56
Pigot, A. L., Sheard, C., Miller, E. T., Bregman, T. P., Freeman, B. G., Roll, U., Seddon, N., Trisos, C. H., Weeks, B. C., & Tobias, J. A. (2020). Macroevolutionary convergence connects morphological form to ecological function in birds. Nature Ecology and Evolution, 4, 230- 239 (2020). https://doi.org/10.1038/s41559-019-1070-4 Peer reviewed version Link to published version (if available): 10.1038/s41559-019-1070-4 Link to publication record in Explore Bristol Research PDF-document This is the author accepted manuscript (AAM). The final published version (version of record) is available online via Nature Research at https://doi.org/10.1038/s41559-019-1070-4 . Please refer to any applicable terms of use of the publisher. University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/

Pigot, A. L. , Sheard, C., Miller, E. T., Bregman, T. P

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Pigot, A. L. , Sheard, C., Miller, E. T., Bregman, T. P

Pigot, A. L., Sheard, C., Miller, E. T., Bregman, T. P., Freeman, B. G.,Roll, U., Seddon, N., Trisos, C. H., Weeks, B. C., & Tobias, J. A.(2020). Macroevolutionary convergence connects morphological formto ecological function in birds. Nature Ecology and Evolution, 4, 230-239 (2020). https://doi.org/10.1038/s41559-019-1070-4

Peer reviewed version

Link to published version (if available):10.1038/s41559-019-1070-4

Link to publication record in Explore Bristol ResearchPDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available onlinevia Nature Research at https://doi.org/10.1038/s41559-019-1070-4 . Please refer to any applicable terms of useof the publisher.

University of Bristol - Explore Bristol ResearchGeneral rights

This document is made available in accordance with publisher policies. Please cite only thepublished version using the reference above. Full terms of use are available:http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/

Page 2: Pigot, A. L. , Sheard, C., Miller, E. T., Bregman, T. P

1

Macroevolutionaryconvergenceconnectsmorphologicalformto1

ecologicalfunctioninbirds2

3

4

Authors:AlexL.Pigot1,2†*,CatherineSheard3,2†,EliotT.Miller4,5,TomP.Bregman6,2,5

BenjaminG.Freeman7,UriRoll8,2,NathalieSeddon2,BrianC.Weeks9,10,JosephA.6

Tobias11,2*7

8

Affiliations:9 1CentreforBiodiversityandEnvironmentResearch,DepartmentofGenetics,Evolution10

andEnvironment,UniversityCollegeLondon,GowerStreet,London,WC1E6BT,UK.11 2DepartmentofZoology,UniversityofOxford,SouthParksRoad,Oxford,OX13PS,UK.12 3SchoolofBiology,UniversityofStAndrews,Fife,KY169TJ,UK.13 4CornellLabofOrnithology,159SapsuckerWoodsRd.,Ithaca,NY14850,USA.14 5DepartmentofBiologicalSciences,UniversityofIdaho,Moscow,Idaho83844,USA.15 6Future-FitFoundation,1PrimroseStreet,Spitalfields,London,EC2A2EX,UK.16 7BiodiversityResearchCentre,UniversityofBritishColumbia,6270UniversityBlvd.,17

VancouverBC,V6T1Z4,Canada.18 8MitraniDepartmentofDesertEcology,JacobBalausteinInstitutesforDesertResearch,19

Ben-GurionUniversityoftheNegev,MidreshetBen-Gurion8499000,Israel.20 9SchoolforEnvironmentandSustainability,UniversityofMichigan,AnnArbor,MI21

48109,USA.22 10DepartmentofOrnithology,AmericanMuseumofNaturalHistory,79thStreetat23

CentralParkWest,NewYork,NY10024,USA.24 11DepartmentofLifeSciences,ImperialCollegeLondon,SilwoodPark,BuckhurstRoad,25

AscotSL57PY,UK.26

†Equalcontribution27 *Correspondenceto:[email protected]; [email protected] 28 29 Wordcount:Abstract(154),Maintext(3,132),Methods(3,654),Captionsfor6figures30 (581)31 References:Maintext(52),Total(75) 32

Page 3: Pigot, A. L. , Sheard, C., Miller, E. T., Bregman, T. P

2

Animalshavediversifiedintoabewilderingvarietyofmorphologicalforms33

exploitingacomplexconfigurationoftrophicniches.Theirmorphological34

diversityiswidelyusedasanindexofecosystemfunction,buttheextenttowhich35

animaltraitspredicttrophicnichesandassociatedecologicalprocessesis36

unclear.Hereweusemeasurementsofninekeymorphologicaltraitsfor>99%37

birdspeciestoshowthataviantrophicdiversityisdescribedbyatraitspacewith38

fourdimensions.Thepositionofspecieswithinthisspacemapswith70-85%39

accuracyontomajornicheaxes,includingtrophiclevel,dietaryresourcetypeand40

finer-scalevariationinforagingbehaviour.Phylogeneticanalysesrevealthat41

theseform-functionassociationsreflectconvergencetowardspredictabletrait42

combinations,indicatingthatmorphologicalvariationisorganisedintoalimited43

setofdimensionsbyevolutionaryadaptation.Ourresultsestablishtheminimum44

dimensionalityrequiredforavianfunctionaltraitstopredictsubtlevariationin45

trophicniches,andprovideaglobalframeworkforexploringtheorigin,function46

andconservationofbirddiversity.47

48

Page 4: Pigot, A. L. , Sheard, C., Miller, E. T., Bregman, T. P

3

Plantsandanimalshavecomplementaryfunctionsinthebiosphere,withplantsmainly49

contributingasautotrophicproducersandanimalsoccupyingmultiplehighertrophic50

levelsasprimary,secondaryandtertiaryconsumers1-4.Restrictionofmostplantspecies51

toasingletrophiclevelatthefoundationoffoodwebstheoreticallylimitsthescopefor52

nichevariation,perhapsexplainingwhytheirvasttraitdiversityispredominantly53

constrainedtoasimpleplanewithtwodimensions5.Incontrast,theecologicaltrait54

spaceofheterotrophicconsumersispotentiallymorecomplexand55

multidimensional6-9,particularlyifdistinctsetsofmorphologicaltraitsare56

consistentlyassociatedwithdifferenttrophiclevelsanddietarytypes¾including57

herbivores,pollinatorsandpredators10.Thisconceptofapredictablelinkbetween58

animalformandfunctionhasexistedsinceAristotle11andnowunderpinsnumerous59

trait-basedresearchprogrammes12,fromresolvingtheevolutionaryoriginsof60

biodiversity13,14toquantifyingecosystemfunction15,16andpredictingresponsesto61

environmentalchange17,18.However,theassumptionthatecologicalnichespaceand62

associatedecosystemfunctionscanbeadequatelyquantifiedusingalimitedsetof63

phenotypictraitsremainscontroversial19,20.64

Atoneextremeofcomplexity,speciesandtheirtraitsmaybeembeddedwithin65

anabstractmultidimensionalnichespace,the‘n-dimensionalhypervolume’ofG.E.66

Hutchinson21.Byassuminganalmostlimitlessnumberofecologicaldimensions,this67

modelprovidesacompellingexplanationforthediversityofspeciesandphenotypes68

foundinnature13,14,21.Attheotherextreme,themappingoftraitsontonichespacemay69

besimplifiedtoasingledimension22-24byfunctionaltrade-offs25orpervasive70

convergentevolution26,27.Whetherform-functionrelationshipsareeitherunfathomably71

complexorunexpectedlysimplehasmajorimplicationsfortheusefulnessoftrait-based72

approachestoquantifyingandconservingbiodiversity16,28,29.73

Page 5: Pigot, A. L. , Sheard, C., Miller, E. T., Bregman, T. P

4

Inahigh-dimensionalHutchinsoniannichespace,pinpointingthefunctionalrole74

ofaspecieswouldrequirenumerousaxesofphenotypicvariation30,potentially75

confoundingeffortstounderstandnichesbasedonstandardisedtraitdatasets12,15,17,18.76

Conversely,ifmostofthediversityinfunctionaltraitscanbecollapsedalongoneor77

twofundamentaldimensions,thenthismaynotprovidesufficienttractionfortraits78

tobeinformativeaboutmultipleecologicalfunctions,particularlyinmultitrophic79

systems19,28.Someecomorphologicalanalyseshavefoundevidencethatthe80

dimensionalityofanimalhypervolumesmayliesomewherebetweentheseextremes30-81

32,raisinghopethattraitcombinationscouldbepartitionedintoarelativelysimplistic82

nicheclassificationsystem¾analogoustotheperiodictableofelements27.Yet,previous83

studieshavefocusedonrestrictedspatialandtaxonomicscales,producing84

contradictoryresultsandnoclearconsensusaboutthestructureorgeneralityofform-85

functionrelationshipsinanimals31-36.86

Herewepresentthefirstcomprehensiveassessmentofphenotypictrait87

diversityforextantbirds(Aves),thelargestclassoftetrapodvertebrates.Forovera88

century,birdshaveplayedacentralroleinthedevelopmentofnicheconceptsand89

ecomorphology31,37-39,andnowprovidetherichesttemplateforexploringthefunction90

andevolutionofmorphologicaltraitsinthecontextofspecies-levelecological40and91

phylogeneticdatasets41.Wemeasuredeightphenotypictraitswithwell-established92

connectionstolocomotion,trophicecology,andtheassociatednichestructureof93

ecologicalcommunities31,32,39,42(ExtendedDataFig.1,seeMethods).Inparticular,the94

beakistheprimaryapparatususedbybirdstocaptureandprocessfood39,43,while95

morphologicaldifferencesinwings,tailsandlegsarerelatedtolocomotion,providing96

insightintothewaybirdsmovethroughtheirenvironmentandforageforresources31.97

Withtheadditionofbodymass,ourdatasetcontainsfullsetsofninetraitsfor9,96398

Page 6: Pigot, A. L. , Sheard, C., Miller, E. T., Bregman, T. P

5

species,representing>99%ofextantbirddiversityandall233avianfamilies(Extended99

DataTable1),therebysummarizingwhole-organismtraitcombinationsin100

unprecedenteddetailforamajorradiationoforganismsdistributedworldwideacross101

marineandterrestrialbiospheres.Weusearangeofanalysestoexplorethestructureof102

thistraitdiversityanditsconnectiontoecologicalfunction.103

104

Themultipledimensionsofaviantraitspace105

Acrossbirds,bodymassvariesbyafactorof50,000(Fig.1a)andthepositionofspecies106

alongthissingleaxishasimportantassociationswithmetabolismandlifehistory44.To107

gobeyondthisbasicvariationamongorganisms,wecanvisualiseaviantraitdiversity108

byprojectingspeciesintoamultivariatespace(hereafter,morphospace)derivedfrom109

principalcomponent(PC)scores(seeMethods).Theseprojectionscanberestrictedto110

thebeak(Fig.1b,ExtendedDataTable2)orexpandedtoencompassalltraits(Fig.1c,111

ExtendedDataTable3),inbothcasesrevealingenormousvariationinsize(PC1)and112

shape(PC2-PC3).113

Unlikethebimodaldistributionofplantforms5,variationinbirdtraitsiscentred114

onasingledensecorearoundwhichspecieswithextrememorphologiesarescattered115

attheperipheryofmorphospace(Fig.1b-c,ExtendedDataFigs.3,4).Thestructureof116

thesethree-dimensionalprojectionshighlightsthediversityofwaysthatbirdshave117

exploreddifferenttraitcombinations.Forinstance,theseconddimensionoftotaltrait118

variation(PC2;6%traitvariance)describesthespectrumfromsmalltolargebeaks,119

whilethethirddimension(PC3;4%oftraitvariance)separatesspecieswithshorttails120

andpointedbeaks(e.g.kiwis)fromthosewithlongtailsandstubbybeaks(e.g.121

frogmouths)(ExtendedDataFig.3).Comparedtotheprimaryaxisofbodysize(PC1),122

alongwhichmost(83%)phenotypicvariationisaligned,theseandtheremaining123

Page 7: Pigot, A. L. , Sheard, C., Miller, E. T., Bregman, T. P

6

dimensionsofavianmorphospaceconstituteonlyafractionoftotalphenotypic124

variation(17%).However,thekeyquestioniswhetherthepositionofspeciesinthis125

high-dimensionalmorphospaceprovidesdeeperinsightintotheirecologicalfunction.126

127

Themappingofformtofunction128

Tounderstandhowmorphologyrelatestoecologicalfunction,weclassifiedspeciesinto129

differenttypesofprimaryconsumers(aquaticandterrestrialherbivores,nectarivores,130

frugivores,granivores),secondaryandtertiaryconsumers(aquaticcarnivores,131

terrestrialinvertivores,terrestrialvertivores),andscavengers(ExtendedDataFig.5a,132

