56
Plan B: Fossil Fuels Without CO 2 Eric McFarland U.C. Santa Barbara

Plan B: Fossil Fuels Without CO2 - MIT Energy Initiative · Prosperity has been possible because of our use of solar energy stored in the carbon of fossil fuels

Embed Size (px)

Citation preview

PlanB:FossilFuelsWithoutCO2

EricMcFarlandU.C. Santa Barbara

GlobalGDP($Trillion)

Unimaginable,IncreasinglyEgalitarian,GlobalProsperity

IMF

MadePossibleByAbundantLowCostFossilHydrocarbons

Prosperityhasbeenpossiblebecauseofouruseofsolarenergystoredinthecarbonoffossilfuels

45GJ/ton3.2tonsCO2/ton71kgCO2/GJ

55GJ/ton2.8tonsCO2/ton51kgCO2/GJ

Ifnotforthe35billiontonsperyear(Gta)ofCO2,fossilfuels

couldbeuClizedforthebenefitofsocietyunCltheybecamemore

expensivethanalternaCves.à“TransiRonOpRon”

20-30GJ/ton2.3tonsCO2/ton92kgCO2/GJ

−CHx + yO2 → CO2 + H2O + Heat

ThereisnoevidencethateconomicallysustainablealternaCvestofossilfuelsexisttoday;atmosphericCO2conCnuestorise

2016~17TW

Oil(5.3)

Coal(4.9)

Gas(3.6)

Sustainables(3.2)

2XXX??30+?TW

Hydro(44%CF)480GWelec(16%)14GWelec/y

Nuclear(90%CF)330GWelec(~11%)

13GWelec/yWind(39%CF)144GWelec(~4%)10GWelec/ySolar(21%CF)

13GWelec(~0.6%)3GWelec/y

Wave Geothermal

Someday,increasinglyrarefossilresourceswillbetoocostlytoburn.Probablybeforethen,theCO2emissionsfromcombusRonwillcause

harmtopartsofourglobalecosystemandpeople.

GlobalDiversifiedRiskManagement•  ProtectAgainstFossilFuelPrice/SupplyRisk•  AddressEnvironmentalandClimateRiskà  IncreaseEfficiencyà  IncreaseCO2-freepowergeneraRon

NoneofthetechnologyopRonsarenewAllrelyonsustainednuclearreacRons.

Withoutcost-effecRveopRons,significantCO2emissionreducRonswillnotbeachievable.

Ifsevereconsequencesoccur,

thepoorwillbeharmedfarworsethanthewealthy.

$0.1/kg20-30GJ/ton

$2-3/GJ

~9.5GtaofCinHydrocarbonsAreCombustedForLowCostHeat

−CH2x + yO2 → CO2 + xH2O + Heat

$0.3/kg45GJ/ton$7-8/GJ

$0.2/kg55GJ/ton$3-4/GJ

3.3MktaC 9.5MktaC9.5Gta

$80TrillionGlobalGDP

~35GtaCO2Emissions.

24%Heat

36%Transport

40%Electricity

Present“Strategy”:HydrocarbonCombusConForLowCostHeat

24%Heat

36%Transport

40%Electricity

$80+TrillionGlobalGDP

9.5++GtaC

35+GtaCO2Emissions

Gas

Coal

Oil

Reserves1,000Gt+

Reserves250Gt+

Reserves140Gt+++

MassiveExisRngInfrastructureGlobalTradeRelaRonsKnownScale-up

BUT,if…....

−CH2x + yO2 → CO2 + xH2O + Heat

PlanB:HydrocarbonsforLowCostHeatWithoutCO2−CH2x + yO2 → C + xH2O + Heat

24%Heat

36%Transport

40%Electricity

$80+TrillionGlobalGDP

19++GtaC

0CO2Emissions

Gas

Coal

Oil

Reserves1,000Gt+

Reserves250Gt+

Reserves140Gt+++

MassiveExisRngInfrastructureGlobalTradeRelaRonsKnownScale-up

CO2+xH2O

-CH2x

~35GtaCO2Emissions.

