51
Introduction Global model for SOL turbulence Simulation/Experiment Comparison Conclusions Plasma turbulence in the tokamak scrape-off layer F.D. Halpern 1 , S. Jolliet 1 , B. LaBombard 2 , J. Loizu 1 , A. Mosetto 1 , M. Podesta 3 , P. Ricci 1 , F. Riva 1 , J. Terry 2 , C. Wersal 1 , S. Zweben 3 1 ´ Ecole Polytecnique F´ ed´ erale de Lausanne Centre de Recherches en Physique des Plasmas, CH-1015 Lausanne, Suisse 2 Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA 3 Princeton Plasma Physics Laboratory, Princeton, New Jersey 08540, USA Theory and Modelling Seminar Institute for Plasmas and Nuclear Fusion Instituto Superior T´ ecnico 20th Oct 2014, Lisbon, Portugal F.D. Halpern 1 / 40 Plasma turbulence in the tokamak scrape-off layer

Plasma turbulence in the tokamak scrape-off layer · Introduction Global model for SOL turbulence Simulation/Experiment Comparison Conclusions Plasma turbulence in the tokamak scrape-o

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

  • IntroductionGlobal model for SOL turbulence

    Simulation/Experiment ComparisonConclusions

    Plasma turbulence in the tokamak scrape-off layer

    F.D. Halpern1, S. Jolliet1, B. LaBombard2, J. Loizu1,A. Mosetto1, M. Podesta3, P. Ricci1, F. Riva1, J. Terry2,

    C. Wersal1, S. Zweben3

    1École Polytecnique Fédérale de LausanneCentre de Recherches en Physique des Plasmas, CH-1015 Lausanne, Suisse

    2Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA3Princeton Plasma Physics Laboratory, Princeton, New Jersey 08540, USA

    Theory and Modelling SeminarInstitute for Plasmas and Nuclear Fusion

    Instituto Superior Técnico20th Oct 2014, Lisbon, Portugal

    F.D. Halpern 1 / 40 Plasma turbulence in the tokamak scrape-off layer

  • IntroductionGlobal model for SOL turbulence

    Simulation/Experiment ComparisonConclusions

    Scrape-off layer physics crucial for magnetic fusionHeat load to PFCs, rotation, impurities, L-H transition...

    How do we develop 1st principles understanding of SOL dynamics?

    F.D. Halpern 2 / 40 Plasma turbulence in the tokamak scrape-off layer

  • IntroductionGlobal model for SOL turbulence

    Simulation/Experiment ComparisonConclusions

    Simple problem: inner wall limited (pol. ×-section)

    Toroidal limiter (inner-wall limited)

    Plasma inflowing from closed field

    line region

    F.D. Halpern 3 / 40 Plasma turbulence in the tokamak scrape-off layer

  • IntroductionGlobal model for SOL turbulence

    Simulation/Experiment ComparisonConclusions

    Ballooning turbulence with kθρs ≈ 0.1 ∼ 1cm−1

    δφ/σφ

    δn/σ

    n−4 −2 0 2 4

    −4

    −2

    0

    2

    4

    −1 −0.5 0 0.5 110−2

    10−1

    100

    Phase(φ,n) / π

    k θρ s

    10−3 10−2 10−1 100

    10−6

    10−4

    kθρs

    fluc.

    pow

    er (r

    el)

    F.D. Halpern 4 / 40 Plasma turbulence in the tokamak scrape-off layer

  • IntroductionGlobal model for SOL turbulence

    Simulation/Experiment ComparisonConclusions

    Gaussian in near SOL, intermittent in far SOL

    −1 −0.5 0 0.5 10

    0.5

    1

    1.5

    δn/n

    P(δ

    n/n)

    Near SOL

    −1 −0.5 0 0.5 10

    0.5

    1

    1.5

    δn/nP

    (δn/

    n)

    Far SOL

    F.D. Halpern 5 / 40 Plasma turbulence in the tokamak scrape-off layer

  • IntroductionGlobal model for SOL turbulence

    Simulation/Experiment ComparisonConclusions

    Fluctuation level O(1), skewed PDF

    0.10.20.30.40.40.5

    δn/n

    −0.5

    0

    0.5

    1

    1.5

    Ske

    wne

    ss

    0 0.5 1 1.5 2

    0

    1

    2

    3

    Kur

    tosi

    s

    r−r0

    [cm]

    F.D. Halpern 6 / 40 Plasma turbulence in the tokamak scrape-off layer

  • IntroductionGlobal model for SOL turbulence

    Simulation/Experiment ComparisonConclusions

    Power balance → exponentially decaying profiles

    0 0.5 1 1.5 20

    0.2

    0.4

    0.6

    0.8

    1

    r−r0

    [cm]

    p/p 0

    SimulationExponential fit

    Turbulence Sonic flows towards PFCs

    F.D. Halpern 7 / 40 Plasma turbulence in the tokamak scrape-off layer

  • IntroductionGlobal model for SOL turbulence

    Simulation/Experiment ComparisonConclusions

    Some of the topics we have studied...