seeMethods).Mostavianspeciesarelargelyspecializedonasingletrophiclevel(n=133

8,343species)and,withinthis,asingletrophicniche(n=8,225species).Therest134

constituteomnivoresthatexploitmultipletrophiclevels(n=1,620species)orniches135

(eitherwithinoracrosslevels,n=1,738species)inrelativelyequalproportions(see136

Methods).Totestwhetherthelocationofspeciesinmorphospacepredictstheirtrophic137

niche,weusedaRandomForest(RF)model,atypeofmachinelearningalgorithmthat138

appliesrecursivepartitioning(i.e.decisiontrees)tosubdividemorphospaceintoaset139

ofnon-overlappingrectangularhypervolumeswithinwhichvariationinspeciesniches140

isminimized(seeMethods).Webeganbyassessingwhetherbodymassalonecan141

predictspecies’trophicniche,thenaddedadditionaltraitstobuildupaprogressively142

morecompletedescriptionofavianphenotype.143

Wefoundthatamodelusingonlybodymass(Fig.2a)achievedonlylimited144

accuracyinpredictingeithertrophicniches(29%)orbroadtrophiclevels(38%).Only145

nectarfeedingpollinators—manyofwhich,includinghummingbirds(Trochilidae),have146

evolvedminiaturizedformstofeedonflowers—werepredictedconsistentlybybody147

mass(Fig.2b).Thus,althoughbodysizeaccountsformostofthevarianceinour148

Page 8: Pigot, A. L. , Sheard, C., Miller, E. T., Bregman, T. P

7

phenotypictraits(ExtendedDataTable3),itprovidesarelativelyweakexplanationof149

aviantrophicnichespaceatglobalscales.Thepredictabilityoftrophicnichesmorethan150

doubledwhenincludingbeaksizeandshape(Fig.2a,c)andincreasedfurtherto78%151

whenweusedanine-dimensionalmorphospacewithafullsetofbeakandbodytraits152

(Fig.2a,d).Moreover,whenweexcludedomnivores(seeMethods),therebyrestricting153

theanalysistospecieswiththemostspecializeddiets,thepredictabilityoftrophic154

nichesandtrophiclevelsexceeded80%(Fig.2a).Theseresultswererobusttothe155

methodusedtomatchtraitsandecology,withalternativeapproaches(e.g.discriminant156

analysis)indicatingasimilarriseinpredictiveaccuracyasmorphological157

dimensionalityincreases(ExtendedDataFig.6,seeMethods).158

Tovisualizethestrikingconnectionbetweenphenotypicformandtrophic159

function,wemappedthedensityofeachspecialisttrophicnicheontomorphospace(n=160

8,225).Evenwhenprojectedontoatwo-dimensionalplane,heredefinedbybeaksize161

andshape,itisclearthateachtrophiclevel,andindeedeachtrophicniche,occupiesa162

largelydistinctregionofmorphospace(Fig.3).Specialistinvertivores(n=4,788163

species)andfrugivores(n=1,030species)constitutethebulkofavianspeciesdiversity164

andarediffuselydistributedaroundthecentreofmorphospace(Fig.3f-g).Species165

targetingotherresourcetypespossessmoreextremecombinationsofbeaksizeand166

shape,formingtighterclustersaroundtheperiphery(Fig.3a-e,h-i,ExtendedDataFig.167

4).Theseclustershaveirregularshapesbutgenerallyoccupyasinglecontiguousregion168

ofmorphospace¾a‘phenotypicfingerprint’¾concentratedaroundauniquecentral169

peakofhighspeciesdensity.Thisrelativelysimpleone-to-onemappingofformto170

functionisnotanartefactofprojectingnichesontoasingletwo-dimensionalplane171

becauseeveninthefullnine-dimensionalmorphospaceeachtrophicnichecanbewell172

describedbyjustoneorafewrectangularhypervolumes(seeMethods).173

Page 9: Pigot, A. L. , Sheard, C., Miller, E. T., Bregman, T. P

8

Theecologicalrelevanceoftraitvariationmayextendfarbeyondpredictionsof174

simplistictrophicnichesifmorphologycapturesadditionalaxesofecological175

divergence,includingsubtlegradationsofbehaviourandmicrohabitat.Theintrinsic176

subdivisionofbasictrophicnichesintonumerousvariantsisbestillustratedinbirdsby177

terrestrialinvertivoresthathaveevolvedaremarkablearrayofforagingtechniques,178

fromcatchinginsectsincontinuousflight(e.g.swallows)topluckingfromvegetation179

(e.g.antshrikes)orhoppingontheground(e.g.pittas)(Fig.4,ExtendedDataFig.5b).To180

assesshowmorphologyrelatestothesemorefine-scaleaspectsoftheniche,were-ran181

theRFmodelaftersubdividingtheninespecialisttrophicnichesinto30foragingniches182

(Fig.2e-g,ExtendedDataTable4,seeMethods).183

Asexpected,foragingnichesareevenlesspredictablethantrophicnichesor184

trophiclevelsonthebasisofbodysize(Fig.2a).However,predictabilityincreases185

substantiallywhenusingmultipletrait-dimensions,withthelocationinnine-186

dimensionalmorphospaceaccuratelypredictingnotonlythetypeofresources,butalso187

thespecificforagingmanoeuvreandsubstrateusedbyeachspecies(Fig.2a,e-g).This188

resultshowsthatmostmorphologicalvariationencompassedbyeachtrophicniche189

(Fig.3)isnotsimplyredundant35,36,withnumerousdifferentcombinationsoftraits190

performingsimilarecologicalroles8.Instead,thestrikingcorrespondencebetween191

avianformandfunctionprovidescontinuousmetricsforquantifyingmultitrophic192

nicheswithmuchgreaterdetailandprecisionthanaffordedbycoarseecological193

categories.194

195

Thedimensionalityoftrophicnichespace196

Toinvestigatetheminimumnumberofdimensionsrequiredtopredictavianniches,we197

appliedRFmodelstomorphospacesofvaryingdimensionality,rangingfromonetonine198

Page 10: Pigot, A. L. , Sheard, C., Miller, E. T., Bregman, T. P

9

dimensions,exploringallpossiblecombinationsoftraitaxes(n=511combinations).199

Basedonestimatesofmodelpredictiveaccuracy,wethencalculatedthedimensionality200

(D)oftrophicnichesusingLevene’sindex(seeMethods).Accordingtothisindex,D=201

9ifalltraitdimensionscontributeequallytopredictingtrophicniches,withD202

decreasingtowards1aspredictiveaccuracyisdrivenbyprogressivelyfewertrait203

dimensions.Usingthisapproach,wecalculatedtheoveralldimensionalityoftrophic204

nichespace(DTotal)aswellasthemeandimensionalityacrossindividualtrophic205

niches(𝐷").206

Wefoundthatdimensionalityvariedfromthetwo-dimensionalnicheof207

nectarivorestothefour-dimensionalnicheoffrugivores,andthatnichesareon208

averagedefinedbyatleastthreetraitdimensions(𝐷"=3.5)(ExtendedDataFig.7a).209

Theidentityofthesedimensionsvariesacrossnichesreflectingadaptations210

associatedwithcontrastingmodesoflife(ExtendedDataFig.8).Takingalltrophic211

nichestogether,anintegratednichespaceisminimallydescribedbyafour-212

dimensionalmorphospace(DTotal=4.4).Decreasingdimensionalityfromfourtoone213

dimensionresultsinanalmostlineardeclineintheabilitytopredicttrophicniches,214

whileincreasingdimensionalityfromfourdimensionsupwardsonlyresultsin215

marginalimprovementinnichepredictability(ExtendedDataFig.7a).Similar216

estimatesoftrophicnichedimensionalitywereobtainedregardlessofthemethod217

usedtomatchtraitsandecology(ExtendedDataFig.10)andwhetherornotwe218

accountedforthephylogeneticnon-independenceofspecies(ExtendedDataFig.7b).219

Theseconsistentresultssuggestthattrophicnichespaceisinherently,yetnonetheless220

moderately,multidimensional.Ontheonehand,afour-dimensionalhypervolume221

challengestheview23,24thatanimaltrophicnichescanbecollapsedalonganaxisof222

bodysize,orindeedanysingletraitdimension.Ontheotherhand,thelevelof223

Page 11: Pigot, A. L. , Sheard, C., Miller, E. T., Bregman, T. P

10

dimensionalityseemsremarkablylimitedgiventhescaleofecomorphological224

variationencompassedbytheentireavianradiation.225

Itseemsplausiblethatouruseofsimplelinearmeasurementshasledtoan226

underestimateofnichedimensionalityandthatadditionalormoresophisticatedbody227

shapemeasurements—suchasbeakcurvature43—mayrevealfurtheraxesofecological228

variation.However,theincrementinniche-relatedinformationislikelytobeminorat229

thescaleofouranalyses,particularlyassimulationssuggestthatourestimateof230

dimensionalityisrobusttotheadditionofnumerousalternativetraits(ExtendedData231

Fig.9,seeMethods).Limiteddimensionalitycouldalsoreflectthecoarsenessofour232

nicheclassification,sowere-ranRFmodelsbasedonnichessubdividedintomore233

precisecategoriesrelatingtoforagingbehavioursandsubstrates(ExtendeddataTable234

4).Wefoundthatmoretraitdimensionsareindeedrequiredtopredictthisfiner-235

grainedclassificationsystem(𝐷"=4.1,DTotal=5.6;ExtendedDataFig.7b),withthe236

traitaxesdefiningtrophicnichesforminganestedsubsetofthosedefiningforaging237

niches(ExtendedDataFig.8,seeMethods).However,theincreaseinniche238

dimensionalityisminor,suggestingahierarchicalstructuretonichespacewhereby239

thesamedimensionsarerepeatedlypartitionedacrossmultipleecologicalscales45.240

Whiletheseresultsprovidecompellingevidencethatmultitrophicnichespaceis241

predictablyorganizedalongalimitednumberoffundamentaltraitdimensions,theytell242

uslittleabouthowthiscorrespondencebetweenformandfunctionhasarisen.243

244

Theevolutionofform-functionrelationships245

Oneexplanationfortheapparentmatchingbetweenformandfunctionisthatclosely246

relatedspeciestendtooccupythesamenicheandhavesimilartraitssimplydueto247

sharedancestry46.Alternatively,eachtrophicnichemayhaveevolvedmultipletimes,248

Page 12: Pigot, A. L. , Sheard, C., Miller, E. T., Bregman, T. P

11

withthestrongmatchbetweenformandfunctionarisingfromrepeatedphenotypic249

convergencetowardsthesameadaptiveoptima26,47.Theextenttowhichphylogenetic250

historyoradaptiveevolutionshapecurrentecologicaldiversityisunclear.Toaddress251

this,wecomparedthestrengthoftherelationshipobservedbetweenformand252

trophicfunctiontothatexpectedunderanevolutionarynullmodelinwhich253

similarityinspeciestraitsdependsonthetimeelapsedsincelineagesdivergedas254

wellasvariationintherateofstochastictraitevolution(seeMethods).Wefoundthat255

thismodelcanaccountforasubstantialfractionofthematchbetweenformand256

trophicniches(Expectedaccuracy=65%[95%CI:60-70%])butisinsufficientto257

explainthestrikingpredictabilityofavianecologicalfunctions(Observedaccuracy=258

85%,ExtendedDataFig.11).Althougheachtrophicnicheispopulatedbymultiple259

distantlyrelatedclades(ExtendedDataFig.12a),theselineagesarefarmoretightly260

packedinmorphospace(Fig.3)thanwouldbeexpectedbasedontheirevolutionary261

relatedness(ExtendedDataFig.12b).Thus,whileourresultshighlightthemajor262

imprintofphylogenetichistoryinthestructuringofaviantrophicdiversity,theyalso263

suggestthatthecorrespondencebetweenformandfunctionrequiresanadaptive264

explanation.265

Toexploretheseevolutionarypatternsinmoredetail,weidentified91pairsof266

avianfamilieswiththemostsimilartraitswithineachtrophicniche(seeMethods).We267

foundthatsome(10%)morphologicallymatchedfamiliesaresistercladeswherein268

phenotypicsimilaritycanbeexplainedbysharedancestraltraits(Fig.4a).However,269

mostpairingsrepresentmuchmoreancientdivergenceevents(mediandivergencetime270

=55[Interquartilerange:39-75]millionyears[Ma]versus28[Interquartilerange:21-271

51]Maforsisterclades),suggestingthattraitsimilarityhasresultedfromconvergent272

evolution(Fig.4a).273

Page 13: Pigot, A. L. , Sheard, C., Miller, E. T., Bregman, T. P

12

Classifyingphenotypicconvergenceeventsbyspatialcontextrevealedthatsuch274

casestendtooccurinpairsofcladeswithnon-overlappinggeographicaldistributions275

(Fig.4b;seeMethods).Wealsoassessedwhethersimilarityinforagingnichespredicted276

evolutionaryconvergenceeventsinthetwomostheterogeneoustrophicgroups277

(aquaticpredatorsandterrestrialinvertivores).Inthesediverseniches,wefoundthat278

convergenceamongpairsoffamiliesusingthesameforagingtechniquesandsubstrates279

occurredfarmoreoftenthanpredictedbychance(Fig.4c).Akeyroleforboth280

geographicalisolationandecologicalsimilarityisconsistentwiththeviewthat281

macroevolutionaryconvergenceisdrivenbyadaptationtovacantecologicalniches47.282

Thus,theNeotropicalregionishometoarborealfrugivoroustoucans(Ramphastidae)283

andground-dwellinginvertivorousantpittas(Grallariidae),whicharereplacedinthe284

Palaeotropicsbyhornbills(Bucerotidae;Fig.5a)andpittas(Pittidae;Fig,5b),285

respectively.Aminorityoffamilies,suchasSwallows(Hirundinidae)andSwifts286

(Apodidae),appeartohaveconvergeddespitebroadspatialoverlap(Fig.5c),although287

itremainsplausiblethattheearlystagesofconvergenceoccurredingeographical288

isolation.289

Bytracingevolutionarytrajectoriesthroughmorphospace,wecanvisualisethe290

likelyhistoryofconvergenceeventsaccordingtoaglobalphylogenetictree41.These291

reconstructionsshowthat,withinmatchedfamilypairs,eachcladehasonaverage292

evolvedadistanceequivalenttoone-thirdthespanoftotalavianmorphospacebefore293

arrivingatitscurrentposition(Fig.5a-c,ExtendedDataFig.13).Insomecases294

(illustratedinFig.5a),familypairshavefollowedlargelyparalleltrajectories,whilein295