PlanB:~2xfossilresourcesForHeat

C+xH2O

ZeroCO2

19GtaC

MorestrategicuseofourfossilizedsolarresourcesmaybemorereasonablethannouseatallorCCS.

MassiveQuanRResofMethaneareAvailableWorldwide > 7000 tcf Natural Gas Reserves (non-hydrate) ~ 250 TW-y

Weareinterestedin

findingwaysofefficientlyusingCH4without

producingCO2

CO2+2H2O

~2Gtaofmethaneisburnedinabundantoxygentoproduceheat+smallcontribuRontothe0.4Gtaoforganicchemicalsmadelargelyfrompetroleum.

O=C=O

O2(H2O)

H2O(O2)CO/CO2+H2

CH3OH

Olefins/Arom Paraffin’s,HC’s

+0.5-1tonsCO2/tonC

Ammonia

N2

+2.8tonsCO2/tonC

NaturalGasURlizaRon:Past=Present

CH4

H HO

O=O

Heat

Transport

Electricity9.5GtaC

Gas

Coal

Oil

OrganicChemicals(0.3GtaPlasCcs)Metals(1.5Gtasteel)

0.4Gta

~3GtaCO2Emissions

2.8Gta

SustainableChemicalProducRonIsARelaRvelyMinorProblemButpoten<allylargeopportunity

O2(H2O)

H2O(O2)CO/CO2+H2

CH3OH

Olefins/Arom Paraffin’s,HC’s

+0.5-1tonsCO2/tonC

Ammonia

N2

CH4

“SelecRve”ParRalOxidaRonofMethaneforChemicals

C(-4)

CH4

SelecRveParRalOxidaRonofMethaneforChemicals

CH4 + 12 O2 ⎯→⎯ 1

2 C2H4 + H2O

OxidaCveCouplingofMethane(OCM)

C2selecCvity

C2Yield

HCYield

ChemistryLe,ers,1986,3,p1981-1984

Academic“HolyGrail”

f = k2

k1= rate of secondary product oxidation with O

rate of first C-H bond transformation

f= k2k1

CAN'T BE SMALL !

ToDreamtheImpossibleDreamOCMWithO2:ThermochemicallyandKineCcallyNotSensible(Bell-Evans-Polanyi)

J.NaturalGasChem.2012Vol.21Issue(3):308-313

0 1 2 3 4 5f0.0

0.2

0.4

0.6

0.8

1.0Yield0.0 0.2 0.4 0.6 0.8 1.0

Conversion0.0

0.2

0.4

0.6

0.8

1.0Selectivity

f=0.5

f=2

f=1

CH 4

k1O−M⎯ →⎯⎯ C−2 k2

O−M⎯ →⎯⎯ →→COx + H2Ogas phase

O2⎯ →⎯⎯⎯ ⎯→⎯ →→→→COx + H2O

HighYieldsNotPossiblek1<k2

k2k1

≥ 21

→ S+C ≤ 100%

k2k1

≥ 110

→ Yield < 75%

S+C<100%Notgoodenough

CnHm

ΔH,ΔG700K,1atm

½C2H4+H2106,60CH4

MethaneforChemicals

WhatWeReallyWanttoDo

(1-x)/2C2H4+(1-x)H2O+xCO2WhatWeActuallyDo

CO2+2H2O-800,-800WhatWeDon’tWantToDo

½C2H4+H2O-139,-148

CH4+nO2

WhatWeHaveBeenTryingtoDo

H2

O=O

CH4

~2moles/s-kta

-4

~-1500kW/ktaHeat

Philosophicalapproachàmaintaintheelectron’schemicalpotenRal

C(-4)

CO2+2H2O

O=C=OO(-2)