    X What mechanism sets the turbulence levels?

    X What instability drives the perpendicular transport?

    X How does the SOL width change with parameters?

    X Can we reconcile theory, simulations, and experiments?

    X Poloidal limiter geometry → ISTTOK [Rogerio’s MSc work]

    X What are the effects of neutrals?

    X How is toroidal rotation generated in the SOL? [Loizu, PoP 2014]

    × Is SOL transport related to the density limit? [LaBombard, NF 2005/08]

    × How is the SOL coupled with the closed flux surface region?[Tamain et al.]

    F.D. Halpern 8 / 40 Plasma turbulence in the tokamak scrape-off layer

  • IntroductionGlobal model for SOL turbulence

    Simulation/Experiment ComparisonConclusions

    Turbulence levelsDominant instabilitiesScrape-off layer width scaling

    A tool to simulate SOL turbulence

    Global Braginskii Solver (GBS) [Ricci, PPCF (2012)]

    I Drift-reduced Braginskii equationsd/dt � ωci , k2⊥ � k2‖

    I Evolves n, φ, V||e , V||i , Te , Ti in 3D

    I Global, flux-driven, no separation be-tween equilibrium and fluctuations

    I Power balance between plasma outflowfrom the core, turbulent transport, andparallel losses

    I Scalable ρ? up to medium size tokamak(e.g. TCV, C-Mod)

    F.D. Halpern 9 / 40 Plasma turbulence in the tokamak scrape-off layer

  • IntroductionGlobal model for SOL turbulence

    Simulation/Experiment ComparisonConclusions

    Turbulence levelsDominant instabilitiesScrape-off layer width scaling

    Drift-reduced Braginskii equations to describe the SOL

    ∂n

    ∂t=−

    ρ−1?B

    [φ, n] +2

    B[nC(Te ) + Te C(n)− nC(φ)]− n∇‖v‖e − v‖e∇‖n

    ∂ω̃

    ∂t=−

    ρ−1?B

    [φ, ω̃]− v‖i∇‖ω̃ +B2

    n∇‖j‖ +

    2B

    nC(p) +

    B

    3nC(Gi ), ω̃ = ∇

    2⊥(φ + τTi )

    ∂t

    (v‖e +

    mi

    me

    βe

    )=−

    ρ−1?B

    [φ, v‖e ]− v‖e∇‖v‖e +mi

    me

    [νj‖/n +∇‖φ−

    ∇‖pen− 0.71∇‖Te −

    2

    3n∇‖Ge

    ]∂v‖i

    ∂t=−

    ρ−1?B

    [φ, v‖i ]− v‖i∇‖v‖i −2

    3∇‖Gi −

    1

    n∇‖p

    ∂Te

    ∂t=−

    ρ−1?B

    [φ,Te ]− v‖e∇‖Te +4

    3

    Te

    B

    [7

    2C(Te ) +

    Te

    nC(n)− C(φ)

    ]+

    +2

    3

    {Te

    [0.71∇‖v‖i − 1.71∇‖v‖e

    ]+ 0.71Te (v‖i − v‖e )

    ∇‖n

    n

    }+D‖

    Te(Te )

    ∂Ti

    ∂t=−

    ρ−1?B

    [φ,Ti ]− v‖i∇‖Ti +4

    3

    Ti

    B

    [C(Te ) +

    Te

    nC(n)− C(φ)

    ]+

    +2

    3Ti

    (v‖i − v‖e

    ) ∇‖nn−

    2

    3Ti∇‖v‖e −

    10

    3

    Ti

    BC(Ti ) +D

    ‖Ti

    (Ti )

    +Sheath BCs consistent with PIC simulations [Loizu, PoP (2012)]

    F.D. Halpern 10 / 40 Plasma turbulence in the tokamak scrape-off layer

  • IntroductionGlobal model for SOL turbulence

    Simulation/Experiment ComparisonConclusions

    Turbulence levelsDominant instabilitiesScrape-off layer width scaling

    Parameters, normalizations, coordinates

    I Coordinate system: (θ, r , ϕ)→ (poloidal , radial , toroidal)

    I Equations expressed in normalized units:

    I L⊥ → ρsI L‖ → R

    I v → csI t ∼ γ−1 → R/cs

    I The dimensionless code parameters are as follows:

    I ρ? = ρs/R

    I ν = e2nR/(miσ‖cs)

    I βe = 2µ0pe/B2

    I q ≈ (r/R)Bϕ/BθI Simplified notation in analytical expressions:

    I p0 = 〈p〉t , t � γ−1 I Lp = −〈p/∂rp〉t

    F.D. Halpern 11 / 40 Plasma turbulence in the tokamak scrape-off layer

  • IntroductionGlobal model for SOL turbulence

    Simulation/Experiment ComparisonConclusions

    Turbulence levelsDominant instabilitiesScrape-off layer width scaling

    Poloidal cross sections showing SOL turbulence

    F.D. Halpern 12 / 40 Plasma turbulence in the tokamak scrape-off layer

  • IntroductionGlobal model for SOL turbulence

    Simulation/Experiment ComparisonConclusions

    Turbulence levelsDominant instabilitiesScrape-off layer width scaling

    Modes saturate due to pressure non-linearity

    We observe in simulations [Ricci, PoP (2013)]:

    I Mode saturation caused by local pressure non-linearity

    ∂rp1 ∼ ∂rp0 → p1p0 ∼σrLp

    I Radial eddy length σr is mesoscopic [Ricci, PRL (2008)]

    σr ≈√Lp/kθ

    I Turbulent flux Γ1 dominated by radial E× B convection

    Γ1 = ρ−1?

