the affine subspacecorresponding to fixing λ, we get the domainsof quasipolynomiality for conv(Sk · λ).

• I • GT • VPF • SPF • SG • KA • P • F • LR • 29

Page 112: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

The Duistermaat-Heckman function

For every λ there is a function, theDuistermaat-Heckman function, that ispiecewise polynomial on conv(Sk · λ).

It approximates the Kostka numbers.

• I • GT • VPF • SPF • SG • KA • P • F • LR • 30

Page 113: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

The Duistermaat-Heckman function

For every λ there is a function, theDuistermaat-Heckman function, that ispiecewise polynomial on conv(Sk · λ).

It approximates the Kostka numbers.

• I • GT • VPF • SPF • SG • KA • P • F • LR • 30

Page 114: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

The Duistermaat-Heckman function

For every λ there is a function, theDuistermaat-Heckman function, that ispiecewise polynomial on conv(Sk · λ).

It approximates the Kostka numbers.

Kλβ =∑

σ∈Sk

(−1)inv(σ)K(σ(λ+ δ) − (β + δ)) .

• I • GT • VPF • SPF • SG • KA • P • F • LR • 30

Page 115: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

The Duistermaat-Heckman function

For every λ there is a function, theDuistermaat-Heckman function, that ispiecewise polynomial on conv(Sk · λ).

It approximates the Kostka numbers.

Kλβ =∑

σ∈Sk

(−1)inv(σ)K(σ(λ+ δ) − (β + δ)) .

fDHλ (β) =

σ∈Sk

(−1)inv(σ)K̃(σ(λ) − β) .

• I • GT • VPF • SPF • SG • KA • P • F • LR • 30

Page 116: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

Theorem (Heckman, Guillemin-Lerman-Sternberg)

Consider the convex polytopes

conv(W · σ(λ))

where σ ∈ Sk and W is the stabilizer of a facet ofconv(Sk · λ).

These polytopes are walls that partitionconv(Sk · λ) into convex subpolytopes over whichthe Duistermaat-Heckman function is polynomial.

• I • GT • VPF • SPF • SG • KA • P • F • LR • 31

Page 117: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

• I • GT • VPF • SPF • SG • KA • P • F • LR • 32

Page 118: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

• I • GT • VPF • SPF • SG • KA • P • F • LR • 32

Page 119: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

• I • GT • VPF • SPF • SG • KA • P • F • LR • 32

Page 120: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

• I • GT • VPF • SPF • SG • KA • P • F • LR • 32

Page 121: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

• I • GT • VPF • SPF • SG • KA • P • F • LR • 32

Page 122: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

• I • GT • VPF • SPF • SG • KA • P • F • LR • 32

Page 123: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

• I • GT • VPF • SPF • SG • KA • P • F • LR • 32

Page 124: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

• I • GT • VPF • SPF • SG • KA • P • F • LR • 32

Page 125: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

DH-measure and multiplicities

Theorem B

The partitions of the permutahedron into itsdomains of polynomiality for the Kostka numbersand for the Duistermaat-Heckman function arethe same.

Namely, the domains are the regions determinedby the theorem of Heckman.

• I • GT • VPF • SPF • SG • KA • P • F • LR • 33

Page 126: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

A3

213

229 261

277

325

337

• I • GT • VPF • SPF • SG • KA • P • F • LR • 34

Page 127: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

From the connection with theDuistermaat-Heckman function, we get

a uniform combinatorial description for thewalls partitioning the permutahedron into itsdomains of quasipolynomiality for the Kostkanumbers;

that these domains are actually domains ofpolynomiality.

• I • GT • VPF • SPF • SG • KA • P • F • LR • 35

Page 128: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

From the connection with theDuistermaat-Heckman function, we get

a uniform combinatorial description for thewalls partitioning the permutahedron into itsdomains of quasipolynomiality for the Kostkanumbers;

that these domains are actually domains ofpolynomiality.