O=O

-(C H2)- -2

-C- 0

OrganicChemicals

-C- +4

~1.5MillionAmps/ktaà

e- e- e- e- e- e- e- e-

CH4 -(C H2)- -4 -2

-C- 0

e- e- e- e-

DonotallowcompleteCoxidaRon:DifferentReacRonEnvironments

~-775kW/ktaHeat

O=C=O

CnHm

ΔH,ΔG700K,1atm

MethaneforOrganicChemicals

½C2H4+H2106,60

½C2H4+2HI94,36

½C2H4+2HCl-80,-137Cl2

I2 2HX

H2

CH4+nX2

½C2H4+H2O-139,-149O2

H2O

Oxygenisnottheonlyelectrophile!

HalogensSuppressCompleteOxidaConflameretardants:

1)OxidaBvedehydrogenaBon+2)SuppressesoxycombusBon

-CH2-CHBr-CH2---------CH2-CH2-CH2-

HBr+O2àHOO*+Br*HOO*+HBràH2O2+Br*H2O2à2OHOH+HBràH2O+Br*

HydrodebrominaCon(ODH)

-CHBr-CH2-à-CH=CH-+HBrT

HCl+O2àHOO*+Cl*

HBr+O2àHOO*+Br*

HI+O2àHOO*+l*HIisthefastest

FredrickRust,Industrial&engineeringchemistry1949vol:41iss:11pg:2595

AlkylhalidesareEasyToMakeandEasyToSeparateOxyhalogenaBon/DehydrohalogenaBonforParBalOxidaBon

Shell1960’s(I2-ODH)-90%Sel.,80%Conv.

MoreSeparableIntermediatesReactforShow,SeparateforDough

CH4+XYàH3C-X/HnCm+HY

XY Intermediates HYO2 CH4,N2,COxCHyOx H2O,H2

S CH4CH3SHCS2 H2S,H2

NOx CH4N2,NO,COx H2O

SOx CH4SO2CH3SO3H H2OSO2H2SO4

I,Br,Cl CH4CHn-Xm HX,H2

Less“efficient”orlessdirectreacConpathwayswithmoreseparableproductsareoqenmoredesirablethanmorereacConefficientanddirectpathways.

CH4 -(C H2)- e- e--4 -2

OrganicChemicals

+ 2HX

-C- e- e- 0

+ 4HX

TransferofHydrogen(e-)toHydrogenHalideOffersSignificantProcessFlexibilityandPreservesChemicalPotenRal

X2

Heatout+/-eV

O2

eV+/-Heatinput

1-2H22HI

2HBr2HCl

0.2−1.5Volt⎯ →⎯⎯⎯ H2 +I2

Br2

Cl2

2HI2HBr2HCl

+ 12

O2 ⎯→⎯ H2O+I2

Br2

Cl2

+ Heat (or eV)

SAPOàLightOlefins(ethylene/propylene)

ZSM5àAromaCcs

CH3OHà(-CH2-)+HOH

0%

5%

10%

15%

20%

25%

30%

35%

40%

Benzene Toluene Xylene Mesitylene Durene Naphthalenes

Wei

ght P

erce

ntag

e, %

Chem.Com.2004,566,658Phys.Chem.Chem.Phys.2011,13,2550

CH3Brà(-CH2-)+HBr

AlkylhalidesAreReadilyTransformedIntoOrganicChemicalsUsingKnownAlcoholPathways(MTO,MTG)

Polyhalides?InteresRngNew(old)Chemistry

CH2Br2H2⎯ →⎯ CH3Br H2⎯ →⎯ CH4

ACSCatal.(2012),2,479−486

CH2Br2H2⎯ →⎯ *CH −HBr⎯ →⎯⎯ *C2H5 −HBr⎯ →⎯⎯ *CnHm

Pd/SiO2

nCH2Br2à-CnHm+2nHBr

hsps://www.youtube.com/watch?v=44OU4JxEK4k

Whatyouwantonsurfacesforoligomersare-CHand-CH2(Fischer-Tropsch)