others(Fig.5b-c)convergencehasoccurredfromdifferentpointsinmorphospace,such296

thatthecurrentgapbetweenfamiliesissubstantiallynarrowerthanitwasinthepast.297

Page 14: Pigot, A. L. , Sheard, C., Miller, E. T., Bregman, T. P

13

Acorollaryofwidespreadconvergentecologicaladaptationtogeographically298

segregatedvacantnichespaceisthatspeciesoccupyingagivennichewillcluster299

togetherinmorphospaceregardlessoftheirgeographicorigins.Torevealthisglobal300

mappingofformtofunction,wepartitionedtheavianhypervolumeintobiogeographic301

realms(seeMethods).Wefoundthateachtrophicnichehasthesamemorphological302

signatureworldwide,highlightingtherepeatabilityofconvergenceeventsacross303

multipleevolutionaryarenas(Fig.6).304

305

Conclusions306

Theconnectionbetweenavianmorphospaceandtrophicnichesprovidescompelling307

evidenceofwidespreaddeterministicconvergenceinadiversemultitrophic308

assemblage27.Ouranalysesrevealthatthepredictablepatternsofnichefillingobserved309

amongindividuallineages26,48,orinmorelocalizedsettings47,49,arepartofagrander310

evolutionarydynamicoperatingacrossentireclassesoforganismsataglobalscale.This311

pervasiveconvergentevolutionofmorphologicaltraitsoverridestheimprintof312

phylogenetichistoryinstructuringaviannichespace,reducingthepowerof313

phylogeneticbiodiversitymetricstopredictecologicalfunction50unlesscombinedwith314

otherinformationabouttraits.Wehavedemonstratedthataminimumoffour315

independentmorphologicaltraitaxesarerequiredtopredictvariationinaviantrophic316

niches,callingintoquestionthevalidityoftrait-basedmacroecologicalanalyses317

assessingfunctionaldiversityonthebasisoffewermorphologicaltraitdimensions(e.g.318

bodymass).Wealsoshowthatcontinuousmorphologicalvariablescanpredictmuch319

moresubtlefine-scalevariationindietaryandbehaviouralnichesthancanbeachieved320

usingstandardnichecategories(e.g.diet).321

Page 15: Pigot, A. L. , Sheard, C., Miller, E. T., Bregman, T. P

14

Moregenerally,thesefindingshaverelevancetomultipleenvironmental322

researchprogrammesandpolicyframeworks,manyofwhichhavetakenonincreased323

urgencyinlightofrapiddeclinesinanimaldiversityandabundance3,4.Theaviantrait324

spacepresentedhere¾basedonthemostcompletesampleofmorphologicalvariation325

foranymajortaxon¾providesahighlyresolvedtemplatelinkingspeciestraitsto326

ecologicalfunction.Traitvariationwithinanyaviantrophicguild,orclade,orindeed327

anyhistorical,contemporaryorpredictedfuturebirdcommunity,canbemappedonto328

thistemplateandinterpretedinthecontextofregionalorglobalpatterns.Inpractical329

terms,thisresourcepavesthewaytoanewgenerationoffunctionalandbehavioural330

diversityindicatorsforuseinsettingandmeasuringprogresstowardsinternational331

conservationtargets,understandingfunctionaleffectsofextinction51,andevaluating332

howanimalcommunitiesassembleandrespondtochange16,29,52.333

334

Page 16: Pigot, A. L. , Sheard, C., Miller, E. T., Bregman, T. P

15

335

336

337

Figure1.Theavianmorphospace.a,Distributionofavianbodymassesfromthe338

lightest(Mellisugahelenae,2g)totheheaviestspecies(Struthiocamelus,111kg).b,339

Variationinbeakshape,akeytraitrelatedtoresourceuse.Thefirstthreedimensionsof340

beakspacecapturevariationinbeaksize(PC1),relativebeaklength(PC2)andratioof341

beakdepthtowidth(PC3).c,Athree-dimensionalmorphospacecombiningdataon342

bodymass,beak,wing,tailandtarsus.Axislabelsindicatetheproportionofvariance343

explained.Thedensityofspeciesisprojectedontoeachtwo-dimensionalplane.Data344

areshownfor9,963species,representing>99%ofallbirds.345

346

Page 17: Pigot, A. L. , Sheard, C., Miller, E. T., Bregman, T. P

16

347

348

Figure2.Trophicstructuringofmultidimensionalmorphospace.a,Meanaccuracy349

(%)ofaRandomForestmodelpredictingtrophiclevel,trophicnicheandforagingniche350

forallbirds(n=9,963species)onthebasisofbodysize(mass),sizeandbeaktraits,or351

thefullnine-dimensionalmorphospace.Stipplingindicatesimprovementinpredictive352

accuracyafteromittingomnivores(seeMethods).b-g,Confusionmatricesshow353

predictionsforeachtrophic(b-d)andforagingniche(e-g).Diagonalelementsofeach354

matrixindicatecorrectmatchesbetweenpredictedandobservedniches;off-diagonal355

elementsindicatemisclassification.Red=highlevelsofaccuracy(diagonal)or356

misclassification(off-diagonal).357

Page 18: Pigot, A. L. , Sheard, C., Miller, E. T., Bregman, T. P

17

358

359

Figure3.Partitioningofavianmorphospaceacrosstrophiclevelsandniches.360

Heterotrophicconsumersshapethebiospherethroughnumerousfeedbacksonnutrient361

cyclingandproductivity2.Hereweillustratethecomplexityofavianecologicalfunction362

asamultitrophicpyramidbuiltonafoundationofautotrophicproducers(plants),363

whichareexploiteddirectlybyaquaticherbivores(a),terrestrialherbivores(b),364

nectarivores(c),frugivores(d),granivores(e),andindirectlybyaquaticcarnivores(f),365

terrestrialinvertivores(g),terrestrialvertivores(h),andscavengers(i).Withineach366

trophicniche,thefirsttwodimensionsofbeakmorphospace,capturingvariationin367

beaksize(PC1)andshape(PC2),areplottedagainsttotalbeakvariationof9,963368

species,representing>99%ofallbirds(lightgrey).Contoursindicatedensityofspecies;369

warmercoloursindicatinghigherdensity.Omnivoresarenotshown.370

371

372

Page 19: Pigot, A. L. , Sheard, C., Miller, E. T., Bregman, T. P

18

373

374

Figure4.Scaleandcontextofmacroevolutionaryconvergenceinbirds.a,Lines375

connectphenotypicallymatchedfamilies(n=91pairs)spanningtheavianevolutionary376

tree.Exemplarshighlightedwithboldlines;sistercladeswithdashedlines.Treetipsare377

colouredaccordingtothepredominanttrophicniche(seeFig.3).Matchedfamilypairs378

arenotrandomlydistributedinrelationto(b)geographic(n=91pairs)and(c)379

foragingnicheoverlap(n=64pairs),withmostcaseshavingdisjunctgeographical380

distributionsandsimilarforagingniches.Redpointsandwhiskersshowtheexpectation381

(medianand95%confidenceinterval)underanullmodeloftraitevolution(see382

Methods).383

384

385

Page 20: Pigot, A. L. , Sheard, C., Miller, E. T., Bregman, T. P

19

386

Figure5.Convergentevolutionarytrajectoriesthroughavianmorphospace.To387

illustratetheprobablehistoryofconvergenceevents,datafromancestraltrait388

reconstructionsareshownforthreeexemplarpairsofconvergentavianfamilies(a,top:389

Bucerotidae;bottomRamphastidae;b,top:Pittidae;bottom:Grallaridae;c,top:390

Apodidae;bottom:Hirundinidae).Uppermostpanelsshowthecumulativephenotypic391

distancetravelledbyeachfamilypairthroughmorphospace,andthecorresponding392

phenotypicgapbetweenfamilies.Phylomorphospaceplots(lowerpanels)showthe393

positionofancestralnodeswithineachclade(transitionfromyellowtoredindicates394

increasingtimebeforepresent,Ma)andpriortodivergenceofthefamilypair(grey).395

Sizeofdiscsaroundnodesindicatesuncertaintyintraitreconstruction.Nodesleading396

tootherlineagesarenotshown.Mapsshowglobaldistributionofeachfamilyinrelation397

tobiogeographicrealms(seeFig.6).398

399

400

Page 21: Pigot, A. L. , Sheard, C., Miller, E. T., Bregman, T. P

20

401

402

403

404

Figure6.Theglobalmappingofformtofunctionacrossbirds.Clusteredpoints405

alongeachprincipalcoordinateaxis(PCoA)showtherelativemorphologicalsimilarity406

betweentrophicnichesfromdifferentecologicaltheatres(biogeographicrealms)based407

ontheaveragepairwisedistancebetweenspecies(n=9,963species)innine-408

dimensionalmorphospace(seeMethods).Individualtrophicnichesareomittedfrom409

realmsinwhichtheyareabsentorrare(<6species).410

411

412

413

Page 22: Pigot, A. L. , Sheard, C., Miller, E. T., Bregman, T. P

21

Methods414

Morphologicaltraitdata415

Weassembledadatabaseofmorphometricmeasurementsfrom52,870livecaught416

individualsandpreservedmuseumskins,ofwhich2,288specimenswerefromexisting417

publisheddatabases53,54.Intotal,ourdatabaserepresents9,963ofthe9,993extant418

species(99.7%)recognizedintheglobalaviantaxonomyutilizedbyJetzetal.41.For419

eachindividual,wemeasuredeighttraits(generallytothenearest0.1mm):beaklength420

(fromtiptoskullalongtheculmen,andtothenares),beakwidthanddepthatthenares,421

tarsuslength,winglength,firstsecondarylength,andtaillength(seeExtendedDataFig.422

1andExtendedDataTable1forfurtherdescriptions).Weobtainedmeasurementsfrom423

atleastfouradultindividualsfromeachspecieswherepossible(twofromeachsex;424

meantotal=5.3individuals).Samplingwasconductedby93researchersacross65425

museumcollectionsworldwideusingastandardprotocol(seeSupplementary426

Information).Toassessrepeatability,wecompiledmeasurementsbydifferent427

researchersonthesamespecimens(n=2752individualsof2523species).Repeated428

measureswerehighlyconcordantasmeasureridentityaccountedforonly0.74%of429

totaltraitvarianceinthisdataset(ExtendedDataFig.2;seeSupplementarymaterialfor430

details).Weextractedestimatesofmeanspeciesbodymass(g)fromWilmanetal.40,431

largelybasedonthecompilationbyDunning55.Tomatchthespecieslevelresolutionof432

ourecologicalnichedata(see‘Ecologicalnichedata’fordetails),wecalculatedmean433

traitvaluesforeachspecies.Thisisjustifiablebecausemostofthevarianceintrait434

valuesoccursbetween(98.25%)ratherthanwithin(1.75%)species(ExtendedData435

Table1;seeSupplementarymaterialfordetails).Weperformedaprincipalcomponents436

(PC)analysisonthelog-transformedmeanspeciestraitvalues.Wecentredandrescaled437

eachphenotypictraittounitvariancebeforeperformingtwoseparatePCanalysesusing438

(1)thefourbeakmeasurements(beaklengthatnaresandculmen,beakwidthand439

depthatnares)and(2)allninephenotypictraits(ExtendedDataFig.3).Wevisualised440

thedistributionofspeciesthroughoutnine-dimensionalmorphospacebycalculatingthe441

densityofspecieswithinconcentricshellswithawidthofonemorphologicalunit442

(ExtendedDataFig.4).443

444

Ecologicalnichedata445

Page 23: Pigot, A. L. , Sheard, C., Miller, E. T., Bregman, T. P

22

Foreachspecies,wescoredtheproportionofitsdietobtainedfromthreetrophiclevels446

(primaryconsumer;secondary/tertiaryconsumer;scavenger)andninetrophicniches447

(aquaticherbivore;terrestrialherbivore;nectarivore;granivore;frugivore;aquatic448

predator;invertivore;vertivore;scavenger)encompassingthemajorresourcetypes449

utilizedbybirds(ExtendedDataFig.5a).Ourscoringofspeciesdietsisprimarilybased450

ondatafromWilmanetal.40,extensivelyupdatedandre-organizedbasedonrecent451

literature.Forinstance,weclassifiedspecieseatinganykindofaquaticpreyasaquatic452

predators,whereasinWilmanetal.40speciesfeedingonaquaticandterrestrial453

invertebratesweregroupedtogether(e.g.flamingoswithwarblers).Basedonthese454

dietaryscoresweassignedspeciestothetrophiclevelfromwhichtheyobtainedatleast455

70%oftheirresources,withspeciesutilizingmultipletrophiclevelsinrelativelyequal456

