87
Determination of Determination of phytoplynkton composition phytoplynkton composition and biovolume and biovolume Utermöhl method:: Advantage: asy sampling, long storage times Disadvantage: requires a lot of time, and specialists Results : relative contribution of algas classes x biovolume HOW TO DETERMINE PHYTOPLANKTON? Silvana V. Rodrigues

Pigmentos.ppt

Embed Size (px)

DESCRIPTION

conceptos de pigmentos y aplicación

Citation preview

Page 1: Pigmentos.ppt

Determination of phytoplynkton Determination of phytoplynkton composition and biovolumecomposition and biovolume

Utermöhl method::

Advantage: asy sampling, long storage times

Disadvantage: requires a lot of time, and specialists

Results: relative contribution of algas classes x biovolume

HOW TO DETERMINE PHYTOPLANKTON?

Silvana V. Rodrigues

Page 2: Pigmentos.ppt

HOW TO DETERMINE PHYTOPLANKTON ?

O

CH3

COO OH

O

O

peridinina

Dinoflagelados

Cryptophyta

HO

OH

aloxanthin

Clorophyta

Cyanobacterias

Page 3: Pigmentos.ppt

http: //oceancolor.gsfc.nasa.gov/.../BIOLOGY/

Page 4: Pigmentos.ppt

1.000 milhão tons produzidas por ano na terra e no mar indicator único da biomassa aquática indicator único da biomassa aquática parâmetro bioquímico mais freqüentemente medido

em oceanografia

Importance of chlorophyll a

struggle.net/history/images/molecule.jpgwww.molecularexpressions.com

fig.cox.miami.edu/.../phts/c8.10x21.overview.jpg

CloroplastoCloroplasto

Page 5: Pigmentos.ppt

chlorophyll a:

light absorption (“Light harvesting complexes”)

electron donor and acceptor in reative centers

Carotenoids:

Light absorption

Protection of chlorophyll (“quenching “ of Chl photoinduced triplet

state ) and quenching of O2 singlet state .

Function of pigments in photosynthetic organisms

Page 6: Pigmentos.ppt

divisão/classedivisão/classe nome comumnome comum gêngên espéc.espéc.Algas marrons(clorofilas a e c)Algas marrons(clorofilas a e c)

Bacillariophyta diatomáceas 210 Desconh.

Dinophyta dinoflagelados 550 4000

Crysophyta:ChrysophyceaeRapidophyceae

flagelados marrom-amarel.Crysophytas,silicoflageladosraphydophytas (cloromonadas)

1204

10009

HaptophytaPrimnesiophyceae

flagelados marrom-amarel.cocolitoforídeos 50 500

Xantophyta algas verde-amareladas 50 600

Cryptophyta criptomonadas 8 >50

Eustigmatophyta algas amarelo-esverdeadas 6 12

Algas verdes (clorofilas a e b)Algas verdes (clorofilas a e b)

ChlorophytaClorophyceaePrasinophyceaeEuglenophyta

Algas verdesFlagelados verdesEuglenoides

3501343

2500120650-800

Algas vermelhas (clorofila a e biliproteínas)Algas vermelhas (clorofila a e biliproteínas)

Rhodophyta Algas vermelhas 3 10

Algas azuis (Cyanobacteria) ( clorofila a e biliproteínas)Algas azuis (Cyanobacteria) ( clorofila a e biliproteínas)

CyanophytaProchlorophyta

Cianobactériasproclorofitas

Page 7: Pigmentos.ppt

Characteristics which make it possible to use algal pigments (chlorophylls, carotenoids and phycobiliproteins) as chemotaxonomicmarkers

They are present in all photosynthetic algae, but absent in most bacteria, protozoa and detritus

Many occur only in specific classes or even genera, allowing the determination of phytoplankton taxonomic composition at least at class level, or better

They are strongly coloured, and in the case of chlorophylls and phycobiliproteinsare fluorescent, what allows their detection with high sensitivity,

Most of them are labile and esily dgraded after cell death, allowing todistinguish living from dead cells

Page 8: Pigmentos.ppt

Use of pigment chemotaxonomy for recognition, in field samples, of phytoplanktonic classes not detected since then, because of preservation problems or filtration losses.

»alloxanthin (Cryptophyta)

»chlor b (Chlorophyta and Prasinophyta)

»zeaxanthin (Cyanobacteria)

»19’-hexanoiloxifucoxanthin (Prymnesiophyta)

»divynil-chlorophyill a (Proclorophyta)

1952: chlorophyll was recognized as a selective phytoplankton marker, in the presence of other biological components (zooplankton, bacteria, detritus)

1984-1987: HPLC methods for the determination of chls, carotenoids and phytoplankton degradation products

Hystorical overview

Page 9: Pigmentos.ppt

Mg coordination complexes with cyclic tetra-pyrrolsMg coordination complexes with cyclic tetra-pyrrols

Macrocicles with five member ringsMacrocicles with five member rings

Chlorophylls:Chlorophylls:13132 2 -Metilcarboxilates of --Metilcarboxilates of -

Mg-phytoporphyrin (double bond in D ring): Mg-phytoporphyrin (double bond in D ring): Cl c,Cl c, Mg-phytoclhorin: Mg-phytoclhorin: Cl a, Cl bCl a, Cl b

Phytil at C-17Phytil at C-173 3 (Cl a and b) (Cl a and b)

Propionic acid at C17: Cl a and bPropionic acid at C17: Cl a and bAcrílic acid at C17: Cl cAcrílic acid at C17: Cl c

Page 10: Pigmentos.ppt

Chlorophylls:Chlorophylls:13132 2 -Metilcarboxilates of --Metilcarboxilates of -

Mg-phytoporphyrin (double bond in D ring): Mg-phytoporphyrin (double bond in D ring): Cl c,Cl c, Mg-phytoclhorin: Mg-phytoclhorin: Cl a, Cl bCl a, Cl b