ACSCatal.(2012),2,479−486

AGeneralPlayormforMethaneConversionwithoutCO2

CH4

CH4

+0.5-1tonsCO2/tonC

NoCO2

C2+

C2+

Methane

EthanePropane

Methanol/DMEOlefinsBTX+

EthanolGlycolEthyleneBTX+

OlefinsEthoxylates

PropanolPropyleneBTX

AcRvaRon:R-H+Br2àR-Br+HBr

Conversion:R-BràR’+HBr

RegeneraRon:O2+HBràBr2+H2OHBràBr2+H2

HBrBr2

O2/Electricity/PhotonsH2O/H2

DemonstratedBr2/HBrPlayorm

WithoutCO2

But…....

Chem.Com.2004,2100

CatalysisToday2004,98,317

Chem.Com.2004,566,658

Phys.Chem.Chem.Phys.2011,13,2550

ACSCatal.2012,2,479−486

2Gta

Fe3O4….,

3Fe0

H - Cl

8FeCl3à8FeCl2

Fe3O4….,

8eV

8FeCl3+

9FeCl22FeCl3

4

InPressChemicalEngineeringJournal

But…...yousRllneedCO2freeelectricity

3Fe0

H - Cl

1FeCl2

8

2FeCl3

3C0

2

3

3CH4 + 2FeCl3+ FeCl2 → 3C + 3Fe + 8HCl + 2H2

HalogenFacilitatedThermalReducRon

Heat

Transport

Electricity

$80TrillionGlobalGDP

9.5GtaC

35GtaCO2Emissions

Gas

Coal

Oil

InteresRngchemistry,butthefewGtaofCO2fromchemicalproducRonisNOTtheproblem

ΔH,ΔG700K,1atm

C+4HCl-228/-382Cl2

C+4HI60/-34I2

2HX

C+2H2106,60 H2

CH4+nX2

C+2H2O-406/-405

O2

H2O

WeWantCO2-freeLowCostFuelsandHeat

NH3C+NH3+½H215/44

N2

C+NH3+HCl-62,-59N2+Cl2

1943BelgiumNH3Bus

X-15NH3Supersonic

NH3ToyotaGT86-R

KoreanNH3Subcompact

CO2 free combustion32

O2 + 2NH3 → N2 + 3H2O

HeatofCombusCon~Methanol

à NH3~$15-$20/GJc/wmethanol@$300/ton$15/GJ

IncreasedNH3producRonàDecreasedFoodPrices

HydrogenastheulRmatesustainableelectronacceptorCH4àC+2H2

CH4+2O2àCO2+2H2O

CH4àC+2H2 2H2+O2à2H2O

2 moles CH4

sec

1kta CH4

4 moles H2Osec

+ 2 moles CO2

sec

+ 1500 kW Heat → 750kWelec

LessHeatbutNoCO2

2CH4 + 4O2 → 2CO2 + 4H2O

2XoperaRngcost.Howmuchmorecapital?

2 moles Csec

4 moles H2Osec

+ 1,000 kW Heat- 225 kW= 775 kW→ 387 kWelec

4 moles H2

sec

2CH4 → 2C + 4H2

4H2 + 2O2 → 4H2O-225kW

83

moles NH3

sec

43

moles N2

sec

+142kW

4 moles H2Osec

+ 43

mole N2

sec

+ 842 kW Heat- 225 kW+ 142 kW Heat= 760 kW→ 380 kWelec

83

NH3 + 2O2 → 4H2O + 43

N2

TheCarbon“Problem”

CH4(C-4)

