32
Polarimetry and the Solar-C Mission Kiyoshi Ichimoto (Kyoto Univ.) Y.Suematsu, Y.Katsukawa , H.Hara(NAOJ), T.Shimizu (JAXA) and JAXA SOLAR-C WG IAU Symposium 305 in Costa Rica, 30 Nov.– 5 Dec. 2014

Polarimetry and the Solar-C Mission

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Polarimetry and the Solar-C Mission

Polarimetry and the Solar-C Mission

Kiyoshi Ichimoto (Kyoto Univ.)Y.Suematsu, Y.Katsukawa , H.Hara(NAOJ),

T.Shimizu (JAXA)and

JAXA SOLAR-C WG

IAU Symposium 305 in Costa Rica, 30 Nov.– 5 Dec. 2014

Page 2: Polarimetry and the Solar-C Mission

Many Hinode results are related to fundamental MHD processes.

waves

magnetic reconnection

magneto-convection

Local dynamo

flowsturbulence

instability

Hinode 2006~

Page 3: Polarimetry and the Solar-C Mission

But,, they are not yet contributed to our full understanding of  the solar magnetismWhat we learned from Hinode;‐ Many features are unresolved.

> 80% of flux is invisible to Hinode/SP  (Pietarila Graham+. 2010)‐ Large mismatch in spatial resolution in the coronal ( ~2”) and 

photospheric (~0.3”) observations‐ Blind to chromosphere in terms of physical diagnostics‐ Blind to transition region ‐ Insufficient time resolution of spectroscopic observationsG-band

CP

Bz (SP)

B?

Page 4: Polarimetry and the Solar-C Mission

The unique approach of the Solar‐CObservations of All from photosphere to corona seamlessly

as a system

• Resolve sun’s elementary structures in space and in time.

• Determine 3D magnetic field from photosphere to corona.

• Observe the entire temperature regime seamlessly (3・103‐107K)

• Determine physical quantities of plasma before and after thermalization

Page 5: Polarimetry and the Solar-C Mission

The unique approach of the Solar‐CObservations of All from photosphere to corona seamlessly

as a system

NeedLarge aperture telescopes

High precision spectro‐polarimetry in Vis/NIR

Coordinated set of telescopes to cover from IR to EUV 

High resolution EUV spectroscopy 

• Resolve sun’s elementary structures in space and in time.

• Determine 3D magnetic field from photosphere to corona.

• Observe the entire temperature regime seamlessly (3・103‐107K)

• Determine physical quantities of plasma before and after thermalization

Page 6: Polarimetry and the Solar-C Mission

Critical scales

Spatial scale; (1” ~ 720km on the sun)0.1”   photospheric magnetic field    kG B, photon mean free path

chromospheric density structure  recent ground obs.0.3” chromospheric magnetic field  expansion from photo.

coronal density structures EIS/Hinode fill factor, HI‐C obs.

~200” AR size   FOV

Time scale;~1sec flares, high energy events~10sec dynamics of fine scale structures~10min active region evolution, energy storage

Page 7: Polarimetry and the Solar-C Mission

SUVIT:1.3~1.4m UV-visible-NIR telescope - 0.1”spatial resolution- High precision spectro-polarimetory

EUVST: High throughput EUV spectrograph- ~0.3” spatial resolution - Wide temperature coverage- high temporal cadence

HCI:High resolution Corona Imager- 0.2~0.3” spatial resolution

7

SOLAR‐C spacecraft

Weight: 2300kg (w/o fuel)Size: 3.7m x 3.2m x 7.1mOrbit: geosynchronousPower: 5 kW (EOL)Data rate:  Av. >8Mbps (> x20 of Hinode)

Mission goal: To understand how the Sun sustains its dynamic atmosphere that governs our space environment and the physics of fundamental processes of magnetized plasma in the Universe

International project led by JAXA, ESA and NASAaiming for the launch in 2023JAXA Mission proposal by  16 Feb. 2015ESA M4 proposal  by           15 Jan. 2015 

Page 8: Polarimetry and the Solar-C Mission

8

SUVIT (Solar UV‐Vis.‐IR Telescope)1

.41m

Aplanatic Gregorian telescope with a polarization modulator and collimator 

Collimating mirror system

focal plane instruments

Rotating waveplate

Telescope assy.

Page 9: Polarimetry and the Solar-C Mission

Focal plane instruments

TTM

BC (B

lue channe

l)

~1500

~600

400

1600 long

2150 long

Inspectio

n po

rts

9

1500 long

Spectro‐polarimeter (SP)525, 854, 1083nm

Narrowband Filter Imager (NFI)500 ~ 1083nm

Broadband Filter Imager (BFI) + UV Spectro‐polarimeter (USP; option)

Blue Channel (BC) 280 ~ 450nm

Interface Unit (IU)

Page 10: Polarimetry and the Solar-C Mission

Focal plane instruments

TTM ~1500

Inspectio

n po

rts

10

Tunable filter

280nm spectro‐polarimeter (optional)

camerashutter

High reso.

wide

BSgrating

Interface Unit (IU)

Broad‐band imager

Page 11: Polarimetry and the Solar-C Mission

Plate scales (not final)SOT/Hinode SUVIT/Solar‐C

BC Spatial sampling 0.054” 0.035”

FOV 220” x 110” 70” x 70”NFI Spatial sampling 0.08” 0.03” (High reso.) 

