68
Photoelectron Spectroscopy Claudia Rödl and Matteo Gatti Laboratoire des Solides Irradiés Ecole Polytechnique, Palaiseau, France SOLEIL Theory Day, Gif-sur-Yvette May 6th, 2014

Photoelectron Spectroscopyetsf.polytechnique.fr/system/files/users/francesco/merged2.pdf · Photoelectron Spectroscopy Claudia Rödl and Matteo Gatti Laboratoire des Solides Irradiés

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Photoelectron Spectroscopyetsf.polytechnique.fr/system/files/users/francesco/merged2.pdf · Photoelectron Spectroscopy Claudia Rödl and Matteo Gatti Laboratoire des Solides Irradiés

Photoelectron Spectroscopy

Claudia Rödl and Matteo Gatti

Laboratoire des Solides IrradiésEcole Polytechnique, Palaiseau, France

SOLEIL Theory Day, Gif-sur-Yvette

May 6th, 2014

Page 2: Photoelectron Spectroscopyetsf.polytechnique.fr/system/files/users/francesco/merged2.pdf · Photoelectron Spectroscopy Claudia Rödl and Matteo Gatti Laboratoire des Solides Irradiés

Methods: Starting from First Principles

First-principles calculations

Density-functional

theory (DFT)

Many-body perturbation

theory (MBPT)

Ground state

structural properties

total energies

charge densities

One-particle excitations

band gaps

band structures

densities of states

Two-particle excitations:

optical absorption

excitonic states

loss spectra

Page 3: Photoelectron Spectroscopyetsf.polytechnique.fr/system/files/users/francesco/merged2.pdf · Photoelectron Spectroscopy Claudia Rödl and Matteo Gatti Laboratoire des Solides Irradiés

Methods: Starting from First Principles

First-principles calculations

Density-functional

theory (DFT)

Many-body perturbation

theory (MBPT)

Ground state

structural properties

total energies

charge densities

One-particle excitations

band gaps

band structures

densities of states

DO

S /

inte

nsity

HSE06HSE06+G0W0

HSE06+GnW0

ExperimentGhijsen et al. (1988)

-20 -15 -10 -5 0 5 10 15energy [eV]

PBE+UPBE+U+G0W0

PBE+U+GnW0

ExperimentGhijsen et al. (1988)

Two-particle excitations:

optical absorption

excitonic states

loss spectra

Page 4: Photoelectron Spectroscopyetsf.polytechnique.fr/system/files/users/francesco/merged2.pdf · Photoelectron Spectroscopy Claudia Rödl and Matteo Gatti Laboratoire des Solides Irradiés

Methods: Starting from First Principles

First-principles calculations

Density-functional

theory (DFT)

Many-body perturbation

theory (MBPT)

Ground state

structural properties

total energies

charge densities

One-particle excitations

band gaps

band structures

densities of states

DO

S /

inte

nsity

HSE06HSE06+G0W0

HSE06+GnW0

ExperimentGhijsen et al. (1988)

-20 -15 -10 -5 0 5 10 15energy [eV]

PBE+UPBE+U+G0W0

PBE+U+GnW0

ExperimentGhijsen et al. (1988)

Two-particle excitations:

optical absorption

excitonic states

loss spectra

0 10 20 30 40 50 60 70 80 900

0.5

1

1.5

20.1

0.3

0.5

0.7

0.9

energy [eV]

q

Cu 3p statesmain plasmon peak

plasmons

Page 5: Photoelectron Spectroscopyetsf.polytechnique.fr/system/files/users/francesco/merged2.pdf · Photoelectron Spectroscopy Claudia Rödl and Matteo Gatti Laboratoire des Solides Irradiés

ETSF Photoemission Beamline

Systems:

insulators

semiconductors

metals

correlated oxides

Codes:

Dimensions:

bulk

surfaces

molecules

nanosystems

up to ∼ 100 atoms

Page 6: Photoelectron Spectroscopyetsf.polytechnique.fr/system/files/users/francesco/merged2.pdf · Photoelectron Spectroscopy Claudia Rödl and Matteo Gatti Laboratoire des Solides Irradiés

ETSF Photoemission Beamline

Simulating photoemission

Spectral function Beyond spectral function

Quasiparticle (QP)

approximation:

