38
Pieter de Visser& Gerhard Buck-Sorlin Wageningen UR Greenhouse Horticulture * P.O. Box 430, 6700 AK Wageningen, The Netherlands Simulation of light absorption and photosynthesis in a greenhouse crop: effect of light node types & shaders

Pieter de Visser& Gerhard Buck-Sorlin Wageningen UR Greenhouse Horticulture * P.O. Box 430, 6700 AK Wageningen, The Netherlands Simulation of light absorption

Embed Size (px)

Citation preview

Page 1: Pieter de Visser& Gerhard Buck-Sorlin Wageningen UR Greenhouse Horticulture * P.O. Box 430, 6700 AK Wageningen, The Netherlands Simulation of light absorption

Pieter de Visser& Gerhard Buck-Sorlin

Wageningen UR Greenhouse Horticulture* P.O. Box 430, 6700 AK Wageningen, The Netherlands

Simulation of light absorption and photosynthesis in a

greenhouse crop: effect of light node types & shaders

Page 2: Pieter de Visser& Gerhard Buck-Sorlin Wageningen UR Greenhouse Horticulture * P.O. Box 430, 6700 AK Wageningen, The Netherlands Simulation of light absorption

Evolution of lighting systems

Page 3: Pieter de Visser& Gerhard Buck-Sorlin Wageningen UR Greenhouse Horticulture * P.O. Box 430, 6700 AK Wageningen, The Netherlands Simulation of light absorption

Observed light distribution

bed1

pad1

bed2

pad2

bed3

pad3

bed4

pad4

bed5

pad5

bed6

pad6

bed7

14m

13m

12m

11m

10m

9m

8m

7m

6m

5m

4m

3m

2m

1m

C3 - afd 6.06 - 11nov09 - LEDs boven (20%af)

190-200

180-190

170-180

160-170

150-160

140-150

130-140

120-130

110-120

100-110

bed1

pad1

bed2

pad2

bed3

pad3

bed4

pad4

bed5

pad5

bed6

pad6

bed7

14m

13m

12m

11m

10m

9m

8m

7m

6m

5m

4m

3m

2m

1m

A3 - afd 6.06 & 7 - 28oct09 - SONT-50%

110-120

100-110

90-100

80-90

70-80

60-70

50-60

40-50

30-40

20-30

10-20

0-10

Page 4: Pieter de Visser& Gerhard Buck-Sorlin Wageningen UR Greenhouse Horticulture * P.O. Box 430, 6700 AK Wageningen, The Netherlands Simulation of light absorption

Why studying this?

• improve light interception, being driver of production

• even only 1% yield increase is appreciated: fine-tuning

• check stakeholders’ ideas about light climate with model

• efficient lighting strategies reduce energy use

Page 5: Pieter de Visser& Gerhard Buck-Sorlin Wageningen UR Greenhouse Horticulture * P.O. Box 430, 6700 AK Wageningen, The Netherlands Simulation of light absorption

Modelling platform: GroIMP

Page 6: Pieter de Visser& Gerhard Buck-Sorlin Wageningen UR Greenhouse Horticulture * P.O. Box 430, 6700 AK Wageningen, The Netherlands Simulation of light absorption

Main model parts:

Inversed path tracer model from GroIMP

3D mockup in XL of existing crop

Photosynthesis (Kim & Lieth, 2004)

Iight distribution

Iight absorption/reflection/transmission

?

Page 7: Pieter de Visser& Gerhard Buck-Sorlin Wageningen UR Greenhouse Horticulture * P.O. Box 430, 6700 AK Wageningen, The Netherlands Simulation of light absorption

Design of the virtual greenhouse

Page 8: Pieter de Visser& Gerhard Buck-Sorlin Wageningen UR Greenhouse Horticulture * P.O. Box 430, 6700 AK Wageningen, The Netherlands Simulation of light absorption

Measuring light with virtual sensors

• Sensor types• perceiving

• sphere with radius r • hemispheric view

(upper or upper/lower hemisphere)

• absorbing • planar• area amount of absorbed light∼• any planar object (e.g. leaf) can measure its light absorption directly

Page 9: Pieter de Visser& Gerhard Buck-Sorlin Wageningen UR Greenhouse Horticulture * P.O. Box 430, 6700 AK Wageningen, The Netherlands Simulation of light absorption