Phytil at C-17Phytil at C-173 3 (Cl a and b) (Cl a and b)

Propionic acid at C17: Cl a and bPropionic acid at C17: Cl a and bAcrílic acid at C17: Cl cAcrílic acid at C17: Cl c

Oxo substituent at C-13Oxo substituent at C-1311

methyl-carboxilate groups at C-13methyl-carboxilate groups at C-132 2 --

Page 11: Pigmentos.ppt

N N

CH2

CH3

CH3CH3

N

H

O

N

O

CH3

H

COOCH 3

Mg

H

CH3

O

CH3 CH3H

CH3H

CH3

CH3

N N

CH2

CH3

CH3CH2

N

H

O

N

O

CH3

H

COOCH3

MgH

CH3

O

CH3 CH3H

CH3H

CH3

CH3

N N

CH2

CH3

CH3

N

H

O

N

O

CH3

H

COOCH3

MgH

CH3

O

CH3 CH3H

CH3H

CH3

CH3

OH

N N

CH2

CH3

CH2

N

H

O

N

O

CH3

H

COOCH 3

Mg

H

CH3

O

CH3 CH3H

CH3H

CH3

CH3

OH

chlorophyll a

DV-chlorophyll a

chlorophyll b

DV-chlorophyll b

Molecule drawings:N. Montoya

Page 12: Pigmentos.ppt

N NCH3

N

O

N

O

CH3

HCOOCH 3

Mg

CH3

OH

CH2 CH3 CH3

N NCH3

N

O

N

O

CH3

HCOOCH 3

Mg

CH3

OH

CH2 CH3 CH2

N NCH3

N N

O

CH3

HCOOCH 3

Mg

CH3

OH

CH2

CH2

COOCH 3

chlorophyll c1

chlorophyll c2 chlorophyll c3

Molecule drawings:N. Montoya

Page 13: Pigmentos.ppt

N N

CH2

CH3

CH3CH3

N

H

O

N

O

CH3

H

COOCH 3

Mg

H

CH3

O

CH3 CH3H

CH3H

CH3

CH3

Loss of metal

Chla Phaeophitin

in organic solvents

In dilute acids

under high intensity of light

Degradation by chemical processes:

Molecules become chemically and fotochemically

more labile in organic solvents

than in the cells

Page 14: Pigmentos.ppt

N N

CH2

CH3

CH3CH3

N

H

O

N

O

CH3

H

COOCH 3

Mg

H

CH3

O

CH3 CH3H

CH3H

CH3

CH3•Chl a 132 Hydroxiclhorophyll a•Chl a Cl a - Hyidroxilactone.

Allomerization (oxidation by O2):

In alcoholic or hydro-alcoholic solutions Specially in pH >7

Epimerization

(HPLC: in SiO2):

Cl enolate Cla’, b’

Both processes can be minimized

by decreasing the temperature

Degradation by chemical processes:

Page 15: Pigmentos.ppt

N N

CH2

CH3

CH3CH3

N

H

O

N

O

CH3

H

COOCH 3

Mg

H

CH3

O

CH3 CH3H

CH3H

CH3

CH3Loss of phytil group

Cl chlorophyillide

In methanol or ethanol in basic medium

Degradation by chemical processes:

Page 16: Pigmentos.ppt

N N

CH2

CH3

CH3CH3

N

H

O

N

O

CH3

H

COOCH 3

Mg

H

CH3

O

CH3 CH3H

CH3H

CH3

CH3

Biodegradation:

To cyclic tetra-pirrols

perifercally modified (enzymatically,

Specially in the absence of

light and O2):

Hydrolisis of the phytil

ester (chlorophyllase)

chlorophillide formation

Decarboximetilation Formation ofpirophaeophytins e pirophaeophorbides

Allomerization

Epimerization (Chl-oxidase)

Loss of metal:Mg-dequelataseFormation of phaeophytins

Page 17: Pigmentos.ppt

N N

CH2

CH3

CH3CH3

N

H

O

N

O

CH3

H

COOCH 3

Mg

H

CH3

O

CH3 CH3H

CH3H

CH3

CH3

Biodegradation:

To linear tetrapirrols

Normally by oxidative opening

of the macrocycle ring, between

C-4 and C-5,

C-5 stays as an aldehyde

45

Page 18: Pigmentos.ppt

Carotenoids

β- β- carotene

Derive from carotene:

-carotene: ,-carotene-carotene: ,-carotene-carotene: ,-carotene-carotene: ,-carotenelycopene: ,-carotene

Polyen:Absorbtion

of light.COLOUR

C40H56

Isoprenoidunits

Page 19: Pigmentos.ppt

Properties

More stable in phytoplankton and in plants than chlorophylls: they don‘t

have N, so can‘t be used in enzymatic amino-acid building.

Example:

Leaves lose the green colour in autumn (chlorophyll),But don‘t lose colours due to carotenoids

Page 20: Pigmentos.ppt

Polyene chain is responsible for instability:

Oxidation by air or peroxides

Electrophyle addition ( H+ and Lewis acids)

Isomerization E/Z caused by heat, light or chemicals,

Undergo reactions at the ends of the molecules

Production of artefacts

Page 21: Pigmentos.ppt

Phytoene

Lycopene

Dessaturation

, -carotene , -carotene

Ciclization

Zeaxanthin

Hydroxilation

lutein

Hydroxilation

Anteraxanthin

Violaxanthin

Neoxanthin

Epoxidation

Epoxidation

Deepoxidation

Deepoxidation

Rearrangement

VIOLAXANTHIN CICLE

Acetil-CoA Geranylgeranyldiphosphate

Biosynthesis:occurs in thylakoid

membranes

Can occur in the darkDepends a lot on light

Light

Light Dark

Dark

Geranylgeranyldiphosphate

Page 22: Pigmentos.ppt

DIADINOXANTHIN CICLE

Diadinoxantin

Diatoxanthin

LIGHTDARK + 2H - H2O+ 2H + O2 - H2Oepoxidation

Page 23: Pigmentos.ppt

Carotenoids

β- β- carotene

C40H56

Enzimatic hydroxilation

Epoxidation

Carboxi (CO2H), carbometoxi (CO2Me)ou metoxi (OMe)