    〈p1

    ∂φ1∂θ

    F.D. Halpern 13 / 40 Plasma turbulence in the tokamak scrape-off layer

  • IntroductionGlobal model for SOL turbulence

    Simulation/Experiment ComparisonConclusions

    Turbulence levelsDominant instabilitiesScrape-off layer width scaling

    Saturation model yields E× B turbulent flux

    Gradient removal hypothesis

    F.D. Halpern 14 / 40 Plasma turbulence in the tokamak scrape-off layer

  • IntroductionGlobal model for SOL turbulence

    Simulation/Experiment ComparisonConclusions

    Turbulence levelsDominant instabilitiesScrape-off layer width scaling

    Self-consistent prediction of pressure gradient length

    In steady state, ∇ · Γ1 balances parallel losses ∼ ∇‖ · (pv‖e), hence

    Lp ≈q

    cs

    )max

    I Results in iterative scheme to predict Lp self-consistently:

    I Compute γ = f ( Lp︸︷︷︸vary

    , kθ︸︷︷︸scan

    , ρ?, q, ν, ŝ,mi/me︸ ︷︷ ︸plasma parameters

    )

    I Vary Lp until LHS = RHS using secant method

    F.D. Halpern 15 / 40 Plasma turbulence in the tokamak scrape-off layer

  • IntroductionGlobal model for SOL turbulence

    Simulation/Experiment ComparisonConclusions

    Turbulence levelsDominant instabilitiesScrape-off layer width scaling

    Excellent agreement between theory and simulations

    Lp predicted using self-consistent procedure [Halpern, NF (2014)]

    0 30 60 90 120 150 1800

    30

    60

    90

    120

    150

    180

    Lp (gradient removal)

    Lp(sim

    ulation)

    GBS sims.: ρ−1? = 500–2000, q = 3–6, ν = 0.01–1, β = 0–3× 10−3

    F.D. Halpern 16 / 40 Plasma turbulence in the tokamak scrape-off layer

  • IntroductionGlobal model for SOL turbulence

    Simulation/Experiment ComparisonConclusions

    Turbulence levelsDominant instabilitiesScrape-off layer width scaling

    Dominant instability depends principally on q, ν, ŝ, Ti/TeI Build instability parameter space using reduced models→ gradient removal theory, linear dispersion relations

    I Verify results using GBS non-linear simulations [Mosetto, PoP (2013)]

    −2 0 2−3

    −2.5

    −2

    −1.5

    −1

    −0.5

    0

    log10(ν)

    IBMIDW

    RDW

    RBM

    I Which instability drives ⊥ transport?I Inertial/Resistive Ballooning modes/Drift Waves?foobar

    F.D. Halpern 17 / 40 Plasma turbulence in the tokamak scrape-off layer

  • IntroductionGlobal model for SOL turbulence

    Simulation/Experiment ComparisonConclusions

    Turbulence levelsDominant instabilitiesScrape-off layer width scaling

    Dominant instability depends principally on q, ν, ŝ, Ti/TeI Build instability parameter space using reduced models→ gradient removal theory, linear dispersion relations

    I Verify results using GBS non-linear simulations [Mosetto, PoP (2013)]

    −2 0 2−3

    −2.5

    −2

    −1.5

    −1

    −0.5

    0

    log10(ν)

    IBMIDW

    RDW

    RBM

    I Which instability drives ⊥ transport?I Inertial/Resistive Ballooning modes/Drift Waves?

    F.D. Halpern 17 / 40 Plasma turbulence in the tokamak scrape-off layer

  • IntroductionGlobal model for SOL turbulence

    Simulation/Experiment ComparisonConclusions

    Turbulence levelsDominant instabilitiesScrape-off layer width scaling

    Presence of RBMs verified in TCV SOL sims

    I (ñ, φ̃) phase difference, joint (ñ, φ̃) pdf [Halpern, NF (2014)]