• I • GT • VPF • SPF • SG • KA • P • F • LR • 35

Page 129: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

The Kostant arrangements

The Kostant arrangements will be the main toolto

complete the proof that the Kostka numbersare given by polynomials on the cones of achamber complex;

find interesting factorization patterns in thepolynomials giving the Kostka numbers.

• I • GT • VPF • SPF • SG • KA • P • F • LR • 36

Page 130: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

The Kostant arrangements

The Kostant arrangements will be the main toolto

complete the proof that the Kostka numbersare given by polynomials on the cones of achamber complex;

find interesting factorization patterns in thepolynomials giving the Kostka numbers.

• I • GT • VPF • SPF • SG • KA • P • F • LR • 36

Page 131: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

Kostant’s multiplicity formula:

Kλβ =∑

σ∈Sk

(−1)inv(σ)K(σ(λ+ δ) − (β + δ)) .

Kostant partition function is piecewise polynomial⇓

Kostka numbers are locally polynomial

We will find a family of hyperplanearrangements over whose regions the Kostkanumbers are given by polynomials.

• I • GT • VPF • SPF • SG • KA • P • F • LR • 37

Page 132: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

Kostant’s multiplicity formula:

Kλβ =∑

σ∈Sk

(−1)inv(σ)K(σ(λ+ δ) − (β + δ)) .

Kostant partition function is piecewise polynomial⇓

Kostka numbers are locally polynomial

We will find a family of hyperplanearrangements over whose regions the Kostkanumbers are given by polynomials.

• I • GT • VPF • SPF • SG • KA • P • F • LR • 37

Page 133: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

Example: λ = (21, 7, 2)

• I • GT • VPF • SPF • SG • KA • P • F • LR • 38

Page 134: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

Example: λ = (21, 7, 2)

• I • GT • VPF • SPF • SG • KA • P • F • LR • 38

Page 135: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

Walls of the permutahedron

Walls supporting the facets of thetop-dimensional domains of thepermutahedron (partition for theDuistermaat-Heckman function):

〈σ(λ) − ψ(β), θ(ωj) 〉 = 0 .

Hyperplanes of the Kostant arrangements:

• I • GT • VPF • SPF • SG • KA • P • F • LR • 39

Page 136: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

Walls of the permutahedron

Walls supporting the facets of thetop-dimensional domains of thepermutahedron (partition for theDuistermaat-Heckman function):

〈σ(λ) − ψ(β), θ(ωj) 〉 = 0 .

Hyperplanes of the Kostant arrangements:

〈σ(λ+δ)−(ψ(β)+δ), θ(ωj) 〉 = 0

• I • GT • VPF • SPF • SG • KA • P • F • LR • 39

Page 137: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

Walls of the permutahedron

Walls supporting the facets of thetop-dimensional domains of thepermutahedron (partition for theDuistermaat-Heckman function):

〈σ(λ) − ψ(β), θ(ωj) 〉 = 0 .

Hyperplanes of the Kostant arrangements:

〈σ(λ+δ)−(ψ(β)+δ), θ(ωj) 〉 = 0

• I • GT • VPF • SPF • SG • KA • P • F • LR • 39

Page 138: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

Walls of the permutahedron

Walls supporting the facets of thetop-dimensional domains of thepermutahedron (partition for theDuistermaat-Heckman function):

〈σ(λ) − ψ(β), θ(ωj) 〉 = 0 .

Hyperplanes of the Kostant arrangements:

〈σ(λ )− (ψ(β) ), θ(ωj) 〉 = 〈 δ − σ(δ), θ(ωj) 〉

• I • GT • VPF • SPF • SG • KA • P • F • LR • 39

Page 139: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

Walls of the permutahedron

Walls supporting the facets of thetop-dimensional domains of thepermutahedron (partition for theDuistermaat-Heckman function):

〈σ(λ) − ψ(β), θ(ωj) 〉 = 0 .