Hydroxi-carotenoidsas fatty acid esters,or asGlycosides or glycosylesters, others as sulphates

Acetates (OCOMe)e lactones

Aldehydes,ketones

Page 24: Pigmentos.ppt

Xantophylls

Isoprenoids

Zeaxanthin

Lutein

isomers

Page 25: Pigmentos.ppt

Acetilenic

Alenic

fucoxanthin

Norcarotenoids

( skeleton C37)

Peridinin

C39H50O7

Diatoxanthin

Page 26: Pigmentos.ppt

In acid mediumEpoxides rearrange (5,6 to 5,8 form)

5

7

68

58

6

7

violaxanthin

neoxanthin

Page 27: Pigmentos.ppt

In basic medium:

In general stable

exception: esters are hydrolysedsome compounds suffer structural change (fucoxanthin, peridinin)

fucoxanthin

Page 28: Pigmentos.ppt

Division or class

/

Pigment

Cyan

op

hyta

Pro

chlo

rop

hyta

Rh

od

op

hyta

Cry

pto

ph

yta

Ch

loro

ph

yceae

Prasin

op

hyc

eae

Eu

glen

op

hy

ta

Eu

stimato

ph

yta

Bacillario

ph

yta

Din

op

hyta

Prym

nesio

ph

yceae

Ch

rysop

hycea

e

Rap

hid

op

hycea

e

Chl a

Chlb

Chl c1

Chl c2

Chl c3

Tipo pyhtilat. Chlc

MgDVP

DVchla

DVChlb

Distribution of chlorophylls among divisions/classes of phytoplankton

Page 29: Pigmentos.ppt

Division or class

/

Pigment

Cyan

op

hyta

Pro

chlo

rop

hyta

Rh

od

op

hyta

Cry

pto

ph

yta

Ch

loro

ph

yceae

Prasin

op

hyc

eae

Eu

glen

op

hy

ta

Eu

stimato

ph

yta

Bacillario

ph

yta

Din

op

hyta

Prym

nesio

ph

yceae

Ch

rysop

hycea

e

Rap

hid

op

hycea

e

,

,

,

,

,

Distribution of carotenes among divisions/classes of phytoplankton

Page 30: Pigmentos.ppt

Division or class

/

Pigment

Cyan

op

hyta

Pro

chlo

rop

hyta

Rh

od

op

hyta

Cry

pto

ph

yta

Ch

loro

ph

yceae

Prasin

op

hyc

eae

Eu

glen

op

hy

ta

Eu

stimato

ph

yta

Bacillario

ph

yta

Din

op

hyta

Prym

nesio

ph

yceae C

hryso

ph

yceae

Rap

hid

op

hycea

e

Aloxanthin

Anteraxanthin

Astaxanthin 2 2 2

19‘-Butanoil-

fucoxanthin

Cantaxanthin 2

Crocoxanthin

Diadinoxanthin

Diatoxanthin

Dinoxanthin

Echinenona 2 2

Fucoxanthin 1

Distribution of xantophylls among divisions/classes of phytoplankton

Page 31: Pigmentos.ppt

Division or class

/

Pigment

Cyan

op

hyta

Pro

chlo

rop

hyta

Rh

od

op

hyta

Cry

pto

ph

yta

Ch

loro

ph

yceae

Prasin

op

hyc

eae

Eu

glen

op

hy

ta

Eu

stimato

ph

yta

Bacillario

ph

yta

Din

op

hyta

Prym

nesio

p.

Ch

rysop

hycea

e

Rap

hid

op

hycea

e

19‘hexanoilfuco 1

Luteína

Monadoxanthin

Neoxanthin

P457+P468

Peridinina

Peridininol

Prasinoxanthin

Pirroxanthin

Sifonaxanthin 14 14

Sifoneina

Ést. Vaucheriax

Violaxanthin

Zeaxanthin

Distribution of xantophylls among divisions/classes of phytoplankton

Page 32: Pigmentos.ppt

Amphidinium carterae (Dinophyta)

peridinin

dinoxanthin

diadinoxanthin

chlorophyll c2

Rz =[peridinin]/[chlorophyll a]Rz =[peridinin]/[chlorophyll a]RzRzii =[lpigm =[lpigmii]/[chlorophyll a]]/[chlorophyll a]

chlorophyll a

Page 33: Pigmentos.ppt

neoxanthin

chlorophyll a

chlorophyll b

luteinviolaxanthinanteraxanthin

Dunaliella tertiolecta (Chlorophyta)

Rz =[lutein]/[chlorophyll a]Rz =[lutein]/[chlorophyll a]RzRzii =[lpigm =[lpigmii]/[chlorophyll a]]/[chlorophyll a]

Page 34: Pigmentos.ppt

Pigment Significance Chl a: an index of total algal biomass, excluding

prochlorophytes.

Unambiguous markers for algal types DV-Chl a: an index of prochlorophyte biomass DV-Chl b: unambiguous marker for prochlorophytes Siphonaxanthin esters: unambiguous marker for Type 2 prasinophytes

(Egeland et al., 1997) Prasinoxanthin: unambiguous marker for Type 3 prasinophytes Peridinin: Type 1 dinoflagellates Alloxanthin: Cryptophytes Gyroxanthin diester: Dinoflagellates Type 2 Chl c2 MGDG [14:0/14:0]: Chrysochromulina spp. (Haptophyte Type 7, Zapata

et al., 2004)

S. Wright, Class notes

Hierarchical guide to the use of pigments

Page 35: Pigmentos.ppt

Peak no.