    0.01

    0.1

    1

    −4

    −2

    0

    2

    4

    (p1−〈p

    1〉)/σp 1

    0.01

    0.1

    1

    −4

    −2

    0

    2

    4

    (p1−〈p

    1〉)/σp 1

    −1 −0.5 0 0.5 10.01

    0.1

    1

    P(φ1, p1)/π

    −4 −2 0 2 4−4

    −2

    0

    2

    4

    (φ1 − 〈φ1〉)/σφ1

    (p1−〈p

    1〉)/σp 1

    0

    0.01

    0.02

    0.03

    0.04

    0.05

    0.06

    0.07

    0.08

    0.09

    0.1

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    1.6

    1.8

    2x 10

    −3

    ŝ = 0 ŝ = 0

    ŝ = 1 ŝ = 1

    ŝ = 2 ŝ = 2

    Curvature-driven, non-adiabatic mode → RBMs

    F.D. Halpern 18 / 40 Plasma turbulence in the tokamak scrape-off layer

  • IntroductionGlobal model for SOL turbulence

    Simulation/Experiment ComparisonConclusions

    Turbulence levelsDominant instabilitiesScrape-off layer width scaling

    Addition of finite Ti weakens adiabatic coupling

    I Analysis extended to include Ti effects [Mosetto, PoP (submitted)]

    I Joint (ñ, φ̃) pdf in GBS sims with τ = 1, τ = 4

    RBM component is enhanced by finite Ti

    F.D. Halpern 19 / 40 Plasma turbulence in the tokamak scrape-off layer

  • IntroductionGlobal model for SOL turbulence

    Simulation/Experiment ComparisonConclusions

    Turbulence levelsDominant instabilitiesScrape-off layer width scaling

    SOL width in RBM regime scales with ρ?, q

    I SOL width obtained analytically with RBMs [Halpern, NF 2013/14]:

    I Our simple model leads to a dimensionless scaling:

    Machine size

    Electromagnetic effectsCollisionality vs

    connection length

    F.D. Halpern 20 / 40 Plasma turbulence in the tokamak scrape-off layer

  • IntroductionGlobal model for SOL turbulence

    Simulation/Experiment ComparisonConclusions

    Turbulence levelsDominant instabilitiesScrape-off layer width scaling

    Parallel dynamics physics in agreement with simulations

    I Verify saturated RBM theory with GBS EM simulations

    I ρ−1? = 500, βe = 0–3× 10−3, ν = 0.01–1, q = 3, 4, 6

    αd/q

    α

    10−3

    10−2

    10−1

    100

    0

    0.2

    0.4

    0.6

    0.8

    1

    20

    40

    60

    80

    100

    (Contours of Lp given by theory, symbols are GBS simulations)

    F.D. Halpern 21 / 40 Plasma turbulence in the tokamak scrape-off layer

  • IntroductionGlobal model for SOL turbulence

    Simulation/Experiment ComparisonConclusions

    Turbulence levelsDominant instabilitiesScrape-off layer width scaling

    GBS simulations confirm size-scaling up to TCV sizeCASTOR

    TCV

    F.D. Halpern 22 / 40 Plasma turbulence in the tokamak scrape-off layer

  • IntroductionGlobal model for SOL turbulence

    Simulation/Experiment ComparisonConclusions

    Turbulence levelsDominant instabilitiesScrape-off layer width scaling

    Dimensionless scaling follows GBS simulation data

    Comparison carried out over wide range of parameters (ρ?, q, β, ν)

    0 30 60 90 120 150 1800

    30

    60

    90

    120

    150

    180

    F.D. Halpern 23 / 40 Plasma turbulence in the tokamak scrape-off layer

  • IntroductionGlobal model for SOL turbulence

    Simulation/Experiment ComparisonConclusions

    Turbulence levelsDominant instabilitiesScrape-off layer width scaling

    Good agreement with SOL width measurements

    Lp ≈ 7.2× 10−8q8/7R5/7B−4/7φ T−2/7e0 n

    2/7e0 (1 + Ti/Te)

    1/7 [ m ]

    0 0.03 0.06 0.09 0.120

    0.03

    0.06

    0.09

    0.12Alcator C-MODCOMPASSJ ETTCVTore Supra

    Exp. data:G. Arnoux

    I. Furno

    J.P. Gunn

    J. Horacek

    M. Kočan

    B. Labit

    B. LaBombard

    C. Silva

    F.D. Halpern 24 / 40 Plasma turbulence in the tokamak scrape-off layer

  • IntroductionGlobal model for SOL turbulence

    Simulation/Experiment ComparisonConclusions

    Turbulence levelsDominant instabilitiesScrape-off layer width scaling

    Good agreement with SOL width measurements

    Lp ≈ 7.2× 10−8q8/7R5/7B−4/7φ T−2/7e0 n

    2/7e0 (1 + Ti/Te)

    1/7 [ m ]

    0 0.03 0.06 0.09 0.120

    0.03

    0.06

    0.09

    0.12

    ITER start-up prediction

    Alcator C-MODCOMPASSJ ETTCVTore Supra

    Exp. data:G. Arnoux

    I. Furno

    J.P. Gunn

    J. Horacek

    M. Kočan

    B. Labit

    B. LaBombard

    C. Silva

    F.D. Halpern 24 / 40 Plasma turbulence in the tokamak scrape-off layer

  • IntroductionGlobal model for SOL turbulence

    Simulation/Experiment ComparisonConclusions

    Turbulence levelsDominant instabilitiesScrape-off layer width scaling

    Not so fast...Recent measurements (e.g. JET, C-Mod) show 2 different ∇ scales

    Figure : Data: G.Arnoux [NF’12] (left), B.LaBombard (right)