LENi

LENi+1

RU (divergence)

RL

LEN

DIAMRH (tilting)

L1

L2

L3

L4

L5

L6

L7

L1

L2

L3

L4

L5

L6

L7

T

RL (“hanging down”of leaflets)

Page 10: Pieter de Visser& Gerhard Buck-Sorlin Wageningen UR Greenhouse Horticulture * P.O. Box 430, 6700 AK Wageningen, The Netherlands Simulation of light absorption
Page 11: Pieter de Visser& Gerhard Buck-Sorlin Wageningen UR Greenhouse Horticulture * P.O. Box 430, 6700 AK Wageningen, The Netherlands Simulation of light absorption
Page 12: Pieter de Visser& Gerhard Buck-Sorlin Wageningen UR Greenhouse Horticulture * P.O. Box 430, 6700 AK Wageningen, The Netherlands Simulation of light absorption

SONT + LED at Improvement Centre, Bleiswijk, NL

Page 13: Pieter de Visser& Gerhard Buck-Sorlin Wageningen UR Greenhouse Horticulture * P.O. Box 430, 6700 AK Wageningen, The Netherlands Simulation of light absorption

Shader parameterization: a virtual set-up

Page 14: Pieter de Visser& Gerhard Buck-Sorlin Wageningen UR Greenhouse Horticulture * P.O. Box 430, 6700 AK Wageningen, The Netherlands Simulation of light absorption

Light types

Point light Directional light

Spotlight

Page 15: Pieter de Visser& Gerhard Buck-Sorlin Wageningen UR Greenhouse Horticulture * P.O. Box 430, 6700 AK Wageningen, The Netherlands Simulation of light absorption

SONT HPS-lamps

Measured light distribution

(two vertical planes,

perpendicular):

max. opening angle 140°

Page 16: Pieter de Visser& Gerhard Buck-Sorlin Wageningen UR Greenhouse Horticulture * P.O. Box 430, 6700 AK Wageningen, The Netherlands Simulation of light absorption

• New class SONT: extension of PointLight class of GroIMP

• Directional distribution of emitted light incorporated into the rendering process by overwriting method getDensityAt() (computes for a given direction probability density of choosing this direction.):

1) Transformation of direction vector ω = (x,y,z), |ω| = 1 into a polar form, where polar angles are:

Model of a SON-T lamp

φ = atan2

where atan2 = variant of arcus tangens function

ϕ = atan2(y,x)

θ = acos(z)

azimuth [-π < ϕ < π]

elevation [-π < θ < π]

Page 17: Pieter de Visser& Gerhard Buck-Sorlin Wageningen UR Greenhouse Horticulture * P.O. Box 430, 6700 AK Wageningen, The Netherlands Simulation of light absorption

2) Angles ϕ and θ used as indices for the lookup table λ of luminosity values. λ is discretized as an array of 36 by 180 values, for ϕ, respectively θ.

Mapping the values of ϕ and θ to λ and obtaining lower and higher indices for the two angles:

float a = (phi+PI) * 18 / PI;

float b = (theta+PI) * 90 / PI;

int phi0 = (int) a % 36;

int phi1 = (phi0+1) % 36;

int theta0 = (int) b;

int theta1 = min(179, theta0+1);

Page 18: Pieter de Visser& Gerhard Buck-Sorlin Wageningen UR Greenhouse Horticulture * P.O. Box 430, 6700 AK Wageningen, The Netherlands Simulation of light absorption

3) Bilinear interpolation to weight four drawn array values smoothing of spatial light distribution:float wa = 1 - (a-floor(a));

float wb = 1 - (b-floor(b));

Obtaining the array values from the lookup table:float d00 = li[phi0][theta0];

float d01 = li[phi0][theta1];

float d10 = li[phi1][theta0];

float d11 = li[phi1][theta1];

float w00 = wa*wb;

float w01 = wa*(1-wb);

float w10 = (1-wa)*wb;

float w11 = (1-wa)*(1-wb);

Page 19: Pieter de Visser& Gerhard Buck-Sorlin Wageningen UR Greenhouse Horticulture * P.O. Box 430, 6700 AK Wageningen, The Netherlands Simulation of light absorption

Multiplication of weighting factors with read luminosity values to obtain probability density of the ray for the given direction: float density = w00*d00 + w01*d01 + w10*d10 + w11*d11;

Page 20: Pieter de Visser& Gerhard Buck-Sorlin Wageningen UR Greenhouse Horticulture * P.O. Box 430, 6700 AK Wageningen, The Netherlands Simulation of light absorption

• Visualisation of light distribution of a SON-T assimilation lamp.