Hyperplanes of the Kostant arrangements:

〈σ(λ) − ψ(β), θ(ωj) 〉 = 〈 δ − σ(δ), θ(ωj) 〉

• I • GT • VPF • SPF • SG • KA • P • F • LR • 39

Page 140: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

Walls of the permutahedron

Walls supporting the facets of thetop-dimensional domains of thepermutahedron (partition for theDuistermaat-Heckman function):

〈σ(λ) − ψ(β), θ(ωj) 〉 = 0 .

Hyperplanes of the Kostant arrangements:

〈σ(λ) − ψ(β), θ(ωj) 〉 = 〈 δ − σ(δ), θ(ωj) 〉︸ ︷︷ ︸

shift(σ, θ, j)

• I • GT • VPF • SPF • SG • KA • P • F • LR • 39

Page 141: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

Polynomiality in the chamber complex

Theorem C

The quasipolynomials giving the Kostka numbersin the cones of C(k) are polynomials of degree(k−12

)in the βi , with coefficients of degree

(k−12

)in

the λj.

• I • GT • VPF • SPF • SG • KA • P • F • LR • 40

Page 142: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

Lemma

For each cone C of the chamber complex for theKostka numbers, we can find a region R of any ofthe Kostant arrangements such that C ∩ Rcontains an arbitrarily large ball.

• I • GT • VPF • SPF • SG • KA • P • F • LR • 41

Page 143: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

Lemma

For each cone C of the chamber complex for theKostka numbers, we can find a region R of any ofthe Kostant arrangements such that C ∩ Rcontains an arbitrarily large ball.

Then the polynomial on R and thequasipolynomial on C agree on all the latticepoints (λ, β) in that ball.

• I • GT • VPF • SPF • SG • KA • P • F • LR • 41

Page 144: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

Lemma

For each cone C of the chamber complex for theKostka numbers, we can find a region R of any ofthe Kostant arrangements such that C ∩ Rcontains an arbitrarily large ball.

Then the polynomial on R and thequasipolynomial on C agree on all the latticepoints (λ, β) in that ball.

The degree bounds follow from the degreebounds on the Kostant partition function.

• I • GT • VPF • SPF • SG • KA • P • F • LR • 41

Page 145: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

Idea of proof

C

• I • GT • VPF • SPF • SG • KA • P • F • LR • 42

Page 146: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

Idea of proof

C

• I • GT • VPF • SPF • SG • KA • P • F • LR • 42

Page 147: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

Idea of proof

C

• I • GT • VPF • SPF • SG • KA • P • F • LR • 42

Page 148: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

Idea of proof

C

• I • GT • VPF • SPF • SG • KA • P • F • LR • 42

Page 149: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

Idea of proof

C

R

C

• I • GT • VPF • SPF • SG • KA • P • F • LR • 42

Page 150: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

Idea of proof

C

R

C

• I • GT • VPF • SPF • SG • KA • P • F • LR • 42

Page 151: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

Scaling (or stretching)

Corollary

For any λ, β ∈ ΛW with λ− β ∈ ΛR , the function

N ∈ N 7−→ KNλ Nβ

is polynomial of degree at most 2(k−12

)in N .

This function is the Ehrhart polynomial of theGelfand-Tsetlin polytope GTλµ . (Kirillov)

GTλµ is not an integral polytope in general(Clifford, King-Tollu-Toumazet,DeLoera-McAllister).

• I • GT • VPF • SPF • SG • KA • P • F • LR • 43

Page 152: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

Scaling (or stretching)

Corollary

For any λ, β ∈ ΛW with λ− β ∈ ΛR , the function

N ∈ N 7−→ KNλ Nβ

is polynomial of degree at most 2(k−12

)in N .

This function is the Ehrhart polynomial of theGelfand-Tsetlin polytope GTλµ . (Kirillov)

GTλµ is not an integral polytope in general(Clifford, King-Tollu-Toumazet,DeLoera-McAllister).

• I • GT • VPF • SPF • SG • KA • P • F • LR • 43

Page 153: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

Scaling (or stretching)

Corollary

For any λ, β ∈ ΛW with λ− β ∈ ΛR , the function

N ∈ N 7−→ KNλ Nβ

is polynomial of degree at most 2(k−12

)in N .