    I Carry out detailed simulation/theory/experiment comparison

    I Alcator C-Mod, TCV, RFX (in tokamak mode)

    F.D. Halpern 25 / 40 Plasma turbulence in the tokamak scrape-off layer

  • IntroductionGlobal model for SOL turbulence

    Simulation/Experiment ComparisonConclusions

    Alcator C-Mod tokamakGPI diagnosticSimulation/experiment comparison

    An ideal testbed for simulation-experiment comparisonI Inner-wall limited Ohmic C-Mod

    discharges [Zweben, PoP (2009)]

    I R = 0.67m, a = 0.20m,B = 2.7, 3.8T, κ = 1.2

    I Density scan at each value of B

    I Characterize C-Mod SOL turbulence using GPI diagnostic,and compare with GBS results

    I Low β, no Ti or B̃ diagnostics → simple electrostatic,cold ion model

    I δDαDα, pdf moments ,τauto , Lr , Lθ, vr , vθ, P(kθ), P(ω)

    Very stringent test!

    F.D. Halpern 26 / 40 Plasma turbulence in the tokamak scrape-off layer

  • IntroductionGlobal model for SOL turbulence

    Simulation/Experiment ComparisonConclusions

    Alcator C-Mod tokamakGPI diagnosticSimulation/experiment comparison

    Simulated pressure profiles show double scale length

    I Two-scale fit for pe yields Lp,near ≈ 5mm, Lp,far ≈ 2cm

    0 0.5 1 1.5 20

    0.2

    0.4

    0.6

    0.8

    1

    r−r0 [cm]

    p/p 0

    I Probe measurements from 2009 campaign not precise enough

    I From now on, concentrate on characterizing turbulence

    F.D. Halpern 27 / 40 Plasma turbulence in the tokamak scrape-off layer

  • IntroductionGlobal model for SOL turbulence

    Simulation/Experiment ComparisonConclusions

    Alcator C-Mod tokamakGPI diagnosticSimulation/experiment comparison

    Simulated pressure profiles show double scale length

    I Two-scale fit for pe yields Lp,near ≈ 5mm, Lp,far ≈ 2cm

    0 0.5 1 1.5 20

    0.2

    0.4

    0.6

    0.8

    1

    r−r0 [cm]

    p/p 0

    I Probe measurements from 2009 campaign not precise enough

    I From now on, concentrate on characterizing turbulence

    F.D. Halpern 27 / 40 Plasma turbulence in the tokamak scrape-off layer

  • IntroductionGlobal model for SOL turbulence

    Simulation/Experiment ComparisonConclusions

    Alcator C-Mod tokamakGPI diagnosticSimulation/experiment comparison

    Simulated pressure profiles show double scale length

    I Two-scale fit for pe yields Lp,near ≈ 5mm, Lp,far ≈ 2cm

    0 0.5 1 1.5 20

    0.2

    0.4

    0.6

    0.8

    1

    r−r0 [cm]

    p/p 0

    I Probe measurements from 2009 campaign not precise enough

    I From now on, concentrate on characterizing turbulence

    F.D. Halpern 27 / 40 Plasma turbulence in the tokamak scrape-off layer

  • IntroductionGlobal model for SOL turbulence

    Simulation/Experiment ComparisonConclusions

    Alcator C-Mod tokamakGPI diagnosticSimulation/experiment comparison

    Simulated pressure profiles show double scale length

    I Two-scale fit for pe yields Lp,near ≈ 5mm, Lp,far ≈ 2cm

    0 0.5 1 1.5 20

    0.2

    0.4

    0.6

    0.8

    1

    r−r0 [cm]

    p/p 0

    I Probe measurements from 2009 campaign not precise enough

    I From now on, concentrate on characterizing turbulence

    F.D. Halpern 27 / 40 Plasma turbulence in the tokamak scrape-off layer

  • IntroductionGlobal model for SOL turbulence

    Simulation/Experiment ComparisonConclusions

    Alcator C-Mod tokamakGPI diagnosticSimulation/experiment comparison

    Turbulent modes in the near SOLUse joint-pdf and phase between φ, p fluctuations to understandnature of turbulent modes

    I φ1, n1 well correlated → almost adiabatic modeI Small phase shift → curvature drive not important

    −4 −2 0 2 4−4

    −2

    0

    2

    4

    (φ−)/σφ

    (p−

    <p>

    )/σ p

    −1 −0.5 0 0.5 110

    −3

    10−2

    10−1

    100

    P(φ,pe)/π

    k yρ s

    0

    F.D. Halpern 28 / 40 Plasma turbulence in the tokamak scrape-off layer

  • IntroductionGlobal model for SOL turbulence

    Simulation/Experiment ComparisonConclusions

    Alcator C-Mod tokamakGPI diagnosticSimulation/experiment comparison

    Turbulent modes in the far SOLUse joint-pdf and phase between φ, p fluctuations to understandnature of turbulent modes

    I Weak correlation between φ1, n1 → non-adiabaticI Phase shift ∼ π/2 → curvature driven ballooning mode