• Next step: implementation of such a lamp as a new light source in the modelling environment

Page 21: Pieter de Visser& Gerhard Buck-Sorlin Wageningen UR Greenhouse Horticulture * P.O. Box 430, 6700 AK Wageningen, The Netherlands Simulation of light absorption

Implementation of a Hortilux GreenPower SON-T lamp

First version (improper

interpolation between array

values)

Update: bilinear interpolation between array values; 3 different lamp angles to a reflecting sheet

Page 22: Pieter de Visser& Gerhard Buck-Sorlin Wageningen UR Greenhouse Horticulture * P.O. Box 430, 6700 AK Wageningen, The Netherlands Simulation of light absorption

Grid of 21 SON-T broad beam reflector lamps

reflection screen at

increasing distance

below the lamps

0.5 m

Page 23: Pieter de Visser& Gerhard Buck-Sorlin Wageningen UR Greenhouse Horticulture * P.O. Box 430, 6700 AK Wageningen, The Netherlands Simulation of light absorption

Quantifying light distribution in row crop: light type

Page 24: Pieter de Visser& Gerhard Buck-Sorlin Wageningen UR Greenhouse Horticulture * P.O. Box 430, 6700 AK Wageningen, The Netherlands Simulation of light absorption

Effect light type on distribution

light: SPOT DIRECT SPOT DIRECT

wall height (m) 4.5 4.5 3.5 3.5

South wall: fraction

40%unshaded

34% 16% 4%

North wall: 41% 38% 13% 15%

West wall: 41% 46% 13% 20%

East wall: 36% 38% 13% 29%

Plant shading is more stable at use of spot lights:

Page 25: Pieter de Visser& Gerhard Buck-Sorlin Wageningen UR Greenhouse Horticulture * P.O. Box 430, 6700 AK Wageningen, The Netherlands Simulation of light absorption

How many buffer rows?

200

220

240

260

280

300

320

340

360

380

0 0 1 2

nr. of border rows

Lig

ht

abso

rpti

on

by

inn

er p

lan

ts incl.front&back

no front&back

Page 26: Pieter de Visser& Gerhard Buck-Sorlin Wageningen UR Greenhouse Horticulture * P.O. Box 430, 6700 AK Wageningen, The Netherlands Simulation of light absorption

Validation of light module of tomato model

0%

20%

40%

60%

80%

100%

0 1 2 3 4 5

Height above ground (m)

Lig

ht in

tens

ity

.

model

observed

Check poster on comparison of two light models of tomato

Page 27: Pieter de Visser& Gerhard Buck-Sorlin Wageningen UR Greenhouse Horticulture * P.O. Box 430, 6700 AK Wageningen, The Netherlands Simulation of light absorption

Lighting strategies:

1. change SON-T position (horizontal & vertical) & angle

2. LED position above or between crop rows

3. path width between rows (at same plant density)

4. SON-T distribution wide vs. deep reflector

5. reflection via screen increases light use efficiency?

6. Effect lamp colour

Page 28: Pieter de Visser& Gerhard Buck-Sorlin Wageningen UR Greenhouse Horticulture * P.O. Box 430, 6700 AK Wageningen, The Netherlands Simulation of light absorption

Lamp light direction

Angle from vertical

Light absorbed(umol s-1)

Light level floor(umol s-1 m-2)

22° 1372 55

67 1890 30

90 1807 15

Page 29: Pieter de Visser& Gerhard Buck-Sorlin Wageningen UR Greenhouse Horticulture * P.O. Box 430, 6700 AK Wageningen, The Netherlands Simulation of light absorption

Lamp type, height; crop structure

Scenario: Absorbed light% of input

Light level on floor(umol m-2 s-1)