This function is the Ehrhart polynomial of theGelfand-Tsetlin polytope GTλµ . (Kirillov)

GTλµ is not an integral polytope in general(Clifford, King-Tollu-Toumazet,DeLoera-McAllister).

• I • GT • VPF • SPF • SG • KA • P • F • LR • 43

Page 154: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

Factorization patterns

Theorem D

Suppose that H is the hyperplane supporting afacet of the permutahedron with normal θ(ωj).

Then the polynomials giving the Kostka numbersin all the domains of the permutahedron with afacet on H are divisible by j(k − j) − 1 linearfactors.

The following diagrams will explain what thosefactors are.

• I • GT • VPF • SPF • SG • KA • P • F • LR • 44

Page 155: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

Idea of proof

• I • GT • VPF • SPF • SG • KA • P • F • LR • 45

Page 156: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

Idea of proof

R

• I • GT • VPF • SPF • SG • KA • P • F • LR • 45

Page 157: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

Idea of proof

R

• I • GT • VPF • SPF • SG • KA • P • F • LR • 45

Page 158: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

Idea of proof

R

• I • GT • VPF • SPF • SG • KA • P • F • LR • 45

Page 159: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

Idea of proof

R

• I • GT • VPF • SPF • SG • KA • P • F • LR • 45

Page 160: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

Idea of proof

R

• I • GT • VPF • SPF • SG • KA • P • F • LR • 45

Page 161: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

Similar factorization phenomenawere recently observed to hold forgeneral vector partition functionsby Szenes and Vergne.

• I • GT • VPF • SPF • SG • KA • P • F • LR • 46

Page 162: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

Littlewood-Richardson coefficients

The LR coefficients express the multiplicationrule for Schur functions:

sλ · sµ =∑

ν

cνλµsν .

In the representation theory of GLkC, thecharacters of the irreducible polynomialrepresentations are Schur functions inappropriate variables.

Vλ ⊗ Vµ =⊕

ν

cνλµVν .

• I • GT • VPF • SPF • SG • KA • P • F • LR • 47

Page 163: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

Littlewood-Richardson coefficients

The LR coefficients express the multiplicationrule for Schur functions:

sλ · sµ =∑

ν

cνλµsν .

In the representation theory of GLkC, thecharacters of the irreducible polynomialrepresentations are Schur functions inappropriate variables.

Vλ ⊗ Vµ =⊕

ν

cνλµVν .

• I • GT • VPF • SPF • SG • KA • P • F • LR • 47

Page 164: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

We want to find analogues of

Gelfand-Tsetlin diagrams, so that we canwrite Littlewood-Richardson coefficients as avector partition function;

the Kostant arrangements, over the regions ofwhich the Littlewood-Richardson coefficientswould be given by polynomial functions.

• I • GT • VPF • SPF • SG • KA • P • F • LR • 48

Page 165: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

We want to find analogues of

Gelfand-Tsetlin diagrams, so that we canwrite Littlewood-Richardson coefficients as avector partition function;

the Kostant arrangements, over the regions ofwhich the Littlewood-Richardson coefficientswould be given by polynomial functions.

• I • GT • VPF • SPF • SG • KA • P • F • LR • 48

Page 166: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

Hives• 0

ν1 • • λ1

ν1 + ν2 • • • λ1 + λ2

ν1 + ν2 + ν3 • • • • λ1 + λ2 + λ3

|ν| • • • • • |λ|

|λ|+|µ|

|λ|+µ

1 +µ

2 +µ

3

|λ|+µ

1 +µ

2|λ|+

µ1

• I • GT • VPF • SPF • SG • KA • P • F • LR • 49

Page 167: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

Theorem (Knutson-Tao, Fulton)

Let λ, µ and ν be partitions with at most k partssuch that |λ| + |µ| = |ν|.

The Littlewood-Richardson coefficient cνλµ is thenumber of integral k-hives satisfying theboundary conditions and the hive conditions.