    −4 −2 0 2 4−4

    −2

    0

    2

    4

    (φ−)/σφ

    (p−

    <p>

    )/σ p

    −1 −0.5 0 0.5 110

    −3

    10−2

    10−1

    100

    P(φ,pe)/π

    k yρ s

    0

    F.D. Halpern 29 / 40 Plasma turbulence in the tokamak scrape-off layer

  • IntroductionGlobal model for SOL turbulence

    Simulation/Experiment ComparisonConclusions

    Alcator C-Mod tokamakGPI diagnosticSimulation/experiment comparison

    Gas-puff imaging of C-Mod SOL

    Phantom 710 high-speed camera at 400’000fps [S.Zweben, J.Terry]

    F.D. Halpern 30 / 40 Plasma turbulence in the tokamak scrape-off layer

  • IntroductionGlobal model for SOL turbulence

    Simulation/Experiment ComparisonConclusions

    Alcator C-Mod tokamakGPI diagnosticSimulation/experiment comparison

    δDα/Dα diagnostic for GBSUsing DEGAS modeling of GPI emissivity, model Dα fluctuations

    I Emissivity locally parametrized as E ∝ Tαe nβe , use H656 line

    I Fluctuations modelled as δDα/Dα ≈ α(Te , ne)T̃e +β(Te , ne)ñ

    −0.3

    −0.3

    −0.2

    −0.2

    −0.1

    −0.1

    −0.1

    00

    0

    0.2

    0.2

    0.2

    0.4

    0.4

    0.4

    0.8

    0.8

    0.8

    1

    1

    1

    22

    2

    55

    5

    10

    10

    10

    20

    20

    20

    log Te [ eV ]

    log n

    e [ m

    −3 ]

    −1 0 1 2 3 4

    17

    18

    19

    20

    21

    22

    0

    5

    10

    15

    200.1 0.1

    0.2

    0.2

    0.20.3

    0.3

    0.30.4

    0.4

    0.40.5

    0.5

    0.5

    0.6

    0.6 0.6

    0.6

    0.7

    0.7

    0.7

    0.7

    0.8 0.8

    0.8

    0.8

    0.8

    0.9

    0.9

    0.9

    0.9

    11

    1

    1

    1.1

    log Te [ eV ]

    log n

    e [ m

    −3 ]

    −1 0 1 2 3 4

    17

    18

    19

    20

    21

    22

    0.2

    0.4

    0.6

    0.8

    1

    I Simulate finite GPI resolution (3× 3mm + 2.5µs smoothing),B-field tilt respect to sensors (8mm poloidal smoothing)

    F.D. Halpern 31 / 40 Plasma turbulence in the tokamak scrape-off layer

  • IntroductionGlobal model for SOL turbulence

    Simulation/Experiment ComparisonConclusions

    Alcator C-Mod tokamakGPI diagnosticSimulation/experiment comparison

    δDα/Dα synthetic diagnostic results

    I Left to right: ñ, δDα/Dα, δDα/Dα (diode), δDα/Dα (full)

    θ/π

    r−r0 [m]

    0 0.01 0.02−1

    −0.8

    −0.6

    −0.4

    −0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    r−r0 [m]

    0 0.01 0.02−1

    −0.8

    −0.6

    −0.4

    −0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    r−r0 [m]

    0 0.01 0.02−1

    −0.8

    −0.6

    −0.4

    −0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    r−r0 [m]

    0 0.01 0.02−1

    −0.8

    −0.6

    −0.4

    −0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    −1

    −0.8

    −0.6

    −0.4

    −0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    High kθ modes strongly damped by smoothing

    F.D. Halpern 32 / 40 Plasma turbulence in the tokamak scrape-off layer

  • IntroductionGlobal model for SOL turbulence

    Simulation/Experiment ComparisonConclusions

    Alcator C-Mod tokamakGPI diagnosticSimulation/experiment comparison

    Large δDα/Dα fluctuations, skewed PDF

    I δDα/Dα level increases withSOL, ∼ 30% in far SOL

    I Skewness ∼ 1→ blobs (?)

    I Moment profiles robust withplasma parameters

    0

    0.1

    0.2

    0.3

    0.4

    δDα/

    −1

    −0.5

    0

    0.5

    1

    1.5

    Ske

    wne

    ss0 0.005 0.01 0.015 0.02 0.025 0.03

    −1

    0

    1

    2

    3

    Kur

    tosi

    sr−r

    0[m]

    B=2.7T low nB=2.7T high nB=3.8T low nB=3.8T high n

    Quantitative comparison using shaded area (GPI sensors)

    F.D. Halpern 33 / 40 Plasma turbulence in the tokamak scrape-off layer

  • IntroductionGlobal model for SOL turbulence

    Simulation/Experiment ComparisonConclusions

    Alcator C-Mod tokamakGPI diagnosticSimulation/experiment comparison

    Large δDα/Dα fluctuations, skewed PDF

    I δDα/Dα level increases withSOL, ∼ 30% in far SOL

    I Skewness ∼ 1→ blobs (?)