QP band structures

QP band gaps

DOS

GW method

Beyond QPs:

lifetimes

satellites

(e.g. plasmon

satellites)

GW method

cumulant expansion

Towards reality:

matrix-element effects

(photoionization

cross-sections)

extrinsic and

interference effects

background

Page 7: Photoelectron Spectroscopyetsf.polytechnique.fr/system/files/users/francesco/merged2.pdf · Photoelectron Spectroscopy Claudia Rödl and Matteo Gatti Laboratoire des Solides Irradiés

Photoemission and the Many-Body Problem

probe the electronic structure

E(N)0 + Eph = E

(N−1)n + Ekin + Φ

Eph = E(N−1)n − E

(N)0

︸ ︷︷ ︸

EB

+Ekin + Φ

Page 8: Photoelectron Spectroscopyetsf.polytechnique.fr/system/files/users/francesco/merged2.pdf · Photoelectron Spectroscopy Claudia Rödl and Matteo Gatti Laboratoire des Solides Irradiés

Photoemission and the Many-Body Problem

probe the electronic structure

E(N)0 + Eph = E

(N−1)n + Ekin + Φ

Eph = E(N−1)n − E

(N)0

︸ ︷︷ ︸

EB

+Ekin + Φ

EVBM ECBM

DO

S

EFEvac

EB φ

Eph

Ekin

Page 9: Photoelectron Spectroscopyetsf.polytechnique.fr/system/files/users/francesco/merged2.pdf · Photoelectron Spectroscopy Claudia Rödl and Matteo Gatti Laboratoire des Solides Irradiés

Photoemission and the Many-Body Problem

probe the electronic structure

E(N)0 + Eph = E

(N−1)n + Ekin + Φ

Eph = E(N−1)n − E

(N)0

︸ ︷︷ ︸

EB

+Ekin + Φ

EVBM ECBM

DO

S

EFEvac

EB φ

Eph

Ekin

Ekin

inte

nsity DOS

DOS weighted bycross sections

background

Page 10: Photoelectron Spectroscopyetsf.polytechnique.fr/system/files/users/francesco/merged2.pdf · Photoelectron Spectroscopy Claudia Rödl and Matteo Gatti Laboratoire des Solides Irradiés

Photoemission and the Many-Body Problem

probe the electronic structure

E(N)0 + Eph = E

(N−1)n + Ekin + Φ

Eph = E(N−1)n − E

(N)0

︸ ︷︷ ︸

EB

+Ekin + Φ

EVBM ECBM

DO

S

EFEvac

EB φ

Eph

Ekin

Ekin

inte

nsity DOS

DOS weighted bycross sections

background

requires full solution of the interacting many-body problem: E(N)0 , E

(N−1)n

Page 11: Photoelectron Spectroscopyetsf.polytechnique.fr/system/files/users/francesco/merged2.pdf · Photoelectron Spectroscopy Claudia Rödl and Matteo Gatti Laboratoire des Solides Irradiés

Key Quantity: Green’s Function

Green’s function: G(r1t1, r2t2) =1i~

〈N| T ψ(r1t1)ψ+(r2t2) |N〉

Page 12: Photoelectron Spectroscopyetsf.polytechnique.fr/system/files/users/francesco/merged2.pdf · Photoelectron Spectroscopy Claudia Rödl and Matteo Gatti Laboratoire des Solides Irradiés

Key Quantity: Green’s Function

Green’s function: G(r1t1, r2t2) =1i~

〈N| T ψ(r1t1)ψ+(r2t2) |N〉

Electron propagator:

〈N|ψ(r1t1)ψ+(r2t2) |N〉

electron addition

inverse photoemission

Page 13: Photoelectron Spectroscopyetsf.polytechnique.fr/system/files/users/francesco/merged2.pdf · Photoelectron Spectroscopy Claudia Rödl and Matteo Gatti Laboratoire des Solides Irradiés

Key Quantity: Green’s Function

Green’s function: G(r1t1, r2t2) =1i~

〈N| T ψ(r1t1)ψ+(r2t2) |N〉

Electron propagator:

〈N|ψ(r1t1)ψ+(r2t2) |N〉

electron addition

inverse photoemission

Hole propagator:

〈N|ψ+(r2t2)ψ(r1t1) |N〉

electron removal

photoemission

Page 14: Photoelectron Spectroscopyetsf.polytechnique.fr/system/files/users/francesco/merged2.pdf · Photoelectron Spectroscopy Claudia Rödl and Matteo Gatti Laboratoire des Solides Irradiés

Spectral Function and Quasiparticles

real space reciprocal space

Spectral function: A(ω) = Tr |Im G(ω)|

Density of states: DOS(ω) ∼ A(ω)sp

ectr

al fu

nctio

n-20 -15 -10 -5 0

energy [eV]

inte

nsity

weak correlations

non-interacting particles

strong correlations

weak satellite

dominating satellite

QP peak

CuO photoemission

Experimental data:Ghijsen et al., PRB 38, 11322 (1988)

Page 15: Photoelectron Spectroscopyetsf.polytechnique.fr/system/files/users/francesco/merged2.pdf · Photoelectron Spectroscopy Claudia Rödl and Matteo Gatti Laboratoire des Solides Irradiés

Spectral Function and Quasiparticles

real space reciprocal space

Spectral function: A(ω) = Tr |Im G(ω)|

Density of states: DOS(ω) ∼ A(ω)sp

ectr

al fu

nctio

n-20 -15 -10 -5 0

energy [eV]

inte

nsity

weak correlations

non-interacting particles

strong correlations

weak satellite

dominating satellite

QP peak

CuO photoemission

Experimental data:Ghijsen et al., PRB 38, 11322 (1988)

Page 16: Photoelectron Spectroscopyetsf.polytechnique.fr/system/files/users/francesco/merged2.pdf · Photoelectron Spectroscopy Claudia Rödl and Matteo Gatti Laboratoire des Solides Irradiés

Spectral Function and Quasiparticles

real space reciprocal space

Spectral function: A(ω) = Tr |Im G(ω)|

Density of states: DOS(ω) ∼ A(ω)sp

ectr

al fu

nctio

n-20 -15 -10 -5 0

energy [eV]

inte

nsity

weak correlations

non-interacting particles

strong correlations

weak satellite

dominating satellite

QP peak

CuO photoemission

Experimental data:Ghijsen et al., PRB 38, 11322 (1988)

Page 17: Photoelectron Spectroscopyetsf.polytechnique.fr/system/files/users/francesco/merged2.pdf · Photoelectron Spectroscopy Claudia Rödl and Matteo Gatti Laboratoire des Solides Irradiés

ETSF Photoemission Beamline

Simulating photoemission

Spectral function Beyond spectral function

Quasiparticle (QP)

approximation:

QP band structures

QP band gaps

DOS

GW method

Beyond QPs:

lifetimes

satellites

(e.g. plasmon

satellites)

GW method

cumulant expansion

Towards reality:

matrix-element effects

(photoionization

cross-sections)

extrinsic and

interference effects

background

Page 18: Photoelectron Spectroscopyetsf.polytechnique.fr/system/files/users/francesco/merged2.pdf · Photoelectron Spectroscopy Claudia Rödl and Matteo Gatti Laboratoire des Solides Irradiés

Density-Functional Theory (DFT)

Kohn-Sham equations: Kohn, Sham, Phys. Rev. 140, A1133 (1965)[

−~

2

2m0

∆+ Vext(r) + VH(r, [n]) + VXC(r, [n])

]

ϕnk(r) = εnk ϕnk(r)

density: n(r) =

occ∑

nk

|ϕnk(r)|2

self-consistent solution

Page 19: Photoelectron Spectroscopyetsf.polytechnique.fr/system/files/users/francesco/merged2.pdf · Photoelectron Spectroscopy Claudia Rödl and Matteo Gatti Laboratoire des Solides Irradiés

Density-Functional Theory (DFT)

Kohn-Sham equations: Kohn, Sham, Phys. Rev. 140, A1133 (1965)[

−~

2

2m0

∆+ Vext(r) + VH(r, [n]) + VXC(r, [n])

]

ϕnk(r) = εnk ϕnk(r)

density: n(r) =

occ∑

nk

|ϕnk(r)|2

self-consistent solution

Exchange-correlation potential VXC?

local potential VXC(r, [n]): LDA, PBE, ...

non-local potential VXC(rr′, [n]):

hybrid functionals (PBE0, HSE06, ...)

on-site term U for localized orbitals (LDA+U, ...)