Rt Pigment identification

Observed λmax

Published λmax

Reference

(min)

(nm) (nm)

1 11.4 Erythroxanthin sulfate

465 469 Takaichi et al. (1991)

2 18.4 Bacteriorubixanthinal

513 510 Takaichi et al. (1988)

3 19.1 Zeaxanthin (428), 454, 482

(428), 454, 481

Jeffrey et al. (1997)

4 20.4 Bacteriochlorophyll a

359, 580, 771

358, 577, 773

Scheer (1991)

5 23.4 Bacteriophaeophytin a

358, 525, 750

357, 525, 749

Scheer (1991)

6 25.4 β,β-carotene (426), 454, 478

(426), 454, 480

Jeffrey et al. (1997)

Retention times and mean absorption properties (inHPLC eluant) of the major pigments detected in Erythrobacter longus (ATCC 33941) and isolates NAP1, MG3, and NJ3Y. Peak numbers correspond to those indicated in Fig. 5. Solvents and caroteneid band ratios from the literature data: 1 solvent=methanol+ water (4:1) containing 40mM NH4OH, %(III/II)=0; 2 solvent= methanol, %(III/II)=0; 3 solvent=acetone, %(III/II)=33; 4, 5 solvent=diethyl ether; 6 solvent=acetone, %(III/II)=21

Michal Kobližek Arch Microbiol (2003) 180 : 327–338

Page 36: Pigmentos.ppt

Reverse-phase HPLCchromatograms (360 nm) foracetone extracts prepared fromwhole cell pellets of a Erythrobacterlongus ATCC 33941,b NAP1, c MG3, and d NJ3Y.Peak identities: 1 erythroxanthinsulfate, 2 bacteriorubixanthinal,3 zeaxanthin, 4 bacteriochlorophylla, 5 bacteriophaeophytina, and 6 β,β-carotene

Michal Kobližek Arch Microbiol (2003) 180 : 327–338

Page 37: Pigmentos.ppt

HPLC chromatogram of fuorescent pigments from a surface sample(2 m depth) collected at station C354-004. Excitation was at 365 nm,emission at 780 nm, with 20-nm slits. These wavelengths were chosen tomaximize the signal from BChla, while minimizing the signal from the moreabundant pigments, Chla and Chlb. (Inset) Fluorescence emission spectrum ofthe peak eluting at 16.7 min in (A). Excitation was at 365 nm and slits were20 nm.

Zbigniew S. Kolber et al, Science 292, 2492-2495; 2001.

Page 38: Pigmentos.ppt

PIGMENTS IN SEDIMENTSPIGMENTS IN SEDIMENTS

Page 39: Pigmentos.ppt

Pigmentos Pigmentos Em geral são moléculas lábeis, atingem o sedimento em vários estágios de degradação.

Na água: rápida e extensa(≤95 % dos compostos em poucos dias) • digestão por herbívoros,• enzimática, na senescência celular• oxidação química, microbiológica e pela luz.

Nos sedimentos: taxa de degradação menor, especialmente em condições anóxicas. Depende de:• intensidade de luz e da• bioturvação invertebrada

Degradação dos pigmentos originais Degradação dos pigmentos originais

principalmente na água e na superfície do sedimento, durante a deposição (Hodgson et al., 1997)

Fatores que afetamFatores que afetam a taxa a taxa

de degradação:de degradação:

• Tempo para chegarTempo para chegar ao fundoao fundo

• Tipo de pigmentoTipo de pigmento

• Grau de ataque Grau de ataque químico e biológicoquímico e biológico

Page 40: Pigmentos.ppt

Separation and quantification of pigments in sedimentsSeparation and quantification of pigments in sediments

More complex than in phytoplankton samples, due to the variety of degradation or transformation products (Mendes et al. 2007) .

DEGRADATIN PRODUCTS: DEGRADATIN PRODUCTS:

• degradation to uncoloured compounds• conversion to cis-carotenoids and phaeopigments more difficult to identify (Steenbergen et al., 1994 apud Hodgson et al., 1997).

Page 41: Pigmentos.ppt

Chl a‘ and phaeophytin:Chl a‘ and phaeophytin:degradação products due todegradação products due toEnvironmental stressEnvironmental stress

Pirophaeophitins and steril Pirophaeophitins and steril Chlorins: degradationChlorins: degradationproducts due to zooplanktonproducts due to zooplankton

Phaeophorbides:Phaeophorbides:Degradation products due Degradation products due to zooplanktonto zooplankton

Jeffrey, 1997 apud Kowalewska et al., 2004).

Kowalewska et al., 2004.

Chlorophyll b: occurs mainly ingreen algae and vascular plants, Chlorophylls c: in diatoms, dinophlagellates and some brown algae

Page 42: Pigmentos.ppt

Chlorophylls :Chlorophylls :

More labile than carotenoids , but phaephitins are persistent in sedimentary records

Carotenoids:Carotenoids:

Stability depends on structure (decreases with the increase of the number of functional gruoups).