0.09” (Wide FOV)FOV 320” x 160” 60”x60” (High reso.) 

180”x180” (Wide FOV)SP Spatial sampling 0.16” 0.07” (slit)

0.18” (IFU)FOV 320” x 160” 184” x 184”

9”x 9”(IFU)Sensitivity 10‐3 10‐3 ‐ 10‐4

11

Page 12: Polarimetry and the Solar-C Mission

SUVIT wavelength (candidates) Spectrum bands SP NFI BFI USP Purpose

Continuum TBD TBD T in the upper photosphereMg II k 279 nm x x T and V (and B) in the chromosphere

CN band 388 nm x Magnetic elements in the photosphereCa II K 393 nm x Structures in the chromosphereG (CH) 430 nm TBD Magnetic elements in the photosphere

Blue cont. 450 nm x Imaging and T in the photosphereMg I b 517 nm x V and B in the low chromosphere

Fe I 525 nm x x V and B in the photosphereFe I 557 nm TBD V in the photosphere

Na I D 589 nm TBD V and B in the low chromosphereFe I 630 nm x V and B in the photosphere

H I α 656 nm x Structures in the chromosphereCa II 854 nm x x T, V, and B in the chromosphereHe I 1083 nm x (x) V and B in the chromosphere

400 500 600 700 800 900200 300 1000 1100wavelength [nm]

SP

NFIBC

Page 13: Polarimetry and the Solar-C Mission

SOT lines

D1

6303

H

CaH

13

imaging

Spectro‐polarimetry

Page 14: Polarimetry and the Solar-C Mission

D1

SUVIT lines

6303

H

CaII K

HeI

CaII IR

14

imaging

Spectro‐polarimetry

MgII k

Page 15: Polarimetry and the Solar-C Mission

Spectro‐polarimeter

IFU2D array slit

inout(solar image) exitspectral images

(2pol x 4 sllit)

slit fiber

flare 1D array x 3

2D array

slit

Page 16: Polarimetry and the Solar-C Mission

Obs Mg II h&k G‐band Na I D    H I Hα                  Ca II IR                He Iwavelength          280nm 430nm 589nm  656nm               854nm                 1083nm

Al+MgF2

Ag

Highly enhanced Ag(REOSC)

Coating on mirrors 

We selected Ag coating for - high trroughput in Vis.-IR- less heat absorption at the primary mirror

For 280nm a special coating on Ag

16

Page 17: Polarimetry and the Solar-C Mission

Pol. Modulator;  Quartz+Sapphire waveplate

Sueoka‐san’s data, courtesy D. Elmore 

Tolerance +/‐ 3.7deg. ~ 0.01wav

Good modulation for polarimetry

*

T  = +/‐ 5C

Continuous rotation 1rev./sec

Retardation [waves]

Page 18: Polarimetry and the Solar-C Mission

18

Teledyne Co.H2RG FPA, SIDECAR ASIC, HgCdTe, 2k x 2k pixels, 18m/pix

Space qualified(TRL-6 for H2RG, TRL-9 for SIDECAR)

Readout 64 frames/sec, (WP 1 sec/rot)& onboard demodulation

To achieve N/S~ 3x10-4 within, we need to collect 107 photons or ~1000 frames in 10sec

high sensitivity in Vis. & IR fast readout, onboard accumulation

IR/Vis. camera Proposed onboard demodulation IQUVR

Data acquisition for polarimetry

Page 19: Polarimetry and the Solar-C Mission

19

Cameras configuration; 1 camera vs 3 cameras

SP options under studyIntegral Field Unit;

issue‐ optical fiber bundle polarization property, fabrication‐ image slicer accommodation, coating on slicer

Page 20: Polarimetry and the Solar-C Mission

Gain from a higher spatial resolution kG Flux Tube (FT) & Magneto-convection

0.3” resolution (Hinode)1” resolution (Ground) 0.1” resolution (SOLAR‐C)

Existence of FT ProvenMotion of FT tracked 80% FT not resolved

Existence of FT predicted from polarimetric obs.

kG FT mostly resolved ~50 times of encounters

of opposite polarities small-scale vortex & current

~ photon mean free path lengthof photosphere

In addition, Solar‐C will measure magnetic fields in higher layer too.

Page 21: Polarimetry and the Solar-C Mission

2D spectro-polarimetoryfor chromosphere

SUVIT will see fine scale connection between photo. & chrom., current sheets, mag.reconnection, shock,,,

Mysterious spicule

What is going on at the foot point of  spicules?‐ Component reconnection?‐ Vortex and twist?‐ Emerging flux?