proportionsclassifiedas‘omnivores’56.Similarly,weassignedspeciestothetrophic457

nichefromwhichtheyobtainedatleast60%oftheirresources(thislowerthreshold458

waschosenduetothelargernumberoftrophicnichecategories56).Speciesutilizing459

multipleniches,withinoracrosstrophiclevels,inrelativelyequalproportionswere460

classifiedas‘trophicgeneralists’.Althoughnotallomnivoresaretrophicgeneralists,461

andviceversa,thereisnonethelessbroadoverlap,andforsimplicityweusetheterm462

‘omnivore’whenreferringtobothcategoriestogether.463

FollowingthestandardizedprotocoloutlinedinWilmanetal.40,weusedthe464

extensiveliteratureonavianfeedingecologyandbehaviour(e.g.57)toquantifyforeach465

speciestherelativeuseof31differentforagingniches(scoredin10%intervals),466

describingdifferentcombinationsofdiet,foragingmanoeuvreandsubstrate(Extended467

DataFig.5b-c).Theseforagingnichesexpandonpreviousguildclassifications31,32,34,58-61468

toreflectthewidertaxonomicandecologicalscopeofouranalysis.Basedonthese469

scores,weassignedeachspeciesoccupyingaspecialisttrophicniche(i.e.excluding470

omnivores)totheforagingstrategybywhichitaccessedatleast60%ofitsdominant471

resourcetype.Twoforagingniches(groundandarborealgleaningvertivores)were472

eachrepresentedbyonlysixspeciesandsowereexcluded.Speciesutilisingmultiple473

foragingstrategiesinrelativelyequalproportionswereclassifiedas‘foraging474

generalists’,thusprovidingatotalof30foragingnichesusedinouranalysis.Further475

descriptionsofeachforagingniche,andtheassignmentofspeciestoeachcategory,are476

providedinExtendedDataTable4.477

478

Page 24: Pigot, A. L. , Sheard, C., Miller, E. T., Bregman, T. P

23

Phylogeneticdata479

Toexploretheevolutionarybasisofform-functionrelationships,weusedthetime-480

calibratedmolecularphylogenyofJetzetal.41usingtheHackettetal.62backbone.To481

ensurereliableestimatesofevolutionaryparameters,werestrictedourphylogenetic482

analysestothen=6,666specieswithmorphologicaldataandforwhichbranchlengths483

wereestimatedonthebasisofgeneticdata.Becausetheevolutionarymodelsweuse484

arecomputationallyexpensivetofittotheentireavianphylogeny,webasedour485

analysisonthemaximumcladecredibility(MCC)treegeneratedfromacross1,000486

treessampledatrandomfromtheposteriordistributionusingTREEANNOTATOR487

(includedinBEASTv.1.6.1)63.488

489

Geographicdata490

RangemapsofspeciesbreedingdistributionswereobtainedfromBirdlifeInternational491

(http://www.birdlife.org/datazone/home).Owingtothetaxonomiclumpingor492

splittingofvariouslineages,therearedifferencesinthespeciesclassificationusedby493

IUCNandJetzetal.41.WealignedtheIUCNdatasetwiththatofJetzetal.41byediting494

speciesrangemapsinArcMapv10.364basedonpublishedinformationongeographical495

rangesofrelevanttaxa57.Speciesrangeswerethenextractedontoanequalareagrid496

(Behrmannprojection)witharesolutionof110km(≈1°attheequator).497

498

Quantifyingthematchbetweentraitsandniches499

Wetestedwhetherspeciesecologicalnichescanbepredictedonthebasisofspecies500

traitsusingRandomForest(RF)models65implementedusingtheR66package501

‘randomForest’67.Thismethodissuitableformatchingtraitstoecologybecauseit502

makesminimalassumptionsabouttheshapesofspeciesnichesandcanaccommodate503

interactionsacrossmultipletraitaxes.RFmodelsuseanensembleofdecisiontreesto504

partitionfeaturespace(i.e.morphospace)intoasetofnon-overlappingrectangular505

hypervolumeswithinwhichimpurityinecologicalnichesisminimised(Supplementary506

Fig.1).Eachinternalnodeinatreethuscorrespondstoasplitalongonerandomly507

selecteddimensionofmorphospace,witheachterminalnodecorrespondingtoaunique508

rectangularhypervolume.EachdecisiontreeintheRFprovidesa‘vote’ontheidentity509

ofaspecies’ecologicalnichebasedonitspositioninmorphospace.Weusedthe510

majorityvoteacrosstreestopredicttheecologicalnicheofspeciesandthencalculated511

Page 25: Pigot, A. L. , Sheard, C., Miller, E. T., Bregman, T. P

24

theproportionofspeciescorrectlyassignedtoeachniche.Throughoutwereport512

overallmodelpredictiveperformanceasthemeanclassificationaccuracyacross513

ecologicalniches.Modelparameters,includingthenumberoftrees(n=500)andthe514

numberofrandomtraitstosampleateachnode(n=2),wereselectedbasedoninitial515

sensitivitytests.516

Becausespeciesarehighlyunevenlydistributedacrossecologicalniches,we517

randomlyup-sampledordown-sampledeachnichetoanequivalentnumberofspecies518

beforefittingthemodels(n=5000,2000and1000speciesfortrophiclevels,trophic519

nichesandforagingnichesrespectively).Toprovideunbiasedestimatesofpredictive520

performance,weused5-foldcrossvalidation.Werandomlysplitourdataintofiveequal521

sizedsets,maintainingthesamerelativefrequencyofeachecologicalnichewithineach522

set.Wetrainedamodelon80%ofthedata(‘trainingset’)andusedthistopredict523

speciesnichesintheremaining20%ofthedata(‘testset’),repeatingthisfivetimes,524

onceforeachpartition.Toaccountforstochasticityinmodelfitarisingtherandom525

partitioningofthedatasetduringcross-validation,wefittedelevenreplicatemodels526

andusedthemodalpredictionforeachspecies.Wecomparedthepredictive527

performanceofRFmodelsincluding:(1)onlybodymass,(2)bodymassandPCscores528

basedonallbeakmeasurements(length,widthanddepth),and(3)PCscoresbasedon529

allninephenotypictraits.530

531

Sensitivitytestsoftrait-nichematching532

WhiletheRFmodeldetectsastrongstatisticalmatchbetweentraitsandecological533

niches(Fig.2),itispossiblethatthisaccuracyisonlyachievedthroughahighlycomplex534

mappingofformtofunction.Forexample,eachnichecouldbecomprisedofmultiple,535

widelyscatteredclustersinmorphospacerepresentingaseriesofuniqueevolutionary536

radiations.Ifonememberofeachclusterisincludedinthetrainingdataset,wemay537

inferahighstatisticalpredictabilityoftrophicniches,despitethelinkbetween538

morphologyandecologybeingunpredictable(i.e.notrepeatable)inanevolutionary539

sense26.Weexaminedthisby(1)re-fittingaRFmodelconstrainingthenumberof540

terminalnodespermittedineachtree,and(2)repeatingouranalysisusingLinear541

(LDA)andMixtureDiscriminantAnalysis(MDA).DiscriminantAnalysisiswidelyused542

formatchingvariationinecologyandmorphologybasedonrestrictiveassumptions543

abouttheshapeofecologicalniches.UnlikeourRFmodel,LDAassumesthateachniche544

Page 26: Pigot, A. L. , Sheard, C., Miller, E. T., Bregman, T. P

25

correspondstoasinglemultivariatenormallydistributedmorphologicalcluster,with545

equalvarianceacrossniches.MDArelaxestheseassumptionsbyallowingeachnicheto546

bemodelledbyaGaussiandistributionofsubclasses,withanequalcovariance547

structureacrosssubclasses.548

First,wefoundthatevenwhenRFtreesizeisstronglyconstrained(e.g.n=20549

terminalnodes),predictiveaccuracyremainshigh,indicatingthateachtrophicniche550

canbewelldescribedbyoneorafewrectangularhypervolumes(SupplementaryFig.551

2).Second,despitetheirrestrictiveassumptions,theLDAandMDApredictedspecialist552

trophicnicheswitha71%and80%accuracy,respectively(ExtendedDataFig.6).Thus,553

additionalanalysessupporthighpredictabilityofecologicalniches,indicatingthatthe554

strongmatchbetweentraitsandecologydoesnotarisefromover-fittingoftheRF555

modelandinsteadreflectsarelativelysimpleone-to-onemappingofmorphologyto556

ecologicalniches.557

Simulationsshowthat,dependingontheshapeandarrangementofecological558

nichesinmorphospace,MDAandLDAmayunderestimatethetruematchbetween559

traitsandecologicalniches(SupplementaryFig.3).Specifically,whennichesoccuras560

disjunctclustersinmorphospace,asobservedinsomesmallerspeciesradiations(e.g.561

Anolislizards47),thenLDAandMDAaccuratelypredictnicheidentity(Supplementary562

Fig.3a-b).However,whennicheshaveirregularshapesthatcloselyabutin563

morphospace,asinourempiricaldataset(Fig.3),speciesalongtheboundariesofeach564

nichearelikelytobemisclassifiedleadingtoalowerpredictiveaccuracy(LDA=84%;565

MDA=95%)(SupplementaryFig.3c-d).Incontrast,aRFmodelcanreadilyincorporate566

closenon-linearrelationships,providingamorerobustestimateofthematchbetween567

morphologyandecology.WethereforefocusouranalysisontheresultsfromtheRF568

model.569

570

Phylogeneticnullmodeloftrait-nicherelationships571

Thepredictablerelationshipbetweentraitsandecologicalnichesmaysimplyreflect572

sharedphylogeneticancestry.Weassessedthispossibilitybycomparingtheempirical573

estimatesofnichepredictabilitytothoseexpectedunderanevolutionarynullmodel.574

Keepingthetrophicnicheofeachspeciesfixed,wesimulatedmorphologicaltraitvalues575

accordingtoaBrownianmotionmodeloftraitevolutionappliedtotheavian576

phylogenetictree(seesection‘PhylogeneticmodelsofBrowniantraitevolution’for577

Page 27: Pigot, A. L. , Sheard, C., Miller, E. T., Bregman, T. P

26

details)68.Thisnullmodelallowedustoquantifythesimilarityinspeciestraitsexpected578