Fossile Pigments:Fossile Pigments:

Used in paleoclimatic and paleoenvironmental issues

Page 43: Pigmentos.ppt

Pigmento Grupos Funcionais

Afinidade taxonômica

b,b-caroteno 0 Cianobactérias, algas eucarióticas e plantas vasculares

b,e-caroteno 0 Criptofitas

Aloxantina 2 Cryptofitas

Luteina 2 Clorófitas

Neoxantina 4 Clorófitas

Violaxantina 4 Chrisofitas e Clorófitas

Fucoxantina 5 Chrisofitas e Diatomáceas

Diatoxantina 2 Diatomáceas

Diadinoxantina 3 Dinoflagelados, Crisofitas e Diatomáceas

Peridinina 6 Dinoflagelados

Dinoxantina 4 Dinoflagelados

Zeaxantina 2 Cianobactérias, Clorófitas

Myxoxantofila 3 Cianobactérias

Echinenona 1 Cianobactérias e zooplâncton (Cladocera)

Cantaxantina 2 Cianobactérias e zooplâncton (Cladocera)

Astaxantina 4 Zooplâncton (Crustacea)

Okenona 2 Bactérias fotossintéticas (Chromatiaceae)

Scytonemina-1, -2 4 Organismos fotossintéticos expostos a alta radiação UV

(adaptado de Buchaca & Catalan 2008)

Carotenoids:Carotenoids:

Estáveis, abundantes

Page 44: Pigmentos.ppt

Pigmento Afinidades taxonômicas

Bacteriofeofitina-a Bactérias fotossintéticas (Rodospirillaceae e Chromatiaceae)

Bacterioclorofila-e Bactérias fotossintéticas (variedades marrons de Chlorobiaceae)

Clorofila-a Razão molar Cl-Cl-aa/forbinas /forbinas aa como indicador de preservação

Chlorofilídeo-a Produto de degradação da Cl-a, abundante em Diatomáceas

Cl-a (alômero) Produto de degradação da Cl-a

Cl-a (epímero) Produto de degradação da Cl-a

Feofitina-a1, -a2 Produto de degradação da Cl-a (senescência)

Feoforbídeo-a1, -a2, Produto de degradação da Cl-a („grazing“)

-a3, -a30, -a4

Clorofila-b Clorófitas

Feofitina-b1, -b2 Produto de degradação da Cl-b

Clorofila-c1 Crisofitas e Diatomáceas

Clorofila-c2 Crisofitas, Diatomáceas, Criptofitas e Dinoflagelados

Clorofila-c3 Crisofitas e Diatomáceas

(adaptado de Buchaca & Catalan 2008)

Chlorophylls :Chlorophylls :

Page 45: Pigmentos.ppt

UV/VIS absorption of pigments

Page 46: Pigmentos.ppt

Phaeophytin a

Pirophaephytin a

Chlorophyll a

Phaephorbide a

Chlorophylls

Jeffrey et al.;1997

- Mg

- Mg, -COOMe- Mg - Phytil

Page 47: Pigmentos.ppt

UV7VIS: Electronic transitions

Polyene chain: chromophore

Maintransition

Vibrationalfine structure

Page 48: Pigmentos.ppt

00IIIII

Calculation of % III/II for a caroteneidCalculation of % III/II for a caroteneid

Vibrationalfine structure

Page 49: Pigmentos.ppt

Molecular structure x spectroscopic properties

Chromophore (polyene chain): Lenght

carotenoid Conjug. db. bonds

max (hexane)

phytoene 3 276 286 297

-carotene 7 378 400 425

lycopene 11 444 470 502

Page 50: Pigmentos.ppt

Molecular structure x spectroscopic properties

Geometrical cis-trans isomers: small hypsochromic effectSignificant hypochromic effectReduction of vibrational fine structureAppearance of a cis-peak (≈ 142 nm below the longest maximum of the all-rans,measurd in hexane

Beta-Rings: fine structure much reduced, max shorter than in the acyclic

Acetylenic groups: replacement of d.bond to triple bond - 15-20 nm shorter wavelength

Allenic groups

Carbonyl groupsBritton, 1995, Carotenoids,3 vol, Birkhäuser

Page 51: Pigmentos.ppt

Molecular environment x spectroscopic properties

Solvent Approx. bathochromic shift1

Hexane, light petroleum, ethanol, diethylether, acetonitrile

0

acetone 2-6

chloroform 10-20

dichlorometane 10-20

benzene 18-24

toluene 18-24

pyridine 18-24

Carbon disulphide 18-24

1: displacement of max to longer wavelength

Page 52: Pigmentos.ppt

Identification of pigments by Mass Spectrometry

Page 53: Pigmentos.ppt

HPLC method with improved resolution, LC–MS analysis and the automated acquisition of MS/MS data for pigments

extracts from a sediment (Priest Pot, Cumbria, UK),

a microbial mat (les Salines de la Trinital, South Catalonia, Spain)

a culture (C. phaeobacteroides):

SEPARATION OF A GREAT NUMBER OF PIGMENTS, INCLUDING NOVEL BACTERIOCHLOROPHYLL DERIVATIVES.

Airs, 2001

Page 54: Pigmentos.ppt

QuickTime™ and a decompressor

are needed to see this picture.

Airs, 2001

More than 60 pigments during the run:

Page 55: Pigmentos.ppt

QuickTime™ and a decompressor

are needed to see this picture.

Page 56: Pigmentos.ppt

QuickTime™ and a decompressor

are needed to see this picture.

Frassanito 2005

HPLC coupled both to UV photodiode array detection and to atmospheric pressure mass spectrometric techniques (HPLC–DAD-APIMS)

Pigments ( chlorophylls, carotenoid), galactolipids, alkaloids, sterols and mycosporine-like amino acids,

Page 57: Pigmentos.ppt

QuickTime™ and a decompressor

are needed to see this picture.

Page 58: Pigmentos.ppt

Extraction and separation

of pigments

Page 59: Pigmentos.ppt

Chemotaxonomic estimation of phytoplankton communities in aquatic and

sedimentary environments involves not only the choice of marker

pigments, but also efficient extraction and separation procedures and a

reasonable treatment of the data obtained.