    I Moment profiles robust withplasma parameters

    0

    0.1

    0.2

    0.3

    0.4

    δDα/

    −1

    −0.5

    0

    0.5

    1

    1.5

    Ske

    wne

    ss0 0.005 0.01 0.015 0.02 0.025 0.03

    −1

    0

    1

    2

    3

    Kur

    tosi

    sr−r

    0[m]

    B=2.7T low nB=2.7T high nB=3.8T low nB=3.8T high n

    GPI

    Quantitative comparison using shaded area (GPI sensors)

    F.D. Halpern 33 / 40 Plasma turbulence in the tokamak scrape-off layer

  • IntroductionGlobal model for SOL turbulence

    Simulation/Experiment ComparisonConclusions

    Alcator C-Mod tokamakGPI diagnosticSimulation/experiment comparison

    GBS agrees with [Zweben PoP 2009] within error bars

    I Compare GBS radial/poloidalaverage against GPI data

    I Shot-to-shot variation indicatedwith error bars

    I GBS gives good match forδDα/Dα and higher moments

    I Previous gyrofluid simulationsgave δDα/Dα ≈ 5–10%

    0

    0.2

    0.4

    0.6

    0.8

    δ D

    α/D

    α

    0

    0.5

    1

    1.5

    2

    Skew

    ness

    2 2.5 3 3.5 4 4.50

    1

    2

    3

    4

    Kurt

    osis

    B [T]

    GBS low n

    GBS high n

    GPI

    F.D. Halpern 34 / 40 Plasma turbulence in the tokamak scrape-off layer

  • IntroductionGlobal model for SOL turbulence

    Simulation/Experiment ComparisonConclusions

    Alcator C-Mod tokamakGPI diagnosticSimulation/experiment comparison

    Typical spatial, temporal turbulent scales give reasonableagreement

    I Compute τauto , Lrad , Lpol using2 point correlations functions Cij

    Cii (τauto) =1

    2

    L = 1.66δx√

    − lnCij (t = 0)

    I Good match for L ∼ 1.5cm,τauto underpredicted by ∼2

    0

    10

    20

    30

    40

    τauto

    s]

    0

    0.5

    1

    1.5

    2

    Lra

    d [cm

    ]

    2 2.5 3 3.5 4 4.50

    1

    2

    3

    Lpol [

    cm

    ]

    B [T]

    GBS low n

    GBS high n

    GPI low n

    GPI high n

    F.D. Halpern 35 / 40 Plasma turbulence in the tokamak scrape-off layer

  • IntroductionGlobal model for SOL turbulence

    Simulation/Experiment ComparisonConclusions

    Alcator C-Mod tokamakGPI diagnosticSimulation/experiment comparison

    Propagation velocities

    I Obtain vrad , vpol from time lag that maximizes correlationbetween two neighboring points separated by δx → v = δx/τ

    I Good agreement in vrad → poloidal mode structureI Large mismatch in vpol → resolution smoothing in GBS data?

    2 2.5 3 3.5 4 4.50

    0.5

    1

    1.5

    2

    2.5

    3

    vp

    ol [

    km

    /s]

    B [T]2 2.5 3 3.5 4 4.5

    0

    0.5

    1

    1.5

    2

    vra

    d [km

    /s]

    B [T]

    GBS low n

    GBS high n

    GPI

    F.D. Halpern 36 / 40 Plasma turbulence in the tokamak scrape-off layer

  • IntroductionGlobal model for SOL turbulence

    Simulation/Experiment ComparisonConclusions

    Alcator C-Mod tokamakGPI diagnosticSimulation/experiment comparison

    Spectral power vs wavenumber of δDα/Dα

    I From FFT of δDα/Dα in θ, then average over r , t

    I Significant drop at kpol = 125m−1 high k due to smoothing

    I Unsmoothed δDα/Dα has same power law scaling as GPI

    101

    102

    103

    10−4

    10−3

    10−2

    10−1

    100

    kpol

    [m−1

    ]

    flu

    c.

    po

    we

    r (r

    el)

    GPI

    GBSGBS(no sm.)

    B=2.7T, low n

    Renormalized

    101

    102

    103

    10−4

    10−3

    10−2

    10−1

    100

    kpol

    [m−1

    ]

    flu

    c.

    po

    we

    r (r

    el)

    GPI

    GBSGBS(no sm.)