Page 22: Polarimetry and the Solar-C Mission

Jump from SOT/Hinode• Spatial resolution• Spectro‐polarimetry for chromosphere• Time cadence (especially magnetic field data)

SUVIT

0.1”0.3”1” Spatial scale

height

Chromosphere < 1 )

Photosphere > 1 )

mag. vel.

imagingSOT

Highly complemental with large ground telescopesDKIST, EST,, SUVIT‐ The highest spatial resolution‐ Developing focal plane instruments and flexible operation‐ Coronagraphic observation

‐ High precision at high spatial resolution‐ Uniform data over wide FOV and time‐ Continuous obs.  24hr/day

Page 23: Polarimetry and the Solar-C Mission

TA: Telescope Assy

BC:

SPP

PMU TTM

M2M1

SP‐Cam

BC‐Cam1

CMU

SP‐ENFI‐E

Scan‐MGratingFW

SP‐MHC

BC‐MHC

FW1

HK,HTR

BS

focus

focusIU: IF unit

PMU signal

S/C bus

controldata

Control,data

Control,status

SUVIT block diagram (2014.11.25)

PMU signal

TTM con

trol

PMU con

trol

Mechanism 

DoorsTop/side

TA‐E

ESA/European

SP‐Cam2,3

FGN‐MHC

FW1focus shutterNFI: FG‐

Cam

US

BC‐E

TF

280nm SPBC‐Cam2

Scan‐M

CT signal

CT

Page 24: Polarimetry and the Solar-C Mission

Summary• Solar-C is an international project led by JAXA, ESA

and NASA, and we are about submitting the mission proposals to JAXA and ESA in two month.

• SUVIT is a high precision polarimeter to measure the magnetic fields in solar photosphere and chromosphere at ever highest spatial resolution and precision.

• There still remain undetermined parameters of SUVIT instrument, which will be fixed in a coming year.

• Suggestions and opinions from the community are welcome.

Page 25: Polarimetry and the Solar-C Mission

Thank you for listening!

Page 26: Polarimetry and the Solar-C Mission

SOLAR-C High-resolution Observations

SDO 2010Corona‐imaging

Yohkoh 1991Corona‐imaging

Hinode 2006Corona imaging

IRIS

TRACE 1999

HiC 2012Corona‐imaging

Fine-scale coronal structures inferred from Hinode

Fine-scale chromospheric structuresobserved by Hinode & GBO

SOHO 1995Corona‐imaging

SOHO 1995Chrom.‐Corona‐spectroscopy

EUVSTXIT

0.20.3

0.5空間分解能

(秒角)

Fine-scale kG photospheric structuresinferred from Hinode

観測波長

0.1” =  70 km

SDO 2010Photospheric mag.

SOLAR‐CSUVIT

Hinode 2006spectroscopy

Hinode 2006Chrom/photoimaging

spectro‐polarimery(mag. fields)

W‐b imaging

N‐b imaging

Page 27: Polarimetry and the Solar-C Mission

EUVST280” x 280”

XIT410” x 410”

SUVIT184” x 184”

SOLAR‐C: Field of View (FOV)

SUVIT

FG SP

WB NB

Hi‐Res.

WideFOV

184”x184”184”x143”

61”x61” 90”x90”

Page 28: Polarimetry and the Solar-C Mission

2. Mechanism of large‐scale explosion and its focast

1. Formation of the dynamic solar atmosphere; chromosphere, corona and solar wind

3. Origin of magnetic cycle

Basic Problems in Helio‐Physics to be tackled by Solar‐C

Steller astronomySpace weather

Space climate

The key is to understand  fundamental physical processes of magnetized plasma Plasma physics

Page 29: Polarimetry and the Solar-C Mission

Fiber IFU experiment

29

Epoxi glued fiber ribbons

Page 30: Polarimetry and the Solar-C Mission

Mueller matrix of fiber ribbon

30

Page 31: Polarimetry and the Solar-C Mission

10” 100” 1000” FOV

1sec

1min

Time span

1hr

1day

1week

10sec

Spectral resolution

Random noise

1min

1hr

1day

10min

103

2・105

0.01%

0.1%

1%

SP/slit

SP/IFU

FG/NFI

FG/BFI 105

5・104

104

Science requirements are realized by two complementary instruments; Filtergraph (FG) & Spectro-polarimeter (SP)

Page 32: Polarimetry and the Solar-C Mission

SUVIT basic param’s (not final)SOT/Hinode SUVIT/Solar‐C

BC Wavelength 388  ‐ 668nm (BFI) 280 ‐ 450nm (BFI)280nm (USP)

Spatial sampling 0.054” 0.035”FOV 220” x 110” 70” x 70”

NFI Wavelength 517  ‐ 656 nm 517  ‐ 1083 nmSpatial sampling 0.08” 0.03” (Hi), 0.09” (wide)FOV 320” x 160” 60”x60” (Hi), 180”x180” (wide)

SP Wavelength 630 nm 525, 854, 1083 nmSpatial sampling 0.16” 0.07” (slit), 0.18” (IFU)FOV 320” x 160” 184” x 184”, 9”x 9”(IFU)Sensitivity 10‐3 10‐3 ‐ 10‐4

32