Extraction must be quantitative for all pigments

HPLC separation must be able to: separate simultaneously groups of molecules of very different polarities

Resolve very similar compounds, for instance isomers

Page 60: Pigmentos.ppt

Extraction of phytoplankton pigmentsExtraction of phytoplankton pigments

Solvents: Acetone 90 %

Acetone 100 %

Methanol

Acetone :Methanol ( 1:1)

N,N-dimetilformamide (DMF)

Buffered Methanol ( 2% NH4Ac 0,5 M)

Procedure: Sonication or criogenic homogenization„overnight“ or immediate extraction

Page 61: Pigmentos.ppt

Filtration

GF/F 47mm

Extration:

Methanol: NH4Ac 0,5M (98:2) +

Sonification, ice-bath (30 s) +

Centrifugation (5 min, 4800 rpm)

Separation (HPLC)

Page 62: Pigmentos.ppt

Chromatographic separation of

Phytoplankton pigments

Page 63: Pigmentos.ppt

Fase estacionária: C30 (YMC, C30, 5µm, polimérica250x4,6 mm ID

Fase móvel: A:CH3OH:TBA (28 mM) 70:30 (v/v)B: CH3CH2OHpH 6,5Gradiente: chlorophylls:Fig A:30-100 % B, 50 minVazão: 1,2 ml/minT: 47 oCCarotenóides:Fig B:25-63 % B, 35 min, 63-100%B/13 minVazão: 1,4 ml/minT: oC

Separation with C30 columns:Separation with C30 columns: Development of a computer-assisted method (Software Dry Lab)

Mistura-testeVan Heukelem e Thomas, Journal of Chromatography A, 910 (2001) 31-49

Resolution: otimization

for chlorophyllsAnd for carotenoids in

Sparate runs

Resolution: separation mono/divynil clh a, bThey don‘t separate in C18 !! (depends on aliphatic chain?)

c3

c1c2

DV, MV cl bDV, MV cl a

alox

anth

indi

atox

anth

in

lute

ína

alo-, diato-xanthinse luteína

Page 64: Pigmentos.ppt

Separation with C8 columnsSeparation with C8 columns:

Fase estacionária: C8 (Eclipse XDB, 3,5 µm150x4,6 mm ID

Fase móvel: A:CH3OH:TBAA (28 mM) 70:30 (v/v), pH 6,5B: CH3OH

Mistura-teste.Van Heukelem e Thomas, Journal of Chromatography A, 910 (2001) 31-49

c3

C2

+M

gDV

P

c 1 +

clor

ofilí

deo

a

DV, MV cl b

DV, MV cl aZeaxanthin, luteína,

2) Zapata et al., 2000 Mar. Ecol Progr. Ser. 195: 29-45, 2000

Fase móvel: A: CH3OH : CH3CN : pirid.acet. (50:25:25); B: CH3OH : CH3CN : acetona (20:60:20)

1) Development of a computer-assisted method (Software Dry Lab)

Page 65: Pigmentos.ppt

MgDVP

Clor c2

Zeaxanthin, dihidroluteína

C8, Zapata

C8, Van Heukelem

Pigment mixture, S. Wright, Course Notes

R>1

R< 0,5

R=0,8

R=1

cl b/DV cl bR< 0,5

cl b/DV cl bR= 0,8

4k Hex/9‘cis NeoR> 1,25

4k Hex/9‘cis NeoNão resolve

C8: better for chlorophyll c family

Page 66: Pigmentos.ppt

Fases estacionárias: C8 (Symmetry C8, 3,5 µm 150 x 4,6 mm)C18 (Supelcosil L-C18, 5 µM250 x 4,6 mm)

Fase móvel: Coluna C18: adap. Kraay, 1992A:CH3OH:H2O (85:15) B: CH3CN.H2O (90:10)C: Acet. Etila(vazão 0,6 ml/min)

Coluna C8: Zapata, 2000

Comparison of method sensitivity with C18 and C8 columnsComparison of method sensitivity with C18 and C8 columns

Mendes et al., Limnol. Oceanogr. Methods 5, 2007, 363-370

C18: More sensitivityLower limit of detection

Better for low concentration pigments

Page 67: Pigmentos.ppt

Fase estacionária:2 colunas „in line“Waters Spherisorb ODS23 µM150 x 4,6 mm)

Fase móvel: A: NH4Ac 0,01M B: CH3OHC: CH3CND: Acet. Etila

Gradiente:5%A, 85% B, 15 % C isocr.5 min,0%A, 20% B,15%C,65% D,95 min, 0%A, 1%B, 1%C, 98%D, 5 min,isocr. 5 min

Adequado para LC/MS

Método SCOR 1997

Método Airs et Al.

Extrato de amostra de sedimento (Priest Pot) Airs et al.; Journal of Chromatography a 917 (2001) 167-177

Separation of complex samples, methodSeparation of complex samples, methodcompatible with LC/MScompatible with LC/MS

Page 68: Pigmentos.ppt

Labor. UFF, Cromatógrafo Bischoffanalysentechn., Mistura-teste (DHI), 100µL injetados na fase A,

Cl

c3C

l c2

peri

dini

na19

,-bu

tan

oilfu

cofu

coxa

nthi

nne

oxa

nth

inpr

asin

oxa

nth

in

diad

inox

anth

in

viol

axan

thin

diat

oxan

thin

dino

xant

hin

lute

ina

alox

anth

in

zeax

anth

in

Cl b

+ D

V c

lb

Cl a

+ D

V c

la

Fase estacionária:Spherisorb ODS1/ C18 250 x 4,6 mm – 5 m

Fase móvel: A: CH3OH 0,3 M em NH4Ac : ACN : H20 (51:36:13) B: AcetEtila: ACN (70:30)Vazão: 1,2 ml/min

Gradiente:0 a 25 % B em5 min, isocr.5 min,25% a 100% Bem 20 min.