Page 20: Photoelectron Spectroscopyetsf.polytechnique.fr/system/files/users/francesco/merged2.pdf · Photoelectron Spectroscopy Claudia Rödl and Matteo Gatti Laboratoire des Solides Irradiés

Density-Functional Theory (DFT)

Kohn-Sham equations: Kohn, Sham, Phys. Rev. 140, A1133 (1965)[

−~

2

2m0

∆+ Vext(r) + VH(r, [n]) + VXC(r, [n])

]

ϕnk(r) = εnk ϕnk(r)

density: n(r) =

occ∑

nk

|ϕnk(r)|2

self-consistent solution

Problems:

Kohn-Sham band structure has no physical meaning (strictly speaking)

band-gap problem: strong underestimation of band gaps

electron addition and removal properties wrong

Page 21: Photoelectron Spectroscopyetsf.polytechnique.fr/system/files/users/francesco/merged2.pdf · Photoelectron Spectroscopy Claudia Rödl and Matteo Gatti Laboratoire des Solides Irradiés

adapted from M. van Schilfgaarde et al., PRL 96 (2006)

Why more than DFT?

Page 22: Photoelectron Spectroscopyetsf.polytechnique.fr/system/files/users/francesco/merged2.pdf · Photoelectron Spectroscopy Claudia Rödl and Matteo Gatti Laboratoire des Solides Irradiés

LDA = “band theory” ?

Fujimori et al, PRL 69 (1992)

Why more than DFT?

Page 23: Photoelectron Spectroscopyetsf.polytechnique.fr/system/files/users/francesco/merged2.pdf · Photoelectron Spectroscopy Claudia Rödl and Matteo Gatti Laboratoire des Solides Irradiés

Quasiparticle Excitations

Page 24: Photoelectron Spectroscopyetsf.polytechnique.fr/system/files/users/francesco/merged2.pdf · Photoelectron Spectroscopy Claudia Rödl and Matteo Gatti Laboratoire des Solides Irradiés

Quasiparticle Excitations

Page 25: Photoelectron Spectroscopyetsf.polytechnique.fr/system/files/users/francesco/merged2.pdf · Photoelectron Spectroscopy Claudia Rödl and Matteo Gatti Laboratoire des Solides Irradiés

Quasiparticle Excitations

Quasiparticle equation:[

−~

2

2m0

∆+ Vext(r) + VH(r)

]

ϕnk(r) +

dr′ Σ(r r

′, ω = εnk/~)ϕnk(r′) = εnk ϕnk(r)

Problems:

exchange and correlation: non-local and frequency-dependent self-energy Σ

self-consistent solution

no explicit expression for the self-energy

Page 26: Photoelectron Spectroscopyetsf.polytechnique.fr/system/files/users/francesco/merged2.pdf · Photoelectron Spectroscopy Claudia Rödl and Matteo Gatti Laboratoire des Solides Irradiés

Hedin’s GW Approximation

Self-energy: Σ ≈ i~G W

Green’s function G(r1t1, r2t2)

Hedin, Phys. Rev. 139, A796 (1965)

Hedin, Lundqvist, Solid State Phys. 23, 1 (1969)

Dynamically screened

Coulomb interaction W (r1r2, ω)

Page 27: Photoelectron Spectroscopyetsf.polytechnique.fr/system/files/users/francesco/merged2.pdf · Photoelectron Spectroscopy Claudia Rödl and Matteo Gatti Laboratoire des Solides Irradiés

Hedin’s GW Approximation

Self-energy: Σ ≈ i~G W

Green’s function G(r1t1, r2t2)

Electron propag.: 〈N|ψ(r1t1)ψ+(r2t2) |N〉

Hole propag.: 〈N|ψ+(r2t2)ψ(r1t1) |N〉

Hedin, Phys. Rev. 139, A796 (1965)

Hedin, Lundqvist, Solid State Phys. 23, 1 (1969)

Dynamically screened

Coulomb interaction W (r1r2, ω)

Page 28: Photoelectron Spectroscopyetsf.polytechnique.fr/system/files/users/francesco/merged2.pdf · Photoelectron Spectroscopy Claudia Rödl and Matteo Gatti Laboratoire des Solides Irradiés

Hedin’s GW Approximation

Self-energy: Σ ≈ i~G W

Green’s function G(r1t1, r2t2)