duetophylogeneticrelatednessintheabsenceofecologicaladaptation.WefittedaRF579

modeltoeachof100replicatesimulatedtraitdistributionsinordertocalculatethe580

expectedpredictabilityofoverallnichespaceandeachindividualtrophicniche581

(ExtendedDataFig.11a).WerepeatedthisanalysisusingMDAandLDAasalternative582

methodsformatchingtraitstonichesandobtainedsimilarresults(ExtendedDataFig.583

11b-c).Asafurthertest,weassessedwhetherspeciessharingthesametrophicniche584

aremoredenselypackedintraitspacethanexpectedundertheevolutionarynullmodel585

bycomparingthemeanpairwiseEuclidiantraitdistancebetweenspecieswithineach586

trophicnichetothatexpectedacross1000simulationsofthenullmodel(ExtendedData587

Fig.12).588

589

PhylogeneticmodelsofBrowniantraitevolution590

WeparameterizedthenullmodelofBrowniantraitevolutionaccordingtotheempirical591

ratesoftraitevolutionestimatedacrosstheavianphylogenetictreeusingBAMM69,70.592

ThismodellingframeworkusesreversiblejumpMarkovchainMonteCarlo(MCMC)to593

fitasetofdistinctmacro-evolutionaryregimesacrossthephylogenetictree,the594

number,locationandparametersofwhichareestimatedfromthedata.Eachregime595

maybecharacterizedbyadifferentrateanddynamicoftraitevolution,includingeither596

increasingordecreasingratesthroughtime.Unlikemanystudies,wearenot597

specificallyinterestedintheseestimatedparametersperse,andinsteadsimplyuse598

themtoparameterizeournullmodelsimulationstoaccountforthepotentiallycomplex599

dynamicsofavianphenotypicevolution.600

WefittedthismodelseparatelytoeachofourninePCtraitaxestoestimate601

marginaldensitiesofphenotypicratesoneachbranchoftheavianphylogeny.Sensible602

priorsonrateparameterswereassignedusingthesettBAMMpriorsfunctions.Weran603

theMCMCsimulationfor600milliongenerations,samplingtheparametersevery604

80,000generations.Wediscardedthefirst10%ofsamplesasburn-inandassessed605

convergencebycalculatingtheeffectivesamplesize(ESS)ofthemodellog-likelihood606

andtheestimatednumberofmacro-evolutionaryregimeshifts.ESSforeachtraitwas607

consistentlyabovetherecommendedvalueof200.Weusedthemeanmarginalrate608

configurationacrossthephylogenytoparameterisethesimulations.609

610

Page 28: Pigot, A. L. , Sheard, C., Miller, E. T., Bregman, T. P

27

Quantifyingthedimensionalityoftrophicnichespace611

Toquantifythedimensionalityoftrophicnichespace,wefittedRFmodelsto612

morphospacesconsistingofonetoninetraitdimensions,exploringallpossible613

combinationsofPCtraitaxes(n=511traitcombinationsforninetraits)(ExtendedData614

Fig.7a).Werepeatedthisanalysisusingphylogeneticallycorrectedprincipal615

componentscores,obtainingverysimilarresults(ExtendedDataFig.7b).Foreachlevel616

ofdimensionality,weidentifiedthecombinationoftraitaxesthatprovidedthehighest617

meannichepredictability(ExtendedDataFig.7).Inonedimension,PC1istheoptimal618

traitaxis.However,inhigherdimensionstheidentityoftheoptimaltraitaxesdoesnot619

simplycorrespondtotheirrelativecontributiontototalphenotypicvariance(Extended620

DataFig.7).Forinstance,inthreedimensions,trophicnichespaceisbestdescribedby621

PC1,PC3andPC4ratherthanPC2(ExtendedDataFig.8a).Ingeneral,traitaxes622

accountingforonlyaminorfractiontothetotalphenotypicvariancecontribute623

disproportionatelytodefiningecologicalnichespace.624

Usingthemaximumpredictiveaccuracyateachlevelofmorphospace625

dimensionality,wecalculatedthedimensionalityoftrophicnichespace(DTotal)626

accordingtoLevene’sindex71,627

628

𝐷#$%&' =1

∑𝑝,-629

630

wherepiistheproportionofthemaximumpredictiveaccuracy(acrossalltrait631

combinations)accountedforbydimensioni.Weappliedthesameapproachtocalculate632

thedimensionalityofeachindividualtrophicnicheandalsoforagingnichespace.633

Thecoretraitdimensionsidentifiedusingtheseestimatesofdimensionality634

(ExtendedDataFig.8c-d)variedacrossnichesinecologicallyinformativeways.For635

instance,itmakessensethatPC7formsoneofthreecoreaxesofthegranivore(seed-636

eating)nichebecauseitdescribestheratioofbeakdepthtowidth,withhighervalues637

correspondingtoastrongerbiteforceandabilitytocrushseeds39.Similarly,oneof638

threecoreaxesoftheaquaticpredatornicheisPC8,acorrelateofwingpointedness,639

withhighervaluescorrespondingtogreatersoaringabilityandflightefficiency72.640

641

Sensitivitytestsofnichedimensionality642

Page 29: Pigot, A. L. , Sheard, C., Miller, E. T., Bregman, T. P

28

ToassesstherobustnessofourestimatesofnichedimensionalityD,weperformed643

multiplesensitivitytests.First,werepeatedouranalysisusingsyntheticmorphological644

axesgeneratedfromaphylogeneticPCAthataccountsforthenon-independenceof645

species73.Estimatesofnichedimensionality(DTotal=4.4)andpredictiveaccuracy(81%)646

obtainedusingthismethodwereverysimilartothosebasedonphylogenetically-647

uncorrectedPCaxes(ExtendedDataFig.7a-b).Second,ratherthanaRFmodelweused648

LDAandMDAtopredicttrophicniches.Estimatesoftrophicnichedimensionality649

(DTotal)varyfromDTotal=3.3forMDAtoDTotal=6forLDA,withaRFmodelprovidingan650

intermediateestimateofDTotal=4.4(ExtendedDataFig.10).Atthescaleofforaging651

niches,estimatesofdimensionalityweremoreconstrainedvaryingfromDTotal=5.6(RF652

andMDA)toDTotal=6(LDA)(ExtendedDataFig.10).Thus,allmodelsagreethat(1)653

trophicnichespaceisminimallydescribedbyatleastfourcompletetraitdimensions654

andthat(2)whennichesareresolvedatamuchfinerscale(i.e.foragingbehavioursand655

substrates),dimensionalityincreasesonlymarginally,withnichespacedescribedwith656

sixorfewertraitdimensions.GiventhehigherpredictiveaccuracyoftheRFmodeland657

theknownsensitivityofMDAandLDAtonicheshapeweconsidertheRFestimatesto658

bethemostrobust(see‘Sensitivitytestsoftrait-nichematching’,SupplementaryFig.3).659

Ourtraitsamplinggeneratesimperfectpredictionsoftrophicniches,suggesting660

thatadditionaltraitaxesmayberequiredtofullydescribenichespace,leadingto661

potentiallyhigherestimatesofdimensionality.Toexplorethispossibility,wesimulated662

howtotalnichedimensionality(DTotal)changeswhentheremainingvariationinniches663

leftunexplainedbyournine-dimensionalmorphospaceisequitablydividedamongan664

additionalnumberofhypotheticaltraitdimensions.Simulationsshowthatevenwith665

theadditionofmanyhypotheticaltraitaxes(e.g.n=100traitdimensions),ourestimate666

oftrophicnichedimensionalityincreasesonlymarginally(DTotal=6.1versus4.4,667

ExtendedDataFig.9a).DTotalisrobusttothisproliferationoftraitdimensionsbecause668

somuchvariationintrophicnichesisexplainedbyourexistingnine-dimensional669

morphospace(ExtendedDataFig.7a).Estimatesofforagingnichedimensionalityare670

potentiallymoresensitivetotheinclusionofadditionaltraitaxes,withoursimulations671

suggestinganupperboundofDTotal<11(ExtendedDataFig.9b).Wenote,however,672

thatthesesimulationsarelikelytooverestimatethepotentialincreasein673

dimensionalityfrommeasuringadditionaltraits.Forinstance,ifsomevariationin674

ecologyoccursindependentlyoftraitsoriftherearedifferencesintheamountof675

Page 30: Pigot, A. L. , Sheard, C., Miller, E. T., Bregman, T. P

29

ecologicalvariationexplainedbyhypotheticaltraitdimensions,thisleadsto676

substantiallysmallerincreasesinDTotal(ExtendedDataFig.9b).Thus,oursimulations677

shouldbeviewedasprovidinganupperboundonnichedimensionality.678

679

Identifyingphenotypicallymatchedfamilies680

Toidentifycladeswithsimilarecologiesthataremostsimilarintheirfunctionaltraits,681

weassignedavianfamiliestooneofthreefunctionalgroups:(1)primaryconsumers,682

(2)terrestrialsecondary/tertiaryconsumers,and(3)aquaticsecondary/tertiary683

consumers.Werestrictedtheanalysistofamiliescontainingmorethan5specieswith684

bothgeneticandmorphologicaldata(n=132).Becauserelativelyfewlargefamilies685

wereaquaticprimaryconsumersorscavengers,thesegroupswerelumpedwith686

terrestrialprimaryconsumersandterrestrialsecondary/tertiaryconsumers,687

respectively.Withineachofthesefunctionalgroups,weidentifiedphenotypically688

matchedpairsoffamiliesbyfittingaRFmodelpredictingfamilyidentityonthebasisof689

morphologicaltraitsandthencalculatingthemeanspeciesproximityscoresforeach690

pairwisecombinationofclades.Thesescoresindicatetheproportionoftimesaspecies691

inacladeisassignedtothesamerectangularhypervolumeasaspeciesfromanother692

clade.Thismetricofproximityhasanadvantageoverstandarddistance-based693

measures(e.g.Euclidiandistances)becauseitdoesnotrequireanyassumptions694

regardingtherelativeimportanceofdifferenttraitaxesindiscriminatingbetween695

families.Instead,thisinformationislearntfromthedata.Intotal,weidentifiedn=91696

uniquefamilypairs(41reciprocallymatchedpairswereonlycountedonceinthe697

analysis)(Supplementarytable1).698

699

Reconstructionsofancestraltraits700

Tovisualisehowmatchedfamilypairshaveevolvedsimilartraitvalues,weusedthe701

branchandtraitspecificrateestimatesobtainedfromourBAMManalysisto702

reconstructtraitvaluesateachnodeinthephylogenetictreeaswellat1millionyear703

(myr)timeintervalsalongeachbranch74.Foreachtimestep,wequantifiedthemean704

positionofeachfamilyalongeachtraitaxis,andsummedtheEuclidiandistance705

betweenthesesuccessivetimepointstoestimatethetotaldistanceevolvedacross706

morphospacebyeachfamilysincetheydiverged75.Tovisualisetheevolutionary707

trajectoriesofselectedfamiliesthroughmorphospace(Fig.4b-d),wealsocalculatedthe708

Page 31: Pigot, A. L. , Sheard, C., Miller, E. T., Bregman, T. P

30

traitgap(i.e.5%quantileofminimumpairwisedistances)betweeneachfamilyateach709

1myrtimeinterval75.710

Differentfamilypairsoccupydifferenttrophicandforagingnichesandthese711

nichesaredefinedbydifferentsetsoftraits(ExtendedDataFig.8).Whencalculating712

phenotypicdistancemetrics,wethereforeselectedthetwotraitaxesthatbestdescribe713

thenicheofeachfamilypair(Supplementarytable1).Thesetraitaxeswereidentified714

usingthemeanrankingofvariableimportancescoresacrossthetwofamiliesfromthe715

RFmodel.Tocomparedistancemetricsbasedondifferentcombinationsoftraitaxes,716

werescaledcurrentandancestralspeciestraitvaluestounitvariancepriorto717

calculatingphenotypicdistances.Weexpressthesedistancesasaproportionofthetotal718

spanofavianmorphospace,calculatedasthediameterofacirclecentredonthe719

centroidofmorphospaceandcontaining95%ofspecies(ExtendedDataFig.13).720

721

Theecologyandgeographicdistributionofphenotypicallymatchedclades722

Toexplorethegeographicandecologicalcontextofconvergence,wequantifiedspatial723

overlapandsimilarityinforagingbehaviouroffamilieswithinmatchedpairs724

(Supplementarytable1).Spatialoverlapbetweenfamilies(n=91pairs)wasquantified725

usingthesummedproportionofeachspeciesgeographicrangeoccurringineachof726

ninebiogeographicrealms76.Foragingnicheoverlapbetweenfamiliesofaquatic727

predatorsandinvertivores(n=64pairs)wasquantifiedusingthesummed728

proportionaluseofeachforagingniche.Spatialandforagingoverlapwerescoredusing729

Schoener’sDstatistic(heredenotedbythesymbolStodistinguishfromour730

Dimensionalitymetric),731

732

𝑆(𝑝0, 𝑝2) = 1 −127|𝑝0,, − 𝑝2,,|

,

733

734

wherepX,i(orpY,i)istheproportionaluseofregion/nicheibyspeciesX(orY).ValuesofS735

varyfrom0(nooverlap)to1(completeoverlap)andweremultipliedby100toreport736

overlapscoresforeachfamilypairfrom0to100%(in10%intervals).737

Iffamiliesarerestrictedtosinglebiogeographicrealmsorforagingniches,then738

manyfamilypairswouldbeexpectedtoshowlittlespatialorecologicaloverlapsimply739

bychance.Wethereforecomparedtheobservedfrequencyofspatialandforaging740

Page 32: Pigot, A. L. , Sheard, C., Miller, E. T., Bregman, T. P

31

overlaptothatexpectedunder100replicatesimulationsofourphylogeneticnull741

model,inwhichmatchedfamilypairsaregeneratedthroughaprocessofcomplex742

Browniantraitevolution(seesection‘Phylogeneticnullmodelsoftrait-niche743

relationships’fordetails).744

Tovisualizetheeffectsofthesenon-randomevolutionarydynamics,we745

generatedamatrixofpairwisetraitdistancesbetweenthespeciesinthefullnine-746

dimensionalmorphospace.Wecalculatedthemeandistancebetweenspeciesineach747

combinationoftrophicnicheandbiogeographicrealmandusedNonmetric748

MultidimensionalScalingtotranslatethisdistancematrixontotwoorthogonalprincipal749

coordinateaxes.750

751

Dataavailability752

Allgeographicandphylogeneticdataarepubliclyavailable.Morphologicaldataand753

ecologicalnicheassignmentswillbemadeavailablewiththefinalacceptedversionof754

thearticle.755

Codeavailability756

Allcustomscriptswillbemadeavailablewiththefinalacceptedversionofthearticle.757

758

Page 33: Pigot, A. L. , Sheard, C., Miller, E. T., Bregman, T. P

32

ExtendedDataTable1.Descriptionofspeciestraitsand%ofvarianceattributedto759 intraspecificdifferences(fromavariancecomponentsanalysis).760 761 Trait(mm) Description

%variancewithinspecies

Beaklength(tip-to-nares) Distancefromtheanterioredgeofthenostrilstothetip 1.39

Beaklength(culmen) Distancealongtheculmenfromthebaseofthebeaktothetip 1.71

Beakwidth Widthofbeakattheanterioredgeofthenostrils 2.49

Beakdepth Verticalheightofbeakattheanterioredgeofnostrils 1.62

Tarsuslength Distancefromthemiddleoftherearanklejoint,i.e.thenotchbetweenthetibiaandtarsus,totheendofthelastscaleoftheacrotarsium

1.71

Winglength(mm) Distancebetweenthecarpaljointtowingtip 0.72

Secondarylength(mm) Distancebetweenthecarpaljointtothetipofthefirstsecondaryfeather 1.33

Taillength(mm) Distancefromthetipofthelongestrectrixtothepointatwhichthetwocentralrectricesprotrudefromtheskin

2.99

Bodymass(g) Mass NA

Estimatesofintraspecificvariationarenotavailableforbodymass.762 763 764

Page 34: Pigot, A. L. , Sheard, C., Miller, E. T., Bregman, T. P

33

ExtendedDataTable2.Traitloadingsforbeakspaceand%ofvarianceaccountedfor765 byeachprincipalcomponentaxis(n=9963species).766 767