Separates:,-carotene, ,-carotene, Aloxanthin,Lutein, Neoxanthin, Violaxanthin, Fucoxanthin, Diatoxanthin,Diadinoxanthin, Peridinina,Dinoxanthin, Zeaxanthin, Mixoxantophyll, Equinenone, Cantaxanthin,Astaxanthin, Okenone, Scytonemin-1, -2, Bacteriophaeophytin-a,Bacteriochlorophyll-e, chlorophyll-a, Chlorophilide-a, Chl-a Allomer and Epimer, phaeophytin- a1, a2, phaeophorbide -a1, -a2, -a3, -a3’, -a4, chlorophyll b,phaeophytin -b1, -b2, chlorophyll –c1, -c2, -c3

Buchaca e Catalan (2008)

Page 69: Pigmentos.ppt

HOW TO DETERMINE PHYTOPLANKTON ?

ESTIMATION OF THE ABUNDANCE OF PHYTOPLANKTONIC

COMMUNITY BY PIGMENT MARKERS

Calculation ofCalculation of (Chl a)(Chl a)cn cn ??

Based on the contribution, in terms of Based on the contribution, in terms of

chlorophyll chlorophyll aa, ,

of each group of taxonomical class (Chl a)of each group of taxonomical class (Chl a)cc

to total chlorophyll a in the sample (Chl to total chlorophyll a in the sample (Chl

a)a)tt : :

(Chl a)(Chl a)t t = (Chl a)= (Chl a)c1c1 + (Chl a) + (Chl a)c2c2 + (Chl a) + (Chl a)c3c3 + + ...... + (Chl a)...... + (Chl a)cncn

Easy !

Page 70: Pigmentos.ppt

Calculation ofCalculation of (Chl a)(Chl a)c c by the choice of one marker pigmentby the choice of one marker pigment

for each classfor each class

Class Marker pigment (Pm)

Pm/Cla ratio in the class

Cianobactérias zeaxanthin Rzea/cla

Clorophyta luteínaRlut/cla

Dinophyta peridininaRper/cla

Cryptophyta aloxanthinRalo/cla

.......................... ....................... .......................

Bacyllariophyta fucoxanthinRfuco/cla

(Chl a)(Chl a)t t = = RRzea/cla zea/cla x (Zea) x (Zea) + + RRlut/cla lut/cla x (Lut) + x (Lut) + ......... .........

+ + RRfuco fuco x (Fuco)x (Fuco)

METHOD 1:

{

(Chl a)(Chl a)c c andand% of each class% of each class

Fixed sample

Problem:Problem:Fixed RFixed R

not necessarilynot necessarilyCorresponds Corresponds To the ratiosTo the ratios

In the samplesIn the samples

Page 71: Pigmentos.ppt

METHOD 2:

Multilinear regressionMultilinear regression

Sample 1: (Chl a)Sample 1: (Chl a)t1 t1 = = RRzea/cla zea/cla x (Zea)x (Zea)11 + + RRlut/cla lut/cla x (Lut)x (Lut)11

+ + .........+ .........+ RRfuco fuco x (Fuco)x (Fuco)11

Sample 2: (Chl a)Sample 2: (Chl a)t2 t2 = = RRzea/cla zea/cla x (Zea)x (Zea)22 + + RRlut/cla lut/cla x (Lut)x (Lut)22

+ + .........+ .........+ RRfuco fuco x (Fuco)x (Fuco)22

..........................................................................................................................................

..............................................................................................................................Sample n: (Chl a)Sample n: (Chl a)tn tn = = RRzea/cla zea/cla x (Zea)x (Zea)nn + + RRlut/cla lut/cla x (Lut)x (Lut)nn

+ + .........+ .........+ RRfuco fuco x (Fuco)x (Fuco)nnUnknown Rs, determined by pela resolution of a system of n equations and n unknowns

(Chl a)(Chl a)cncn

% of ech class% of ech class

Rs are determined, but many classes don‘t have a specific pigment

Page 72: Pigmentos.ppt

„„Software „CHEMTAX: problema de análise fatorial:Software „CHEMTAX: problema de análise fatorial:

matriz de dados S: concentrações encontradas para os pigmentos

no ambiente num conjunto de amostras

fatorizada em matrizes

F : matriz das razões dos pigmentos para as diferentes classes

de algas puras e

C : abundâncias de cada classe de alga em cada amostra

MÉTODO 3:

Determinação da composição fitoplanctônica por análise fatorialDeterminação da composição fitoplanctônica por análise fatorial((MACKEY et al., 1996) MACKEY et al., 1996)

Page 73: Pigmentos.ppt

Amostra 1: (Chl a)Amostra 1: (Chl a)t1 t1 (Zea)(Zea)11 (Lut) (Lut)11 ....... ....... (Fuco)(Fuco)11

Amostra 2: (Chl a)Amostra 2: (Chl a)t2t2 (Zea)(Zea)22 (Lut) (Lut)22 ....... ....... (Fuco) (Fuco)22

.................. ............ ......... ........ ......................... ............ ......... ........ .......Amostra n: (Chl a)Amostra n: (Chl a)tn tn (Zea)(Zea)nn (Lut) (Lut) ....... ....... (Fuco) (Fuco)nn

PER BUT FUC HEX NEO PRA VI0L ALO LUT ZEA CLB CLA

Prasinophyta 0 0 0 0 0,061 0,127 0 0,004 0 0 0,381 0,403

Dinophyta 0,515 0 0 0 0 0 0 0 0 0 0 0,485

Cryptophyta 0 0 0 0 0 0 0 0,186 0 0 0 0,814

Haptophyta3 0 0 0 0,630 0 0 0 0 0 0 0 0,370

Haptophyta4 0 0,104 0,247 0,227 0 0 0 0 0 0 0 0,422

Chorophyta 0 0 0 0 0,040 0 0,035 0 0,127 0,006 0,165 0,628

Synecho. 0 0 0 0 0 0 0 0 0 0,258 0 0,742

Diatomaceas 0 0 0,430 0 0 0 00 0 0 0 0,570

MATRIZ F: Razões RRii =[lpigm =[lpigmii]/[chlorophyll a para cada classe]/[chlorophyll a para cada classe