Electron propag.: 〈N|ψ(r1t1)ψ+(r2t2) |N〉

Hole propag.: 〈N|ψ+(r2t2)ψ(r1t1) |N〉

Hedin, Phys. Rev. 139, A796 (1965)

Hedin, Lundqvist, Solid State Phys. 23, 1 (1969)

Dynamically screened

Coulomb interaction W (r1r2, ω)

W (r1r2, ω) =∫

dr3 ε−1(r1r3, ω) v(r3 − r2)

Page 29: Photoelectron Spectroscopyetsf.polytechnique.fr/system/files/users/francesco/merged2.pdf · Photoelectron Spectroscopy Claudia Rödl and Matteo Gatti Laboratoire des Solides Irradiés

Hedin’s GW Approximation

Self-energy: Σ ≈ i~G W

Green’s function G(r1t1, r2t2)

Electron propag.: 〈N|ψ(r1t1)ψ+(r2t2) |N〉

Hole propag.: 〈N|ψ+(r2t2)ψ(r1t1) |N〉

Hedin, Phys. Rev. 139, A796 (1965)

Hedin, Lundqvist, Solid State Phys. 23, 1 (1969)

Dynamically screened

Coulomb interaction W (r1r2, ω)

W (r1r2, ω) =∫

dr3 ε−1(r1r3, ω) v(r3 − r2)

main contribution:

dynamical screened exchange(Hartree-Fock: ε−1(r1r3, ω) ≡ 1)

Page 30: Photoelectron Spectroscopyetsf.polytechnique.fr/system/files/users/francesco/merged2.pdf · Photoelectron Spectroscopy Claudia Rödl and Matteo Gatti Laboratoire des Solides Irradiés

adapted from M. van Schilfgaarde et al., PRL 96 (2006)

Why more than DFT?

Page 31: Photoelectron Spectroscopyetsf.polytechnique.fr/system/files/users/francesco/merged2.pdf · Photoelectron Spectroscopy Claudia Rödl and Matteo Gatti Laboratoire des Solides Irradiés

Fujimori et al, PRL 69 (1992)

LDA = “band theory” ?

Also missing physics!

Page 32: Photoelectron Spectroscopyetsf.polytechnique.fr/system/files/users/francesco/merged2.pdf · Photoelectron Spectroscopy Claudia Rödl and Matteo Gatti Laboratoire des Solides Irradiés

Mott insulators?

Fujimori et al, PRL 69 (1992)

Exchange + Correlation

LDA = “band theory” ?

Also missing physics!

Page 33: Photoelectron Spectroscopyetsf.polytechnique.fr/system/files/users/francesco/merged2.pdf · Photoelectron Spectroscopy Claudia Rödl and Matteo Gatti Laboratoire des Solides Irradiés

The role of nonlocal exchange

F. Iori, M. Gatti and A. Rubio, PRB 85 (2012)Exp. from H. Roth PhD thesis – Köln 2008

Page 34: Photoelectron Spectroscopyetsf.polytechnique.fr/system/files/users/francesco/merged2.pdf · Photoelectron Spectroscopy Claudia Rödl and Matteo Gatti Laboratoire des Solides Irradiés

Bin

din

g e

ner

gy

ARPES vs. band structure: ZnO

Exp from M. Kobayashi, et al. Proceedings of the 29th International Conference on the Physics of Semiconductors (2008)André Schleife PhD thesis, University of Jena (2010)

Page 35: Photoelectron Spectroscopyetsf.polytechnique.fr/system/files/users/francesco/merged2.pdf · Photoelectron Spectroscopy Claudia Rödl and Matteo Gatti Laboratoire des Solides Irradiés

ETSF Photoemission Beamline

Simulating photoemission

Spectral function Beyond spectral function

Quasiparticle (QP)

approximation:

QP band structures

QP band gaps

DOS

GW method

Beyond QPs:

lifetimes

satellites

(e.g. plasmon

satellites)

GW method

cumulant expansion

Towards reality:

matrix-element effects

(photoionization

cross-sections)

extrinsic and

interference effects

background

Page 36: Photoelectron Spectroscopyetsf.polytechnique.fr/system/files/users/francesco/merged2.pdf · Photoelectron Spectroscopy Claudia Rödl and Matteo Gatti Laboratoire des Solides Irradiés

