Physics for Solid State Applications

Embed Size (px)

Citation preview

  • 8/7/2019 Physics for Solid State Applications

    1/13

    6.730 Physics for Solid State Applications

    Lecture 4: Vibrations in Solids

    February 11, 2004

    1-D Elastic Continuum

    1-D Lattice Waves

    3-D Elastic Continuum 3-D Lattice Waves

    Outline

    Strain E and Displacement u(x)

    u(L)u(x+dx)u(x)

    dx

    dx

    (dx) = dx dx how much does a differential length change

    (dx) = u(x+dx) - u(x) difference in displacements

    Strain:

  • 8/7/2019 Physics for Solid State Applications

    2/13

    Uniform Strain & Linear Displacement u(x)

    u(L)u(x+dx)u(x)

    dx

    dx

    Constant Strain:

    Linear displacement: u(x) = E0 x

    More Types of Strain

    u(L)u(x+dx)u(x)

    dx

    dxNon-uniform

    E = E(x)

    Zero Strain:

    u(x) is constant

    Just a Translation

    We will ignore this

  • 8/7/2019 Physics for Solid State Applications

    3/13

    11--D Elastic ContinuumD Elastic ContinuumStress and StrainStress and Strain

    Lo

    uniaxial loading

    L

    Stress:

    Elongation: Normal Strain:

    If ux is uniform there is no strain, just rigid body motion.

    11--D Elastic ContinuumD Elastic ContinuumYoungs ModulusYoungs Modulus

    CERAMICS GLASSES AND SEMICONDUCTORS

    Diamond (C) 1000

    Tungsten Carbide (WC) 450 -650

    Silicon Carbide (SiC) 450Aluminum Oxide (Al2O3) 390

    Berylium Oxide (BeO) 380

    Magnesium Oxide (MgO) 250

    Zirconium Oxide (ZrO) 160 - 241

    Mullite (Al6Si2O13) 145

    Silicon (Si) 107

    Silica glass (SiO2) 94

    Soda-lime glass (Na2O - SiO2) 69

    METALS :

    Tungsten (W) 406

    Chromium (Cr) 289

    Berylium (Be) 200 - 289

    Nickel (Ni) 214

    Iron (Fe) 196

    Low Alloy Steels 200 - 207

    Stainless Steels 190 - 200

    Cast Irons 170 - 190

    Copper (Cu) 124

    Titanium (Ti) 116

    Brasses and Bronzes 103 - 124

    Aluminum (Al) 69

    PINE WOOD (along grain): 10

    POLYMERS :

    Polyimides 3 - 5

    Polyesters 1 - 5

    Nylon 2 - 4

    Polystryene 3 - 3.4

    Polyethylene 0.2 -0.7

    Rubbers / Biological

    Tissues 0.01-0.1

    Youngs Modulus For Various Materials (GPa)from Christina Ortiz

  • 8/7/2019 Physics for Solid State Applications

    4/13

    Dynamics of 1Dynamics of 1--D ContinuumD Continuum11--D Wave EquationD Wave Equation

    Net force on incremental volume element:

    Dynamics of 1Dynamics of 1--D ContinuumD Continuum11--D Wave EquationD Wave Equation

    Velocity of sound, c, is proportional to stiffness and inverse prop. to inertia

  • 8/7/2019 Physics for Solid State Applications

    5/13

    Dynamics of 1Dynamics of 1--D ContinuumD Continuum11--D Wave Equation SolutionsD Wave Equation Solutions

    Clamped Bar: Standing Waves

    Periodic Boundary Conditions: Traveling Waves

    Dynamics of 1Dynamics of 1--D ContinuumD Continuum11--D Wave Equation SolutionsD Wave Equation Solutions

  • 8/7/2019 Physics for Solid State Applications

    6/13

    33--D Elastic ContinuumD Elastic ContinuumVolume DilatationVolume Dilatation

    Lo Lapply load

    Volume change is sum of all three normal strains

    33

    --D Elastic ContinuumD Elastic Continuum

    Poissons RatioPoissons Ratio

    is Poissons Ratio ratio of lateral strain to axial strain

    Poissons ratio can not exceed 0.5, typically 0.3

  • 8/7/2019 Physics for Solid State Applications

    7/13

    Aluminum: EY=68.9 GPa, = 0.35

    20mm

    75mm5kN

    5kN

    33--D Elastic ContinuumD Elastic ContinuumPoissons Ratio ExamplePoissons Ratio Example

    Aluminum: EY=68.9 GPa, = 0.35

    20mm

    75mm5kN

    5kN

    33

    --D Elastic ContinuumD Elastic Continuum

    Poissons Ratio ExamplePoissons Ratio Example

  • 8/7/2019 Physics for Solid State Applications

    8/13

    Aluminum: EY=68.9 GPa, = 0.35

    20mm

    75mm5kN

    5kN

    33--D Elastic ContinuumD Elastic ContinuumPoissons Ratio ExamplePoissons Ratio Example

    33

    --D Elastic ContinuumD Elastic Continuum

    Shear StrainShear Strain

    2

    Shear loading Shear plus rotation Pure shear

    Pure shear strain

    Shear stress

    Gis shear modulus

  • 8/7/2019 Physics for Solid State Applications

    9/13

    33--D Elastic ContinuumD Elastic ContinuumStress and Strain TensorsStress and Strain Tensors

    For mostgeneral isotropic medium,

    Initially we had three elastic constants: EY, G, e

    Now reduced to only two: ,

    33

    --D Elastic ContinuumD Elastic Continuum

    Stress and Strain TensorsStress and Strain Tensors

    If we look at just the diagonal elements

    Inversion of stress/strain relation:

  • 8/7/2019 Physics for Solid State Applications

    10/13

    33--D Elastic ContinuumD Elastic ContinuumExample ofExample of UniaxialUniaxial StressStress

    Lo

    L

    Dynamics of 3Dynamics of 3--D ContinuumD Continuum33--D Wave EquationD Wave Equation

    Net force on incremental volume element:

    Total force is the sum of the forces on allthe surfaces

  • 8/7/2019 Physics for Solid State Applications

    11/13

    Dynamics of 3Dynamics of 3--D ContinuumD Continuum33--D Wave EquationD Wave Equation

    Net force in the x-direction:

    Dynamics of 3Dynamics of 3--D ContinuumD Continuum33--D Wave EquationD Wave Equation

    Finally, 3-D wave equation.

  • 8/7/2019 Physics for Solid State Applications

    12/13

    Dynamics of 3Dynamics of 3--D ContinuumD ContinuumFourier Transform of 3Fourier Transform of 3--D Wave EquationD Wave Equation

    Anticipating plane wave solutions, we Fourier Transform the equation.

    Three coupled equations for Ux, Uy, and Uz.

    Dynamics of 3Dynamics of 3--D ContinuumD ContinuumDynamical MatrixDynamical Matrix

    Express the system of equations as a matrix.

    Turns the problem into an eigenvalue problem forthe polarizations of the modes (eigenvectors) andwavevectors q (eigenvalues).

  • 8/7/2019 Physics for Solid State Applications

    13/13

    Dynamics of 3Dynamics of 3--D ContinuumD ContinuumSolutions to 3Solutions to 3--D Wave EquationD Wave Equation

    Transverse polarization waves:

    Longitudinal polarization waves:

    1. Dynamical Equation can be solved by inspection

    2. There are 2 transverse and 1 longitudinal polarizations for each q

    3. The dispersion relations are linear

    4. The longitudinal sound velocity is always greater thanthe transverse sound velocity

    Dynamics of 3Dynamics of 3--D ContinuumD ContinuumSummarySummary