Trait PC1 PC2 PC3 PC4Beaklength(culmen) 0.46 0.47 -0.01 -0.75

Beaklength(tip-to-nares) 0.52 0.55 0.02 0.66Beakwidth 0.47 -0.46 0.76 -0.01Beakdepth 0.55 -0.52 -0.65 0.02Variance% 84.2 13.0 1.7 1.1

Cumulativevariance 84.2 97.2 98.9 100 768

Page 35: Pigot, A. L. , Sheard, C., Miller, E. T., Bregman, T. P

34

769 ExtendedDataTable3.Traitloadingsforphenotypespaceand%ofvariance770 accountedforbyeachprincipalcomponentaxis(n=9963species).771 772

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9

Beaklength(culmen) 0.22 -0.42 0.30 -0.26 0.08 -0.10 0.07 0.01 0.77Beaklength(tip-to-nares) 0.23 -0.67 0.23 -0.26 0.05 0.08 -0.04 0.06 -0.60

Beakwidth 0.23 -0.26 -0.37 0.41 0.01 0.06 0.75 -0.11 0.01Beakdepth 0.28 -0.29 -0.39 0.47 0.13 -0.05 -0.65 -0.06 0.11Tarsuslength 0.23 0.26 0.13 -0.06 0.86 0.00 0.06 -0.34 -0.09

Winglength 0.26 0.10 -0.15 -0.28 -0.30 0.66 -0.10 -0.53 0.07Taillength 0.21 0.07 -0.58 -0.56 -0.06 -0.54 0.02 -0.07 -0.06

Secondarylength 0.25 0.14 -0.26 -0.18 0.22 0.44 0.02 0.76 0.07Bodymass 0.74 0.34 0.36 0.19 -0.31 -0.23 0.00 0.10 -0.10

Variance% 83 6.1 3.8 3.2 2.1 0.8 0.5 0.3 0.2

Cumulativevariance 83 89.2 93 96.2 98.3 99.1 99.6 99.9 100 773

Page 36: Pigot, A. L. , Sheard, C., Miller, E. T., Bregman, T. P

35

ExtendedDataTable4.Descriptionofforagingnicheswithinspecialisttrophicniches.774 Scavenger(n=22)

Ground(SCG,n=22)–specieseatingcarrion(deadanimalorfishremains)ontheground(e.g.vultures).

Invertivore(n=4765)

Aerialscreen(IASC,n=278)–speciescapturingflyinginvertebratesonthewing(e.g.swallows,swifts).Oftendescribedas‘hawking’.IncontrasttoISA,IASCischaracterizedbycontinuousandextendedflightwithmultipleitemscapturedbeforelanding.Aerialsally(ISA,n=317)–speciescapturingflyinginvertebratesinmid-air,withtheattackstartingfromaperch(i.e.branch,rock,fencepost,telegraphwire,etc.)andthenreturningtoaperch(e.g.jacamars,kingbirds,etc).‘Hawking’willsometimesrefertothiscategory,butthekeydistinguishingfeatureisthatonlyasinglepreyitemiscapturedbeforereturningtoaperch.Sallytosubstrate(ISS,n=343)–speciescapturinginvertebrates(includingarachnids,worms,molluscs,etc.)attachedtothesubstrate(e.g.leaves,twigs,branches,rockfaces,etc)followinganaerialattackmanoeuvre(e.g.flight,pounce,jump,hover).Sallytoground(ISG,n=245)–speciescapturinginvertebratesonthegroundfollowinganaerialattackmanoeuvre(e.g.flying,gliding,droppingorpouncing)(e.g.chats,shrikes,kiskadeeetc).Theaerialmanoeuvremaybefollowedbybriefhoppingtowardprey(e.g.terns).Gleanarboreal(IGA,n=1792)–speciescapturinginvertebratesattachedtothesubstrate(e.g.leaves,twigs,branches,grass,bamboo,stems,hangingdead-leaves[notdeadleavesontheground]etc).Noaerialattackmanoeuvreisinvolved.Gleanbark(IGB,n=339)–speciescapturinginvertebratesattachedtoorconcealedwithinlargebranchesandtrunksoftrees(e.g.woodpeckers,treecreepers,woodcreepers,wallcreepers,nuthatches,sittelas,nuthatches,vangas,etc.,includinghoneyguides).ThisisdistinguishedfromIGAbyatleastonecriterion.First,thespeciesemploysspecializedmethodsformovingoversurfaceswhichareoften,butnotalwaysvertical,verticalandtoolargetobegrippedbytheclosedfoot(includingcreeping,climbingorscaling).Second,thespeciesextractspreyfromin/underthebarkusingspecializedmethods(includinghammering,probingorchiselling).Alsoincludesspeciescapturinginsectsfromrockandcliff-faces(thoughnotjustonboulders[seeIGG]),habituallyperchingonorclingingtolargemammalsandspeciesthatfeedonhoneyandbeeswax.Gleanground(IGG,n=1026)–speciescapturinginvertebratesontheground.IncontrasttoISG,thesearchandattackmanoeuvrestakeplaceontheground(e.g.thrushes).Thisincludesspeciesstandingonthegroundandgleaninginsectsfromvegetation(e.g.tinamousorlarks)butexcludesspeciesthatjumporsallyupwardstocapturepreyfromvegetation(ISS)ortheair(ISA).Thegroundisdryandthusexcludesaquatichabitats(includingbeaches,estuaries,wetlandsandmarshes[seeAQGR]).

Aquaticpredator(n=757)

Ground(AQGR,n=314)–speciescapturinginvertebratesorvertebrateswhilestandinginaquatichabitats(includingbeaches,estuaries,wetlandsandmarshes)(e.g.storks,herons,shorebirds).Preymaybecapturedonthegroundoron/underwater.Thiscategoryincludesspeciescapturingaquaticprey(e.g.fish)orterrestrialpreyinaquatichabitats(e.g.grasshopper).Perch(AQPE,n=44)–speciescapturinginvertebratesorvertebrateson/underwaterfollowingadirectattackflightfromaperch(e.g.kingfisher).Aerial(AQAE,n=87)–speciescapturinginvertebratesorvertebrateson/underwaterduringcontinuousflight(includingdipping,hovering,pattering,snatching).IncontrasttoAQPE,preyitemisidentifiedwhileflying(notfromperch).Thepredatorsbodymaypartiallysubmergebutdoesnotplungebeneaththesurface(AQPL).Includeskleptoparasiticspeciescapturingfishbychasingotherpiscivoresandforcingthemtoregurgitate(e.g.skuas,frigatebirds).Plunge(AQPL,n=59)–speciescapturinginvertebratesorvertebratesbyplungingunderwaterfollowingcontinuousflight.Thepredatorsbodysubmerges

Page 37: Pigot, A. L. , Sheard, C., Miller, E. T., Bregman, T. P

36

entirelybeneaththesurface,withthepreycapturedeitherbythemomentumoftheplungeorfollowingpropelledswimming.Surface(AQSU,n=73)–speciescapturinginvertebratesorvertebrateson/underwaterwhilstswimmingonthewatersurface.IncontrasttoAQPEorAQAIthereisnodirectattackflight.Thespeciesmaydipunderthewaterbut,incontrasttoAQDI,contactwiththesurfaceismaintained.Dive(AQDI,n=134)–speciescapturinginvertebratesorvertebratesunderwaterbydivingfromthesurface(nottheair,seeAQPEandAQPL).

Vertivore(n=311)

Aerialscreening(VASC,n=20)–speciescapturesvertebratepreyduringflight.Bothpredatorandpreyareinflight(e.g.peregrine,hobby,falcon)Aerialtosubstrate(VAS,n=54)–speciescapturespreyonbranchesorthegroundbydivingfromtheair,usuallyaftercirclingorhoveringinflight.Includesquarteringflight(e.g.kestrels,kites,someowls).Sallytosubstrate(VSS,n=190)–speciescapturespreyonbranchesorthegroundbydivingfromaperch(e.g.manyowls,eagles).Gleanground(VGG,n=6)–speciescapturingpreyontheground,includingeggsingroundnests,whiletheythemselvesarealsowalkingorrunningontheground(e.g.secretarybird,seriemas,groundhornbills).Gleanarboreal(VGA,n=6)–speciescapturingpreyfromfoliage,branches,epiphytes,cavities,barkorotherarborealsubstratewhileperchedonthesubstrate.Thereisnoflightattackinvolved.Thisincludeseatingbirdchicksfromarborealnestsanddrinkingbloodwhileperchedonmammals(e.g.oxpeckers).

Nectarivore(n=507)

Aerial(NAE,n=318)–speciesfeedingonnectarorotherplantexudates(e.g.sap)whileinflight(e.g.hummingbirds).Glean(NGL,n=184)–speciesfeedingonnectarorotherplantexudates(e.g.sap)whileperched,includingnectarpredatorsthatpiercecorollas(e.g.sunbirds,flowerpiercers).Speciesfeedingonhoney(e.g.honeyguides)includedunderIGB.

Granivore(n=662)

Granivoreabove-ground(GRA,n=185)–speciesforagingonseeds,grainsandnutstakenfromvegetation(e.g.trees,grassstems)whileperched(e.g.seedeaters,finches).Granivoreground(GRG,n=408)–speciesforagingonfallenseeds,grainsandnutscollectedfromtheground.Includingbirdsthateatgrainsby,on,andunderwater(e.g.partridges,pheasants,finches).

Herbivoreterrestrial(n=93)

Above-ground(PA,n=13)–speciesforagingonleaves,buds,blossom,orothervegetation(exceptfruit,seedsandnectar).Thefoodistakenfromaboveground,generallywhilethespeciesisperchingonbranchesorotherstems.Generally,asmallpartofdiet,exceptforthehoatzin,plantcutters.Ground(PG,n=73)–speciesforagingongrass,leaves,buds,blossom,orothervegetation(notfruitorseeds)takenwhilethespeciesisontheground(e.g.geese).Thevegetationmayitselfbeofftheground.

Herbivoreaquatic(n=82)

Aquaticground(PAQGR,n=9)–speciesforagingonaquaticvegetation(includingseeds)eitherbeloworabovethewatersurface(algae,pondweed,watersidevegetation).Thespeciescollectsvegetationwhileunderwater,sittingonthewatersurfaceorwading.Aquaticsurface(PAQSU,n=47)–speciesforagingonaquaticvegetation(includingseeds)on/underwaterwhilstswimmingonthewatersurface.Thespeciesmaydipunderthewaterbut,incontrasttoPAQDI,contactwiththesurfaceismaintained.Aquaticdive(PAQDI,n=13)--speciesforagingonaquaticvegetation(includingseeds)underwaterbydivingfromthesurface.

Frugivore(n=1030)

Aerial(FAE,n=88)–speciesforagingonfruitsinflight,includingthosethathovertopluckfruitfrombushesandtrees(e.g.oilbird,somemanakins).Glean(FGL,n=894)–speciesforagingonfruitswhileperched(notinflight)abovegroundandpluckingfruitsfromvegetation(e.g.toucans,hornbills).Ground(FGR,n=20)–speciesforagingonfruitslyingontheground(e.g.trumpeters).

n=numberofspecieswithineachspecialisttrophicandforagingniche.Thenumberofspecieswithinatrophicnicheisgenerally775 greaterthanthesumoftheconstituentforagingnichesbecausesomespecies(n=642)usemultipleforagingmanoeuvresand776 substratesinrelativelyequalproportionsandareclassedasforaginggeneralists.777

Page 38: Pigot, A. L. , Sheard, C., Miller, E. T., Bregman, T. P

37

778 779

780 ExtendedDataFigure1.Diagramoflinearmeasurementsofavianmorphology.a,781 Residentfrugivoroustropicalpasserine(fiery-cappedmanakin,Machaeropterus782 pyrocephalus)showingfourbeakmeasurements:(1)beaklengthmeasuredfromtipto783 skullalongtheculmen;(2)beaklengthmeasuredfromthetiptotheanterioredgeof784 thenares;(3)beakdepth;(4)beakwidth.b,Insectivorousmigratorytemperate-zone785 passerine(redwing,Turdusiliacus)showingfivebodymeasurements:(5)tarsuslength;786 (6)winglengthfromcarpaljointtowingtip;(7)secondarylengthfromcarpaljointto787 tipoftheoutermostsecondary;(8)Kipp'sdistance,calculatedaswinglengthminus788 first-secondarylength;(9)taillength.AnalysesexcludeKipp'sdistance,and789 thusinclude8traitsshownhere(plusbodymass,making9traitsintotal).Illustration790 byRichardJohnson.791 792 793

Page 39: Pigot, A. L. , Sheard, C., Miller, E. T., Bregman, T. P

38

794 795 796 ExtendedDataFigure2.Repeatabilityofavianmorphologicaltrait797 measurements.Datapointsshowreplicatemeasurementstakenbydifferent798 researchersonthesamemuseumspecimensforasubsetofourglobaldataset(n=2752799 specimensofn=2523species).Pointsfallingalongthe1:1lineindicateaperfect800 correspondencebetweenmeasurers.The%oftotaltraitvariance(Var)occurring801 betweenmeasurerswithinspecimensisshown.Thenumberofspecimensvariesacross802 traitsandisindicatedinthetopleftofeachplot.803 804 805 806