MATRIZ S: experimental

Clpras

ClDin

ClCryp

ClHapt3

ClHapt4

ClChlor

ClSyn

ClDiatom

C: contribuição de cada classe (a ser determinada)

F x C = SF x C = S

Page 74: Pigmentos.ppt

Para uma fatorizaPara uma fatorizaçção de S que tenha um significado fão de S que tenha um significado fíísico:sico:F : variável, Fo: dados da literatura (normalizados/Cl a)

Estimativa inicial da matriz de abundâncias das classes (CEstimativa inicial da matriz de abundâncias das classes (Coo):): calculada resolvendo-se a equação de mínimos quadrados:

Um algoritmo de Um algoritmo de „„decrdecrééscimo mscimo mááximoximo““ do res do resííduo foi usadoduo foi usado(varia(variaçção dos elementos de F, 10% a cada iteraão dos elementos de F, 10% a cada iteraçção)ão)

minimizar: S – Co Fo ,

sob as condições: [Co]ij 0 i, j [Co]ij = 1 j

O resíduo é expresso por: o = S – Co Fo

Page 75: Pigmentos.ppt

Juturnaíba reservoir as a study model

Rio de JaneiroState

42°

23°

Marcelo Marinho e Silvana V. Rodrigues

QuickTime™ and a decompressor

are needed to see this picture.

Page 76: Pigmentos.ppt

Avaliar a aplicabilidade do método de análise de pigmentos por HPLC

para detecção das variações na biomassa e composição do fitoplâncton,

comparando com os dados obtidos por microscopia

OBJETIVOSOBJETIVOS

Page 77: Pigmentos.ppt

Fitoplâncton–Coletas quinzenais - jun/96 - mai/97 (estação central)

–Biovolume

• método de sedimentação (Utermöhl, 1958)

Pigmentos

METODOLOGIA

Amostra(0,25 - 1,8 L)

• Filtração (GF/C)• Congelamento

(CO2 sólido)

ExtraçãoMetanol 100%

Injeção e análiseHPLC

• Coluna C18 - fase reversa

• Gradiente alta pressão (modificado de Garrido & Zapata, 1993)

• Detecção - 440nm

CONDIÇÕES CROMATOGRÁFICAS

Page 78: Pigmentos.ppt

-1

Contribution calculated by marker pigments-1

Razão Xan/Chl-a CHEMTAX

Biomass (chlorophyll a)

Page 79: Pigmentos.ppt

BiovolumeBiovolume

0,2 L +Lugol’s solution

sedimentation method (Utermöhl, 1958)

biomass: product of population and mean unit

volume of each species

(specific density of cells = 1 g/cm3,

cell size = mean of at least 30 measurements)

Page 80: Pigmentos.ppt

20 mg/LMicrocystis aeruginosa

Anabaena spiroides

Cylindrospermopsis raciborskii

Jun Jul Aug Sep Oct Nov Nov Dec Jan Feb Mar Apr May1996 1997

0

30

60

90mg/L

others

green algae

dinoflagellates

cryptomonads

diatoms

cyanobacteria

Percentages of phytoplankton assemblages as dominant groups

of species, by period in Juturnaíba Reservoir.

Period 1 Period 2a Period 2b

12 Jun - 10 Dec 26 Dec - 17 Apr 30 Apr - 28 May

24% A. distans 72% M. aeruginosa 46% C. raciborskii

21% Cryptomonas sp. 11% A. spiroides 42% A. spiroides

Biomass (Biovolume)

Page 81: Pigmentos.ppt

Correlations between contributions of the classes found by pigment data and by biovolume calculation (significant *p < 0.05, **p < 0.01; n = 25).

Ratio Xan/Chl-a CHEMTAX

Dinophyceae 0.20 0.27 Bacillariophyceae 0.64* 0.76** Cryptophyceae 0.39 0.73** Chlorophyceae 0.39 -0.35 Cyanobacteria 0.89** 0.97** Biovolume total 0.97** 0.97**

Page 82: Pigmentos.ppt

Biomass (CHEMTAX) x Biomass (biovolumeBiomass (CHEMTAX) x Biomass (biovolume)

2 periods in both methods

CHEMTAX: CHEMTAX:

Period 1 (June - November 96): 3.7 - 36.4 mg/L chl aChlorophyceae, Cyanobacteria, Cryptophyceae

Period 2 (December 96- May 97): 46.9 - 254.4 mg/L chl a81% to 99 % Cyanobacteria.

Page 83: Pigmentos.ppt

• High correlation between biovolume and Chl-a. Chl-a can

be used as a parameter to estimate biovolume.

• Interpretation of pigment data with CHEMTAX: better

correlation with biovolume than that based on Xan/Chl-a

ratios from unialgal cultures.

• Only Chlorophyceae and Dinophyceae did not present

significant correlation with cell count.

• Similar general pattern of the phytoplankton community

dynamics by cell count and pigment analysis: two periods

and the Cyanobacteria bloom recorded.

CONCLUSIONS

Page 84: Pigmentos.ppt

12 SAMPLING SITES:

SAMPLING FREQUENCE:

- 12 CAMPAIGNS

- JANUARY TO AUGUST (SUMMER/AUTUMN) 2006

GUANABARABAY

RJ/BRAZIL

Page 85: Pigmentos.ppt

1

2

3

4

5Data processing:CHEMTAX:Samples divided in 5environmentallydifferent groups

HOMOGENEITY OF SAMPLESWITHIN EACH DATA MATRIX

Page 86: Pigmentos.ppt
Page 87: Pigmentos.ppt