Electron Correlation ... 3-Particle Problem

Romaniello et al., PRB 85, 155131 (2012)

Page 37: Photoelectron Spectroscopyetsf.polytechnique.fr/system/files/users/francesco/merged2.pdf · Photoelectron Spectroscopy Claudia Rödl and Matteo Gatti Laboratoire des Solides Irradiés

Electron Correlation ... 3-Particle Problem

Σ = i~GW

plasmon satellite series

Langreth, PRB 1, 471 (1970)

Aryasetiawan et al.,

PRL 77, 2268 (1996)

Guzzo et al.,

PRL 107, 166401 (2011)

Romaniello et al., PRB 85, 155131 (2012)

Page 38: Photoelectron Spectroscopyetsf.polytechnique.fr/system/files/users/francesco/merged2.pdf · Photoelectron Spectroscopy Claudia Rödl and Matteo Gatti Laboratoire des Solides Irradiés

Electron Correlation ... 3-Particle Problem

Σ = i~GW

plasmon satellite series

Langreth, PRB 1, 471 (1970)

Aryasetiawan et al.,

PRL 77, 2268 (1996)

Guzzo et al.,

PRL 107, 166401 (2011)

Σ = i~GT

hole-hole or electron-hole

T matrix

6 eV satellite in NiSpringer et al., PRL 80, 2389 (1998)

Romaniello et al., PRB 85, 155131 (2012)

Page 39: Photoelectron Spectroscopyetsf.polytechnique.fr/system/files/users/francesco/merged2.pdf · Photoelectron Spectroscopy Claudia Rödl and Matteo Gatti Laboratoire des Solides Irradiés

Spectral Function ... Plasmon Satellites

CuO

-20 -15 -10 -5 0 5energy [eV]

00.10.20.30.40.50.60.70.80.9

11.11.21.31.41.51.61.7

- Im

ε-1

(ω)

/ XP

S [a

rb. u

.]

Cu 2p1/2

Cu 2p3/2

valence

valence

EELS

satellite QP

XPS

satellite: response of the material

to the photoemission hole

remaining in the system

plasmon excitations

prominent loss peaks shouldappear in satellite structure

Experimental data:Siemons, PhD thesis (2008)Ghijsen et al., PRB 38, 11322 (1988)Shen et al., PRB 42, 8081 (1990)

Page 40: Photoelectron Spectroscopyetsf.polytechnique.fr/system/files/users/francesco/merged2.pdf · Photoelectron Spectroscopy Claudia Rödl and Matteo Gatti Laboratoire des Solides Irradiés

Fujimori et al, PRL 69 (1992)

Correlated metals:Satellites?

Page 41: Photoelectron Spectroscopyetsf.polytechnique.fr/system/files/users/francesco/merged2.pdf · Photoelectron Spectroscopy Claudia Rödl and Matteo Gatti Laboratoire des Solides Irradiés

Adding/removing electrons: reaction of all the others

Correlation = coupling of excitations

Quasiparticle Plasmons(waves of charge)

Page 42: Photoelectron Spectroscopyetsf.polytechnique.fr/system/files/users/francesco/merged2.pdf · Photoelectron Spectroscopy Claudia Rödl and Matteo Gatti Laboratoire des Solides Irradiés

Metal-Insulator transition in VO2

Dynamical correlation: VO2

M. Gatti, G. Panaccione, and L. Reining (submitted)Spectral function

Page 43: Photoelectron Spectroscopyetsf.polytechnique.fr/system/files/users/francesco/merged2.pdf · Photoelectron Spectroscopy Claudia Rödl and Matteo Gatti Laboratoire des Solides Irradiés

-Im ε-1(q,ω)

W(r,r',ω) = ε-1(r,r',ω)v(|r-r'|)

Metal-Insulator transition in VO2IXS/EELS

Spectral function

Dynamical correlation: VO2

Page 44: Photoelectron Spectroscopyetsf.polytechnique.fr/system/files/users/francesco/merged2.pdf · Photoelectron Spectroscopy Claudia Rödl and Matteo Gatti Laboratoire des Solides Irradiés

Metal-Insulator transition in VO2

Spectral function

IXS/EELS-Im ε-1(q,ω)