Page 40: Pigot, A. L. , Sheard, C., Miller, E. T., Bregman, T. P

39

807 808 809 ExtendedDataFigure3.Traitloadingsalongprincipalcomponent(PC)810 dimensionsbasedonall9phenotypictraits.ResultsareshownforPCaxes811 representingvariationinshape,andtherebyexcludingPC1whichrepresentsvariation812 inbodysize.Coloursindicatetheincreasingdensityofspecies(fromyellowtored)on813 each2-dimensionalplane(n=9,963species).SeeExtendedDataTable3fortrait814 loadings.815 816

Page 41: Pigot, A. L. , Sheard, C., Miller, E. T., Bregman, T. P

40

817

818 ExtendedDataFigure4.Densityprofilesthroughmultidimensionalmorphospace.819 Therelativedensityofspecieswithdistancefromthecentroidofnine-dimensional820 morphospaceiscalculatedforconcentricshellsof1-unitdiameter.Densityisshownfor821 allspecies(n=9,963)andeachtrophicnicheseparately.822 823

824

Page 42: Pigot, A. L. , Sheard, C., Miller, E. T., Bregman, T. P

41

825

826 827 828 ExtendedDataFigure5.Aviantrophicnichesandforagingniches.Silhouettes829 depictarchetypalspeciesbelongingto(a)ninespecialisttrophicniches,(b)seven830 majorforagingnichesusedbyterrestrialinvertivores,and(c)sixmajorforagingniches831 usedbyaquaticpredators.Foragingnichesfortheremainingsevenspecialisttrophic832 nichesarelessdiverseandarenotshown.SeeExtendedDataTable4forafulllistand833 descriptionoftrophicandforagingniches.834 835 836

837

838

Page 43: Pigot, A. L. , Sheard, C., Miller, E. T., Bregman, T. P

42

839 840 841 ExtendedDataFigure6.Classificationaccuracy(%)usingalternative842 classificationalgorithms.Predictionsofspeciestrophiclevels,trophicnichesand843 foragingnichesusing(a)RandomForest,(b)MixtureDiscriminantAnalysis,and(c)844 LinearDiscriminantAnalysisforallbirds(n=9,963species)onthebasisofbodysize845 (mass),sizeandbeaktraits,orthefullnine-dimensionalmorphospace.Stippling846 indicatesimprovementinpredictiveaccuracyafteromittingomnivoresandforaging847 generalists(seeMethods).848 849

Page 44: Pigot, A. L. , Sheard, C., Miller, E. T., Bregman, T. P

43

850

ExtendedDataFigure7.Intermediatedimensionalityofaviannichespace.Accuracy851 curves indicatethemaximumpredictabilityof(a-b)trophicand(c) foragingniches in852 morphospacesconsistingofdifferentnumbersoftraitdimensions.Resultsareshownfor853 a morphospace based on (a,c) standard and (b) phylogenetic principal components854 analysis.Accuracyisshownforindividualniches(coloursmatchingthosedepictedinFig.855 3)andtotalnichespace(black,DTotal).Pointsindicatethelevelofnichedimensionality856 (D) according to Levene’s index. Horizontal bar shows the mean (𝐷") and range in857 dimensionalityestimatesforeachniche.858 859

Page 45: Pigot, A. L. , Sheard, C., Miller, E. T., Bregman, T. P

44

860

ExtendedDataFigure8.Thedimensionalityofaviantrophicandforagingniches.861 a-b,Theidentityofthetraitdimensionsbestdescribing(a)trophicand(b)foraging862 nichesfordifferentlevelsofdimensionality.c-d,estimatesofdimensionality(D)863 accordingtoLevene’sindexfor(c)trophicnichesand(d)foragingniches.Eachnicheis864 givenseparately,andwithallnichescombined(‘All’),alongwiththeidentityofthe865 principalcomponent(PC)dimensions(colouredsquares)thatbestpredicttheniche.866

867 868 869 870 871 872

Page 46: Pigot, A. L. , Sheard, C., Miller, E. T., Bregman, T. P

45

873 874

875 876 ExtendedDataFigure9.Estimatedtotaldimensionality(DTotal)ofmorphospaceis877 robusttotheinclusionofadditionalhypotheticaltraitaxes.Resultsareshownfor878 (a)specialisttrophicnichesand(b)foragingniches.Inadditiontotheninemeasured879 traits,wesimulatedtheeffectsofincludingadditionalhypotheticaltraitaxes,uptoa880 totalof100axes.Weassumethateachadditionaltraitaxishasanequalcontributionin881 accountingforthevariationinnichescurrentlyunexplainedbyourempiricalnine-882 dimensionalmorphospace.Thisassumptionisconservative,becauseanyvariationin883 therelativecontributionoftheseadditionaltraitaxeswouldleadtosmallerincreasesin884 DTotalthanestimatedhere.Thus,oursimulationsarebestinterpretedasprovidingan885 upperboundonDTotalfrommeasuringadditionaltraitaxes.DTotalalsodependsonthe886 assumptionofwhethertheseadditionaltraitaxeswouldenableecologicalnichestobe887 predictedwithcompleteaccuracy(i.e.100%)orwhethersomevariationinnichesis888 inherentlyunpredictable.Assuminglowerlevelsofmaximumpredictiveaccuracy(e.g.889 85%)leadstolesssensitivityinestimatesofDTotaltovariationinthenumberoftrait890 axes.891 892

893

Page 47: Pigot, A. L. , Sheard, C., Miller, E. T., Bregman, T. P

46

894 895 896 ExtendedDataFigure10.Estimatingdimensionalityofaviannichespaceusing897 alternativeclassificationalgorithmsRandomForest(a,d),MixtureDiscriminant898 Analysis(b,e)andLinearDiscriminantAnalysis(c,f).Accuracycurvesindicatethe899 cumulativemaximumpredictabilityof(a-c)trophicand(d-f)foragingnichesin900 morphospacesconsistingofdifferentnumbersoftraitdimensions.Pointsindicatethe901 dimensionalityofnichespace(DTotal)accordingtoLevene’sindex.902 903

Page 48: Pigot, A. L. , Sheard, C., Miller, E. T., Bregman, T. P

47

904 905

906 907 ExtendedDataFigure11.Theexpectedmatchbetweenaviantraitsandtrophic908 nichesarisingfromsharedphylogenetichistory.Boxplotsshowthepredictive909 accuracyofthreealternativeclassificationalgorithms¾RandomForest(RF),Mixture910 DiscriminantAnalysis(MDA),andLinearDiscriminantAnalysis(LDA)¾usedto911 estimatetrophicnicheswiththefullnine-dimensionalmorphospace(points)forn=912 6,666specieswithbothmorphologicalandgeneticdata.Ineachcase,overall913 classificationaccuracyexceedsthatexpectedundertheevolutionarynullmodel(box914 andwhiskersshow50%interquartilerangeand95%confidenceinterval).Thenull915 modelincorporatesamulti-rateprocessofBrowniantraitevolutionwherebyratesof916 evolutioncanvarybothacrosslineagesandovertime. 917

Page 49: Pigot, A. L. , Sheard, C., Miller, E. T., Bregman, T. P

48

918

919

920 921 922 ExtendedDataFigure12.Non-randomtraitpackingwithinaviantrophicniches.923 a,Phylogeneticdistributionofaviantrophicnichesacrossthecompleteaviantree(n=924 9,963species)withspecieslackinggeneticdatainsertedaccordingtotaxonomic925 constraints41.Tipsandinternalbranchesconnectedbyspeciessharingthesametrophic926 nichearehighlightedacrosstheavianevolutionarytree.b,Meanpairwisetraitdistance927 betweenspeciesineachtrophicniche(points)islessthanexpectedduetophylogenetic928 relatedness,basedonspecieswithbothmorphologicalandgeneticdata(n=6,666).Box929 andwhiskersshow50%interquartilerangeand95%confidenceintervalofmean930 pairwisetraitdistancesexpectedunderanevolutionarynullmodel.Thisnullmodel931 incorporatesamulti-rateprocessofBrowniantraitevolutionwherebyratesof932 evolutioncanvarybothacrosslineagesandovertime.933 934 935

Page 50: Pigot, A. L. , Sheard, C., Miller, E. T., Bregman, T. P

49

936 937 ExtendedDataFigure13.Thedistanceacrossmorphospaceindependently938 evolvedbyphenotypicallymatchedpairsofavianfamilies.Wecalculatedthe939 averagephenotypicdistanceevolvedbyeachcladesincetheylastsharedacommon940 ancestorwiththeirphenotypicallymatchedfamily(n=91pairs).Distancesare941 expressedin(a)rawmorphologicalunits(traitaxesscaledtounitvariance)and(b)asa942 proportionofthetotalspanofmorphospace.Onaverage,eachcladewithinamatched943 familypairhasindependentlyevolvedadistanceequivalenttoone-thirdofthetotal944 spanofmorphospace.Forcomparison,the9matchedfamilypairsthatarealsosister945 clades(i.e.eachother’sclosestrelative)haveeachonaverageevolvedadistance946 equivalenttoonly~10%ofthetotalspanofmorphospace.Positionoflettersindicate947 theaveragedistanceevolvedbyfamilieswithinsisterclades:(A) Cettiidae-948 Phylloscopidae,(B) Cardinalidae-Thraupidae,(C)Emberizidae-Passerellidae,(D)949 Phalacrocoracidae-Sulidae,(E) Odontophoridae-Phasianidae,(F)Strigidae-Tytonidae,950 (G)Ardeidae-Threskiornithidae,(H) Cacatuidae-Psittacidae,(I)Accipitridae-951 Cathartidae.952 953

Page 51: Pigot, A. L. , Sheard, C., Miller, E. T., Bregman, T. P

50

References954

1 Elton, C. Animal Ecology (The Macmillan Company 1927). 955 2 Butterfield, N. J. Animals and the invention of the Phanerozoic Earth system. Trends 956

Ecol. Evol. 26, 81-87 (2011). 957 3 Estes, J. A. et al. Trophic downgrading of planet Earth. Science 333, 301-306 (2011). 958 4 Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401-406 (2014). 959 5 Díaz, S. et al. The global spectrum of plant form and function Nature 529, 167-171 960

(2016). 961 6 Lauder, G. V. in Functional Morphology in Vertebrate Paleontology (ed J. J. 962

Thomason) 1–18 (Cambridge University Press, 1995). 963 7 Carroll, S. Chance and necessity: the evolution of morphological complexity and 964

diversity. Nature 409, 1102-1109 (2001). 965 8 Wainwright, P. C. Functional versus morphological diversity in macroevolution. 966

Annu. Rev. Ecol. Evol. Syst. 38, 381-401 (2007). 967 9 Losos, J. B. Convergence, adaptation, and constraint. Evolution 65, 1827-1840 968

(2011). 969 10 Bascompte, J. & Jordano, P. Plant-animal mutualistic networks: the architecture of 970

biodiversity. Annu. Rev. Ecol. Evol. Syst. 38, 567-593 (2007). 971 11 Peck, A. L. Aristotle: History of Animals. (The Loeb Classical Library, 1970). 972 12 Cernansky, R. Biodiversity moves beyond counting species. Nature 546, 22-24 973

(2017). 974 13 Kraft, N. J. B., Godoy, O. & Levine, J. M. Plant functional traits and the 975

multidimensional nature of species coexistence. Proc. Natl. Acad. Sci. U.S.A. 112, 976 797-802 (2015). 977

14 Larcombe, M. J., Jordan, G. J., Bryant, D. & Higgins, S. I. The dimensionality of 978 niche space allows bounded and unbounded processes to jointly influence 979 diversification. Nat. Commun. 9 (2018). 980

15 Diaz, S. & Cabido, M. Vive la difference: plant functional diversity matters to 981 ecosystem processes. Trends Ecol. Evol. 16, 646-655 (2001). 982

16 McGill, B. J., Enquist, B. J., Weiher, E. & Westoby, M. Rebuilding community 983 ecology from functional traits. Trends Ecol. Evol. 21, 178-185 (2006). 984

17 Lavorel, S. & Garnier, E. Predicting changes in community composition and 985 ecosystem functioning from plant traits: revisiting the Holy Grail. Funct. Ecol. 16, 986 545-556 (2002). 987

18 Purves, D. et al. Time to model all life on Earth. Nature 493, 295-297 (2013). 988 19 Didham, R. K., Leather, S. R. & Basset, Y. Circle the bandwagons – challenges 989

mount against the theoretical foundations of applied functional trait and ecosystem 990 service research. Insect Conserv. Divers. 9, 1-3 (2016). 991

20 Gravel, D., Albouy, C. & Thuiller, W. The meaning of functional trait composition of 992 food webs for ecosystem functioning. Phil. Trans. R. Soc. B 371 (2016). 993

21 Hutchinson, G. E. Concluding remarks. Cold Spring Harbor Symposium Quantitative 994 Biology 22, 415–427 (1957). 995

22 Schoener, T. W. Resource partitioning in ecological communities. Science 185, 27-39 996 (1974). 997

23 Cohen, J. E. Food Webs and Niche Space (Princeton University Press, 1978). 998 24 Williams, R. J. & Martinez, N. D. Simple rules yield complex food webs. Nature 404, 999

180-183 (2000). 1000 25 Shoval, O. et al. Evolutionary trade-offs, pareto optimality, and the geometry of 1001

phenotype space. Science 336, 1157-1160 (2012). 1002

Page 52: Pigot, A. L. , Sheard, C., Miller, E. T., Bregman, T. P

51

26 Blount, Z. D., Lenski, R. E. & Losos, J. B. Contingency and determinism in 1003 evolution: replaying life’s tape. Science 362 (2018). 1004