• I • GT • VPF • SPF • SG • KA • P • F • LR • 50

Page 168: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

Steinberg’s formula

Steinberg’s formula

cνλµ =∑

σ∈Sk

τ∈Sk

(−1)inv(στ)K(σ(λ+δ)+τ(µ+δ)−(ν+2δ)) .

• I • GT • VPF • SPF • SG • KA • P • F • LR • 51

Page 169: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

Partition functions and polynomiality

Using hives, we can find a vector partitionfunction for the LR coefficients, so they aregiven by quasipolynomial functions in λ, µand ν over the cones of a chamber complex.

We can construct a hyperplane arrangementfrom Steinberg’s formula over whose regionsthe LR coefficients are given by a polynomialin λ, µ and ν.

We can relate the chamber complex to theSteinberg arrangement and show that thequasipolynomials are really polynomials.

• I • GT • VPF • SPF • SG • KA • P • F • LR • 52

Page 170: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

Partition functions and polynomiality

Using hives, we can find a vector partitionfunction for the LR coefficients, so they aregiven by quasipolynomial functions in λ, µand ν over the cones of a chamber complex.

We can construct a hyperplane arrangementfrom Steinberg’s formula over whose regionsthe LR coefficients are given by a polynomialin λ, µ and ν.

We can relate the chamber complex to theSteinberg arrangement and show that thequasipolynomials are really polynomials.

• I • GT • VPF • SPF • SG • KA • P • F • LR • 52

Page 171: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

Partition functions and polynomiality

Using hives, we can find a vector partitionfunction for the LR coefficients, so they aregiven by quasipolynomial functions in λ, µand ν over the cones of a chamber complex.

We can construct a hyperplane arrangementfrom Steinberg’s formula over whose regionsthe LR coefficients are given by a polynomialin λ, µ and ν.

We can relate the chamber complex to theSteinberg arrangement and show that thequasipolynomials are really polynomials.

• I • GT • VPF • SPF • SG • KA • P • F • LR • 52

Page 172: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

Stretching for LR coefficients

This shows in particular that the function

N ∈ N 7−→ cNνNλ Nµ

is polynomial in N .

This was known previously(Derksen-Weyman, Knutson).

This function is the Ehrhart polynomial of thehive polytope for λ, µ and ν.

• I • GT • VPF • SPF • SG • KA • P • F • LR • 53

Page 173: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

Conjectures

Conjecture (Kirillov, King-Tollu-Toumazet)

For all partitions λ, µ such that Kλµ > 0 thereexists a polynomial Pλµ(N) in N with nonnegativerational coefficients such that Pλµ(0) = 1 andPλµ(N) = KNλ Nµ for all positive integers N .

• I • GT • VPF • SPF • SG • KA • P • F • LR • 54

Page 174: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

Open problem

k #(facets) deg j = 1 j = 2 j = 3 j = 4

3 6 1 1 (6)

4 14 3 2 (8) 3 (6)

5 30 6 3 (10) 5 (20)

6 62 10 4 (12) 7 (30) 8 (20)

7 126 15 5 (14) 9 (42) 11 (70)

8 254 21 6 (16) 11 (56) 14 (112) 15 (70)

9 510 28 7 (18) 13 (72) 17 (168) 19 (252)

Open problem Determine what the other factors

are on the boundary of the permutahedron.

• I • GT • VPF • SPF • SG • KA • P • F • LR • 55

Page 175: Polynomiality properties of the Kostka numbers and ...pi.math.cornell.edu/~rassart/pub/KLRslides.pdf · Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

Conclusion

We have found vector partition functionsexpressing the Kostka numbers and LRcoefficients as quasipolynomials over thecells of a complex of cones.

We have found a combinatorial description forthe domains of quasipolynomiality of theKostka numbers.

We have proved that the quasipolynomialsare actually polynomials.

Many of these polynomials exhibit interestingfactorization patterns.

• I • GT • VPF • SPF • SG • KA • P • F • LR • 56