Default 92.7 9.00

Wide reflector 93.3 8.16

Lamp height -1m

95.2 7.95

Path width +0.4m

89.7 13.07

Idem, plants+24%

91.3 10.96

Page 30: Pieter de Visser& Gerhard Buck-Sorlin Wageningen UR Greenhouse Horticulture * P.O. Box 430, 6700 AK Wageningen, The Netherlands Simulation of light absorption

Testing opening angle

Page 31: Pieter de Visser& Gerhard Buck-Sorlin Wageningen UR Greenhouse Horticulture * P.O. Box 430, 6700 AK Wageningen, The Netherlands Simulation of light absorption

Effect opening angle (≃ type reflector):Available light in scene and crop absorption at 27

Phyto:

(umol in total)Opening angle: SONT

(Phyto) very small small wide wide deep

Light in (3) 1789 1790 1813 0.073 0.38

Light in (27) 1806 1811 1822 0.073 0.38

CropAbs 1213 1210 1213 0.049 0.25

% of IN 68% 68% 67% 68% 65%

Page 32: Pieter de Visser& Gerhard Buck-Sorlin Wageningen UR Greenhouse Horticulture * P.O. Box 430, 6700 AK Wageningen, The Netherlands Simulation of light absorption

LED scenarios:

Relation to LED position in the crop:

in path, in row, height

Wireframe in

sideview

Virtual crop

White: rows of virtual sensors

Page 33: Pieter de Visser& Gerhard Buck-Sorlin Wageningen UR Greenhouse Horticulture * P.O. Box 430, 6700 AK Wageningen, The Netherlands Simulation of light absorption

Vertical light distribution depending on LED position

N.B.: data averaged from 2 rows incl. path

0

5

10

15

20

25

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Height from ground (m)

Lig

ht

leve

l (u

mo

l m-2

s-1

)

LED on top

LED in row (3.5m)

LED in path (3.5m)

LED in row (2.5m)

Page 34: Pieter de Visser& Gerhard Buck-Sorlin Wageningen UR Greenhouse Horticulture * P.O. Box 430, 6700 AK Wageningen, The Netherlands Simulation of light absorption

Light absorption in crop: LED positioning in rowHeight 2.5m 3.5m top (4.6m)

Leaf 86.1% 93.2 89.8

Young fr 3.3 0.1 0.6

Ripe fr 0.2 0.0 0.1

Stems 4.7 0.9 1.0

Total: 94.2 94.2 91.6

RoofFloor

0.50.0

5.40.0

7.80.0 no aging:

RUE (rel.) 62.2 40.3 100 132

Page 35: Pieter de Visser& Gerhard Buck-Sorlin Wageningen UR Greenhouse Horticulture * P.O. Box 430, 6700 AK Wageningen, The Netherlands Simulation of light absorption

Light absorption in crop: LED positioning in pathHeight 2.5m 3.5m top (4.6m)

(row)

Leaf 86.0% 91.0 89.8

Young fr 6.0 0.8 0.6

Ripe fr 0.2 0.0 0.1

Stems 6.5 1.6 1.0

Total: 98.7 93.4 91.6

RoofFloor

0.50.0

5.80.0

7.80.0

RUE (rel.) 70.5 70.6 100

Page 36: Pieter de Visser& Gerhard Buck-Sorlin Wageningen UR Greenhouse Horticulture * P.O. Box 430, 6700 AK Wageningen, The Netherlands Simulation of light absorption

Conclusions:

1. Type of reflector hardly affects light utilization

2. Row structure (path width) has some impact on light use

3. LED positioning strongly affects light use

4. GroIMP platform suitable for this approach

Page 37: Pieter de Visser& Gerhard Buck-Sorlin Wageningen UR Greenhouse Horticulture * P.O. Box 430, 6700 AK Wageningen, The Netherlands Simulation of light absorption

Next steps and outlook:

1. Further optimize lighting strategy incl. screens

2. Include wavebands in light source and photosynthesis

3. Determine energy requirements for scenarios

4. Light on rose

5. Not a static, but a growing, adapting crop

6. Improve path tracer (Göttingen)

7. ..

Page 38: Pieter de Visser& Gerhard Buck-Sorlin Wageningen UR Greenhouse Horticulture * P.O. Box 430, 6700 AK Wageningen, The Netherlands Simulation of light absorption

Thank you for your attention!

Funded by:

Horticultural Production Board & Ministry of Agriculture