27 Winemiller, K. O., Fitzgerald, D. B., Bower, L. M. & Pianka, E. R. Functional traits, 1005 convergent evolution, and periodic tables of niches. Ecol. Lett. 18, 737-751 (2015). 1006

28 Laughlin, D. C. The intrinsic dimensionality of plant traits and its relevance to 1007 community assembly. J. Ecol. 102, 186-193 (2014). 1008

29 Petchey, O. L. & Gaston, K. J. Functional diversity (FD), species richness and 1009 community composition. Ecol. Lett. 5, 402-411 (2002). 1010

30 Eklof, A. et al. The dimensionality of ecological networks. Ecol. Lett. 16, 577-583 1011 (2013). 1012

31 Miles, D. B. & Ricklefs, R. E. The correlation between ecology and morphology in 1013 deciduous forest passerine birds. Ecology 65, 1629-1640 (1984). 1014

32 Pigot, A. L., Trisos, C. & Tobias, J. A. Functional traits reveal the expansion and 1015 packing of ecological niche space underlying an elevational diversity gradient in 1016 passerine birds. Proc. Biol. Sci. 283 (2016). 1017

33 Bright, J. A., Marugán-Lobón, J., Cobb, S. N. & Rayfield, E. J. The shapes of bird 1018 beaks are highly controlled by nondietary factors. Proc. Natl. Acad. Sci. U.S.A. 113, 1019 5352–5357 (2016). 1020

34 Miller, E. T., Wagner, S. K., Harmon, L. J. & Ricklefs, R. E. Radiating despite a lack 1021 of character: ecological divergence among closely related, morphologically similar 1022 honeyeaters (Aves: Meliphagidae) co-occurring in arid Australian environments. Am. 1023 Nat. 189, E14-E30 (2017). 1024

35 Felice, R. N., Tobias, J. A., Pigot, A. L. & Goswami, A. Dietary niche and the 1025 evolution of cranial morphology in birds. Proc Biol Sci 286, 20182677 (2019). 1026

36 Navalón, G., Bright, J. A., Marugán-Lobón, J. & Rayfield, E. J. The evolutionary 1027 relationship among beak shape, mechanical advantage, and feeding ecology in 1028 modern birds. Evolution 73, 422-435 (2019). 1029

37 Grinnell, J. The niche-relationships of the California Thrasher. The Auk 34, 427–433 1030 (1917). 1031

38 Bock, W. J. Concepts and methods in ecomorphology. J. Biosciences 19, 403-413 1032 (1994). 1033

39 Grant, P. R. The ecology and evolution of Darwin's finches (Princeton University 1034 Press, 1999). 1035

40 Wilman, W., Belmaker, J., Simpson, J., de la Rosa, C. & Rivadeneira, M. M. 1036 EltonTraits 1.0: Species-level foraging attributes of the world's birds and mammals. 1037 Ecology 95, 2027–2027 (2014). 1038

41 Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global 1039 diversity of birds in space and time. Nature 491, 444-448 (2012). 1040

42 Ricklefs, R. E. & Travis, J. A morphological approach to the study of avian 1041 community organization. Auk 97, 321-338 (1980). 1042

43 Cooney, C. R. et al. Mega-evolutionary dynamics of the adaptive radiation of birds. 1043 Nature 542, 344-347 (2017). 1044

44 Peters, R. H. The ecological implications of body size. Vol. 2 (Cambridge University 1045 Press, 1986). 1046

45 Sugihara, G. Minimal community structure: an explanation of species abundance 1047 patterns. Am. Nat. 116, 770-787 (1980). 1048

46 Harvey, P. H. & Pagel, M. The comparative method in evolutionary biology. (Oxford 1049 University Press, 1991). 1050

47 Mahler, D. L., Ingram, T., Revell, L. J. & Losos, J. B. Exceptional convergence on the 1051 macroevolutionary landscape in island lizard radiations. Science 341, 292-295 (2013). 1052

Page 53: Pigot, A. L. , Sheard, C., Miller, E. T., Bregman, T. P

52

48 Moen, D. S., Morlon, H. & Wiens, J. A. Testing convergence versus history: 1053 Convergence dominates phenotypic evolution for over 150 million years in frogs. Syst 1054 Biol 65, 146-160 (2016). 1055

49 Muschick, M., Indermaur, A. & Salzburger, W. Convergent evolution within an 1056 adaptive radiation of cichlid fishes Curr. Biol. 22, 2362-2368 (2012). 1057

50 Mazel, F. et al. Prioritizing phylogenetic diversity captures functional diversity 1058 unreliably. Nat. Comm. 9 (2018). 1059

51 Naeem, S., Duffy, J. E. & Zavaleta, E. The functions of biological diversity in an age 1060 of extinction. Science 336, 1401-1406 (2012). 1061

52 Sekercioglu, Ç. H., Wenny, D. G. & Whelan, C. J. Why Birds Matter: Avian 1062 Ecological Function and Ecosystem Services (University of Chicago Press, Chicago, 1063 2016). 1064

53 Derryberry, E. P. et al. Lineage diversification and morphological evolution in a 1065 large-scale continental radiation: the Neotropical ovenbirds and woodcreepers (Aves: 1066 Furnariidae). Evolution 65, 2973–2986 (2011). 1067

54 Ricklefs, R. E. Passerine morphology: external measurements of approximately one-1068 quarter of passerine bird species. Ecology 98, 1472 (2017). 1069

55 Dunning, J. B. CRC Handbook of Avian Body Masses. (CRC Press, 1993). 1070 56 Burin, G., Kissling, W. D., Guimarães, P. R. J., Şekercioğlu, Ç. H. & Quental, T. B. 1071

Omnivory in birds is a macroevolutionary sink. Nat. Comm. 7, 11250 (2016). 1072 57 del Hoyo, J., Elliott, A., Sargatal, J., Christie, D. A. & de Juana, E. Handbook of the 1073

Birds of the World (Lynx Edicions, 2016). 1074 58 Remsen, J. V. & Robinson, S. K. A classification scheme for foraging behaviour of 1075

birds in terrestrial habitats. Stud. Avian Biol. 13, 144-160 (1990). 1076 59 Croxall, J. P. Seabirds: feeding ecology and role in marine ecosystems (Cambridge 1077

University Press, 1987). 1078 60 Ashmole, N. P. in Avian biology. Vol. 1 (eds D. S. Farner & J. P. King) 223-286 1079

(Academic Press, 1971). 1080 61 Fitzpatrick, J. W. Form, foraging behavior, and adaptive radiation in the Tyrannidae. 1081

Ornithol. Monogr. 36, 447-470 (1985). 1082 62 Hackett, S. J. et al. A phylogenomic study of birds reveals their evolutionary history. 1083

Science 320, 1763-1768 (2008). 1084 63 Drummond, A. J. & Rambaut, A. BEAST: Bayesian evolutionary analysis by 1085

sampling trees. BMC Evol. Biol. 7, 214 (2007). 1086 64 ArcGIS Desktop: Release 10.3 (Redlands, CA: Environmental Systems Research 1087

Institute, 2014). 1088 65 Breiman, L. Random forests. Machine Learning 45, 15–32 (2001). 1089 66 R: A language and environment for statistical computing (Vienna, Available at: 1090

http://cran.r-project.org/. 2015). 1091 67 Liaw, A. & Wiener, M. Classification and Regression by randomForest. R News 2, 1092

18-22 (2002). 1093 68 Grundler, M. & Rabosky, D. L. Trophic divergence despite morphological 1094

convergence in a continental radiation of snakes. Proc. Biol. Sci. 281 (2014). 1095 69 Rabosky, D. L. et al. BAMMtools: an R package for the analysis of evolutionary 1096

dynamics on phylogenetic trees. Methods Ecol. Evol. 5, 701-707 (2014). 1097 70 Rabosky, D. L. et al. Rates of speciation and morphological evolution are correlated 1098

across the largest vertebrate radiation. Nat. Commun. 4, 1958 (2013). 1099 71 Nosil, P. & Harmon, L. J. in Speciation and patterns of diversity (eds R. Butlin, J. 1100

Bridle, & D. Schluter) 127-154 (Cambridge University Press, 2009). 1101

Page 54: Pigot, A. L. , Sheard, C., Miller, E. T., Bregman, T. P

53

72 Rayner, J. M. V. in Current Ornithology. Vol. 5 (ed R. F. Johnston) 1-66 (Springer, 1102 1988). 1103

73 Revell, L. J. Size-correction and principal components for interspecific comparative 1104 studies. Evolution 63, 3258-3268 (2009). 1105

74 Sidlauskas, B. Continuous and arrested morphological diversification in sister clades 1106 of characiform fishes: a phylomorphospace approach. Evolution 62, 3135-3156 1107 (2008). 1108

75 Stayton, C. S. The definition, recognition, and interpretation of convergent evolution, 1109 and two new measures for quantifying and assessing the significance of convergence. 1110 Evolution 69, 2140-2153 (2015). 1111

76 Holt, B. G. et al. An update of Wallace’s zoogeographic regions of the world. Science 1112 339, 74-78 (2013). 1113

1114

Page 55: Pigot, A. L. , Sheard, C., Miller, E. T., Bregman, T. P

54

Acknowledgements:1115

Wearegratefultonumerousfieldbiologistsandexplorerswhocollectedandprepared1116 thespecimensusedinthisstudy.WethanktheNaturalHistoryMuseum,Tring,UK,the1117 AmericanMuseumofNaturalHistory,USA,and63otherresearchcollectionsfor1118 providingaccesstospecimens.IllustrationsarereproducedwithpermissionofLynx1119 Edicions.FinancialsupportwasreceivedfromaRoyalSocietyUniversityResearch1120 Fellowship(ALP);aPhDstudentshipfundedbytheOxfordClarendonFundandtheUS-1121 UKFulbrightCommission(CS);andNaturalEnvironmentResearchCouncilgrants1122 NE/I028068/1andNE/P004512/1(JAT).Secondarysourcesoffundingarelistedin1123 SupplementaryInformation,alongwithacompletelistofindividualsandinstitutions1124 thatcontributeddirectlytodatacollection,logisticsandspecimenaccess.1125 1126 AuthorInformation1127 1128 Affiliations1129

CentreforBiodiversityandEnvironmentResearch,DepartmentofGenetics,Evolution1130 andEnvironment,UniversityCollegeLondon,GowerStreet,London,WC1E6BT,UK.1131 AlexPigot1132 DepartmentofZoology,UniversityofOxford,SouthParksRoad,Oxford,OX13PS,UK.1133 TomP.Bregman,AlexPigot,CatherineSheard,UriRoll,NathalieSeddon,JosephA.1134 Tobias,ChristopherH.Trisos1135 SchoolofBiology,UniversityofSt.Andrews,Fife,KY169TJ,UK.1136 CatherineSheard1137 CornellLabofOrnithology,159SapsuckerWoodsRd.,Ithaca,NY14850,USA.1138 EliotT.Miller1139 DepartmentofBiologicalSciences,UniversityofIdaho,Moscow,Idaho83844,USA.1140 EliotT.Miller1141 GlobalCanopyProgramme,3FrewinChambers,FrewinCourt,Oxford,OX13HZ,UK.1142 TomP.Bregman1143 BiodiversityResearchCentre,UniversityofBritishColumbia,6270UniversityBlvd.,1144 VancouverBC,V6T1Z4,Canada.1145 BenjaminG.Freeman1146 MitraniDepartmentofDesertEcology,JacobBalausteinInstitutesforDesertResearch,1147 Ben-GurionUniversityoftheNegev,MidreshetBen-Gurion8499000,Israel.1148 UriRoll1149 AfricanClimateandDevelopmentInitiative,UniversityofCapeTown,SouthAfrica.1150 ChristopherH.Trisos1151 DepartmentofLifeSciences,ImperialCollegeLondon,SilwoodPark,BuckhurstRoad,1152 AscotSL57PY,UK.1153 DanielSwindlehurst,JosephA.Tobias1154 DepartmentofEcology,EvolutionandEnvironmentalBiology,Columbia1155 University,1200AmsterdamAvenueMC5557,NewYork,NY10027,USA.1156 BrianC.Weeks1157

Page 56: Pigot, A. L. , Sheard, C., Miller, E. T., Bregman, T. P

55

DepartmentofOrnithology,AmericanMuseumofNaturalHistory,79thStreetatCentral1158 ParkWest,NewYork,NY10024,USA.1159 BrianC.Weeks1160 1161 Contributions1162 ThisstudywasconceivedandcoordinatedbyJATandALP,anddesignedbyJAT,ALP,1163 CS,ETMandUR.Morphological,ecologicalandgeographicdatawerecompiledbyCS,1164 ALP,TB,BF,UR,CT,DS,BW,NSandJAT.AnalyseswereledbyALP,andallauthors1165 contributedtowritingthemanuscript.1166 1167 Competinginterests1168 Theauthorsdeclarenocompetingfinancialinterests.1169

Correspondence1170 CorrespondenceandrequestsforinformationshouldbeaddressedtoAlexPigot1171 ([email protected])andJosephTobias([email protected]).1172 1173 Reprintsandpermissions1174 Reprintsandpermissionsinformationisavailableatwww.nature.com/reprints.1175 1176