W(r,r',ω) = ε-1(r,r',ω)v(|r-r'|)

Dynamical correlation: VO2

Page 45: Photoelectron Spectroscopyetsf.polytechnique.fr/system/files/users/francesco/merged2.pdf · Photoelectron Spectroscopy Claudia Rödl and Matteo Gatti Laboratoire des Solides Irradiés

Ralf Hambach, PhD thesis, Ecole Polytechnique (2010)

Dynamical correlation: VO2

See Francesco's talk

Page 46: Photoelectron Spectroscopyetsf.polytechnique.fr/system/files/users/francesco/merged2.pdf · Photoelectron Spectroscopy Claudia Rödl and Matteo Gatti Laboratoire des Solides Irradiés

ETSF Photoemission Beamline

Simulating photoemission

Spectral function Beyond spectral function

Quasiparticle (QP)

approximation:

QP band structures

QP band gaps

DOS

GW method

Beyond QPs:

lifetimes

satellites

(e.g. plasmon

satellites)

GW method

cumulant expansion

Towards reality:

matrix-element effects

(photoionization

cross-sections)

extrinsic and

interference effects

background

Page 47: Photoelectron Spectroscopyetsf.polytechnique.fr/system/files/users/francesco/merged2.pdf · Photoelectron Spectroscopy Claudia Rödl and Matteo Gatti Laboratoire des Solides Irradiés

Page 48: Photoelectron Spectroscopyetsf.polytechnique.fr/system/files/users/francesco/merged2.pdf · Photoelectron Spectroscopy Claudia Rödl and Matteo Gatti Laboratoire des Solides Irradiés

Matrixelements

Background

Interference &Extrinsic effects

Page 49: Photoelectron Spectroscopyetsf.polytechnique.fr/system/files/users/francesco/merged2.pdf · Photoelectron Spectroscopy Claudia Rödl and Matteo Gatti Laboratoire des Solides Irradiés

TCOs: Including Photoionization Cross-Sections

ZnO

-25 -20 -15 -10 -5 0 5 10 15 20

DO

S (a

rb. u

.)

-10 -8 -6 -4 -2 0 2

TheoryExp.

-30 -25 -20 -15 -10 -5 0Energy (eV)

-6 -4 -2 0 2

Phot

oem

issi

on in

tens

ity (

arb.

u.)

Zn 4sO 2s Zn 4pO 2ptotal

Zn 3d

UPS (21.2 eV)

XPS (1486.6 eV)

(a) ZnO

SnO2

-30 -25 -20 -15 -10 -5 0 5 10 15 20

DO

S (a

rb. u

.)

-10 -8 -6 -4 -2 0 2

TheoryExp.

-28 -24 -20 -16 -12 -8 -4 0Energy (eV)

-12 -10 -8 -6 -4 -2 0 2Ph

otoe

mis

sion

inte

nsity

(ar

b. u

.)

Sn 5sO 2s

Sn 5pO 2p

total

Sn 4d

UPS (40 eV)

XPS (1486.6 eV)

(c) SnO2

Rödl et al., Phys. Stat. Solidi A 211, 74 (2014)

Page 50: Photoelectron Spectroscopyetsf.polytechnique.fr/system/files/users/francesco/merged2.pdf · Photoelectron Spectroscopy Claudia Rödl and Matteo Gatti Laboratoire des Solides Irradiés

Matrix elements: V2O

3

E. Papalazarou, et al., PRB 80 (2009)

Page 51: Photoelectron Spectroscopyetsf.polytechnique.fr/system/files/users/francesco/merged2.pdf · Photoelectron Spectroscopy Claudia Rödl and Matteo Gatti Laboratoire des Solides Irradiés

Getting closer to what is really measured

Spectral function

Page 52: Photoelectron Spectroscopyetsf.polytechnique.fr/system/files/users/francesco/merged2.pdf · Photoelectron Spectroscopy Claudia Rödl and Matteo Gatti Laboratoire des Solides Irradiés

Getting closer to what is really measured

+ Background

Page 53: Photoelectron Spectroscopyetsf.polytechnique.fr/system/files/users/francesco/merged2.pdf · Photoelectron Spectroscopy Claudia Rödl and Matteo Gatti Laboratoire des Solides Irradiés