    B=3.8T, high n

    Renormalized

    F.D. Halpern 37 / 40 Plasma turbulence in the tokamak scrape-off layer

  • IntroductionGlobal model for SOL turbulence

    Simulation/Experiment ComparisonConclusions

    Alcator C-Mod tokamakGPI diagnosticSimulation/experiment comparison

    Spectral power vs frequency of δDα/Dα

    I From FFT of δDα/Dα in t, then average over t, r = 2±0.2cmI GPI measurements and GBS show same asymptotic behavior

    100

    101

    102

    103

    10−6

    10−4

    10−2

    100

    f [kHz]

    fluc. pow

    er

    (rel)

    GPI +k

    GPI −k

    GBS +k

    GBS −k

    B=2.7TB=2.7T, low n

    Renormalized

    100

    101

    102

    103

    10−6

    10−4

    10−2

    100

    f [kHz]

    fluc. pow

    er

    (rel)

    GPI +k

    GPI −k

    GBS +k

    GBS −k

    B=3.8T, high n

    Renormalized

    F.D. Halpern 38 / 40 Plasma turbulence in the tokamak scrape-off layer

  • IntroductionGlobal model for SOL turbulence

    Simulation/Experiment ComparisonConclusions

    Summary and outlook

    I Towards first principles understanding of SOL width:

    X Non-linearly saturated drift/ballooning turbulence

    X SOL width scales with ρ?, q, collisionality

    X Simple analytical scaling agrees with experimental data

    I Detailed comparison between GBS and C-Mod discharges

    X Lp, δDα/Dα pdf moments, Lrad , Lpol , vrad , P(ω), P(kpol )× τauto , vpol → under/overpredicted by factor ∼ 2

    I Next: 2 Lp’s profile structure using 2014 C-Mod discharges

    I More advanced simulation model → Ti , shapingI Mirror langmuir probe → high res. profiles, (n, φ) phase

    F.D. Halpern 39 / 40 Plasma turbulence in the tokamak scrape-off layer

  • IntroductionGlobal model for SOL turbulence

    Simulation/Experiment ComparisonConclusions

    Thank you for your attention!

    F.D. Halpern 40 / 40 Plasma turbulence in the tokamak scrape-off layer

  • IntroductionGlobal model for SOL turbulence

    Simulation/Experiment ComparisonConclusions

    F.D. Halpern 40 / 40 Plasma turbulence in the tokamak scrape-off layer

  • IntroductionGlobal model for SOL turbulence

    Simulation/Experiment ComparisonConclusions

    Properties of the SOL

    I Lfluc ∼ 〈L〉tI nfluc ∼ 〈n〉tI Collisional magnetized plasma

    I Low frequency modes ω � ωciI Open field lines

    F.D. Halpern 40 / 40 Plasma turbulence in the tokamak scrape-off layer

  • IntroductionGlobal model for SOL turbulence

    Simulation/Experiment ComparisonConclusions

    Sheath BCs from kinetic approach [Loizu, PoP (2012)]I COLLISIONAL PRESHEATH (CP)

    I Quasi-neutral, IDA holds

    I Potential drop ∼ 0.5Te over ∼ LI Ions accelerated to vs = cs sinα

    I MAGNETIC PRESHEATH (MP)

    I Quasi-neutral, IDA breaks

    I Potential drop ∼ 0.5Te over ∼ ρsI Ions accelerated to vs = cs

    I DEBYE SHEATH (DS)

    I Non-neutral, IDA breaks

    I Potential drop ∼ 3Te over ∼ 10λDI Ions accelerated to vs > cs

    F.D. Halpern 40 / 40 Plasma turbulence in the tokamak scrape-off layer

  • IntroductionGlobal model for SOL turbulence

    Simulation/Experiment ComparisonConclusions

    Extra slides: Summary of the BC

    v||i = cs

    (1 + θn −

    1

    2θTe −

    Teθφ

    )v||e = cs

    (exp (Λ− ηm)−

    Teθφ + 2(θn + θTe )

    )∂φ

    ∂s= −cs

    (1 + θn +

    1

    2θTe

    )∂v||i∂s

    ∂n

    ∂s= − n

    cs

    (1 + θn +

    1

    2θTe

    )∂v||i∂s

    ∂Te∂s' 0

    ω = − cos2 α[

    (1 + θTe )

    (∂v||i∂s

    )2+ cs (1 + θn + θTe/2)

    ∂2v||i∂s2

    ]

    where θA =ρs

    2 tanα∂x A

    A, and ηm = e(φmpe − φwall )/Te . [Loizu et al PoP 2012]

    F.D. Halpern 40 / 40 Plasma turbulence in the tokamak scrape-off layer

  • IntroductionGlobal model for SOL turbulence

    Simulation/Experiment ComparisonConclusions

    Resistive ballooning modes destabilized by EM effects

    I Starting from reduced MHD, obtain simple dispersion relation

    γ2(ν +

    βe02

    γ

    k2⊥

    )= 2

    R

    Lp

    (ν +

    βe02

    γ

    k2⊥

    )−

    k2‖

    k2⊥γ

    I Neglecting ideal ballooning mode, the resistive branch gives

    (γ2 − γ2b

    )k2⊥ = −γ

    (1− αq2ν

    )and we identify γ ∼ γb =

    √2R/Lp and kb ∼

    √(1− α)/(νγb)/q

    F.D. Halpern 40 / 40 Plasma turbulence in the tokamak scrape-off layer

    IntroductionGlobal model for SOL turbulenceTurbulence levelsDominant instabilitiesScrape-off layer width scaling

    Simulation/Experiment ComparisonAlcator C-Mod tokamakGPI diagnosticSimulation/experiment comparison

    Conclusions