CH4 + nX → C + H4 Xn

InspiredByNature

UnderstandingandControllingReacRonsandProcessesinComplexMelts

R- 103R- 102

S- 101

SPL- 102

E- 102A

T- 101

E- 101

D- 101

SPL- 101

E- 103

E- 104

T- 201

R- 101A R- 101B

E- 102B

P- 201

SPL- 103

E- 201A

T- 202

C- 201

E- 202

MIX101

MIX-102

E- 201B

MCOMPR

C- 101

NG IN

BRO UTOR OUT2

W HR

S20

W HRTO V

CR OUT

RW ATER1

RW ATER2

LIG HTGAS

W HB

OILIN

OW OW IN

W ATER

W ATER2

NG F

ACO MOU T

CO MSUC

OILLEAN

OW OU T

OILR2

W HV

W HL

HO TAIR

OR OUT1

HPO ILOILTCOO L

W ATER1

OILR1

CO MDIS RG AS

C4

C5+BTX

S5

OM AKEUP

W PROD

S2

S1

S3

AIR

HydrocarbonChemistryinMoltenHalideSalts

0.0

0.5

1.0

1.5

2.0

2.5

0 200 400 600 800 1,000 1,200

Equilibriu

mCom

posiC

on(m

ole

basis)

Temperature(C)

H2(g) CH4(g) C

H2_withI2 CH4_withI2 C_withI2 H2

CH4

C(graphite)

Equilibriumforpyrolysisfavoredatlowertemperaturewhenhalogenspresent

H2(remainderHI)

HighercarbonyieldwhenI2ispresent(highermethaneconversion)

MoltensaltsusedforenvironmentalcontrolofreacCvesurfacesites

Ethane Ethylene Oxygen Water

J.Phys.Chem.C,2015,119(16),pp8681–8691

MoltenMetalMethanePyrolysisCH4àC+2H2

2H2

T=1000oC

Pt -Sn!+

Sn!+

Sn!+Sn!+

Sn!+

Sn!+Sn!+

e- e-

e-e-

e-

e-Tu

rnoverFrequ

ency

CommerciallyPracRcedSystems

CH 4heat /catalyst⎯ →⎯⎯⎯ C + 2H2

H2 −>Heat⎯ →⎯⎯⎯ C + 53 H2 +

13 H2O

SubmizedChemicalEngineeringJournal

0

5

10

15

20

25

0 10 20 30 40 50

IRR

(%

)

CO2 Charge ($/tonne)

EAF Catalytic Pyrolysis

SMRSMR”adjustedpriceofH2forInternalRateofReturn(IRR)=10%.Other’susesameH2price.

ThermochemicalHydrogenProducRonCanBeatSMRSMRvsPyrolysisUSGasPrice$2/GJ

ACarof“thefuture”:OnBoardThermalPyrolysis?

H2

CCH4

OrotherHC

ICE/Hybrid

CarbonHoldingTank

Today’s~48mpghybrid

Tomorrow’s~0CO2~24mpghybrid**

Challenge:CosteffecRvemodularreactorsystemCatalyBcconverters~$100.

CH4 + 12

N2 + nX → NH3 +C + HX

500ktaHaberBoschAmmoniaFacility

OurGrandChallenge:DirectMethanetoAmmonia(FuelandFoods)

CH4 + H2O → 3H2 + CO 2N2 + 3H2 → 2NH3

Summary

•  FossilhydrocarbonsremainthelowestcostsourceofpowerandorganicchemicalsandconRnuetomakepossibleglobalprosperity.

•  Wedonot,presently,havecostcompeRRvealternaRves.•  IftheglobalsocietyeverplacesameaningfulcostoncarbondioxideemissionsandconRnuestounnecessarilyrestrictinnovaRonincommercialnuclearpower,alternaRvemeansofusingfossilresourcesmayprovidetheleastcostlyprocessesforCO2emissionsreducRonsunRltheinevitableincreasingscarcitydrivesuptheircost.

•  AlternaRveconversionpathwayshavemanyinteresRngfundamentalmechanisRcquesRonsandpracRcalchallengesthatshouldbeinteresRngtochemicalscienRsts,engineers,andstudents.

QuesRons?

Acknowledgements

ChesUpham,HenrikKristoffersen,BrezParkinson,MojganZavareh,HoriaMeRu,MikeGordon,GalenStucky