Getting closer to what is really measured

+ Matrix elements

Page 54: Photoelectron Spectroscopyetsf.polytechnique.fr/system/files/users/francesco/merged2.pdf · Photoelectron Spectroscopy Claudia Rödl and Matteo Gatti Laboratoire des Solides Irradiés

Getting closer to what is really measured

+ Interference/extrinsic effects

Valencebands

Satellites

Page 55: Photoelectron Spectroscopyetsf.polytechnique.fr/system/files/users/francesco/merged2.pdf · Photoelectron Spectroscopy Claudia Rödl and Matteo Gatti Laboratoire des Solides Irradiés

M. Guzzo, et al, PRL 107 (2011)

Valencebands

Satellites

Spectral function Photocurrent

Getting closer to what is really measured

Page 56: Photoelectron Spectroscopyetsf.polytechnique.fr/system/files/users/francesco/merged2.pdf · Photoelectron Spectroscopy Claudia Rödl and Matteo Gatti Laboratoire des Solides Irradiés

Adding/removing electrons: reaction of all the others

Correlation = coupling of excitations

Quasiparticle Plasmons(waves of charge)

Page 57: Photoelectron Spectroscopyetsf.polytechnique.fr/system/files/users/francesco/merged2.pdf · Photoelectron Spectroscopy Claudia Rödl and Matteo Gatti Laboratoire des Solides Irradiés

Adding/removing electrons: reaction of all the others

Correlation = coupling of excitations

Quasiparticle Plasmons(waves of charge)

ExcitonsOrbitonsMagnonsPhonons

More couplings...

Page 58: Photoelectron Spectroscopyetsf.polytechnique.fr/system/files/users/francesco/merged2.pdf · Photoelectron Spectroscopy Claudia Rödl and Matteo Gatti Laboratoire des Solides Irradiés

Springer, Aryasetiawan, Karlsson, PRL 80, 2389 (1998)

6 eV satellite in Ni: 2-hole bound state

Outlook: coupling with other excitations

Page 59: Photoelectron Spectroscopyetsf.polytechnique.fr/system/files/users/francesco/merged2.pdf · Photoelectron Spectroscopy Claudia Rödl and Matteo Gatti Laboratoire des Solides Irradiés

Back up slides

Page 60: Photoelectron Spectroscopyetsf.polytechnique.fr/system/files/users/francesco/merged2.pdf · Photoelectron Spectroscopy Claudia Rödl and Matteo Gatti Laboratoire des Solides Irradiés

Interacting particles

Page 61: Photoelectron Spectroscopyetsf.polytechnique.fr/system/files/users/francesco/merged2.pdf · Photoelectron Spectroscopy Claudia Rödl and Matteo Gatti Laboratoire des Solides Irradiés

Interacting particles

Page 62: Photoelectron Spectroscopyetsf.polytechnique.fr/system/files/users/francesco/merged2.pdf · Photoelectron Spectroscopy Claudia Rödl and Matteo Gatti Laboratoire des Solides Irradiés

Interacting particles

Page 63: Photoelectron Spectroscopyetsf.polytechnique.fr/system/files/users/francesco/merged2.pdf · Photoelectron Spectroscopy Claudia Rödl and Matteo Gatti Laboratoire des Solides Irradiés
Page 64: Photoelectron Spectroscopyetsf.polytechnique.fr/system/files/users/francesco/merged2.pdf · Photoelectron Spectroscopy Claudia Rödl and Matteo Gatti Laboratoire des Solides Irradiés
Page 65: Photoelectron Spectroscopyetsf.polytechnique.fr/system/files/users/francesco/merged2.pdf · Photoelectron Spectroscopy Claudia Rödl and Matteo Gatti Laboratoire des Solides Irradiés
Page 66: Photoelectron Spectroscopyetsf.polytechnique.fr/system/files/users/francesco/merged2.pdf · Photoelectron Spectroscopy Claudia Rödl and Matteo Gatti Laboratoire des Solides Irradiés

Probing Neutral Electronic Excitations

Inelastic scattering of

Electrons

electron-energyloss spectro-

scopy (EELS)

low q

X-rays

non-resonant

inelastic x-rayscattering (IXS)

large q

charge density fluctuations (interband transitions, excitons, plasmons)

charge-density response function χ(r1r2, t1 − t2)

χ(r1r2, t1 − t2) =1i~〈N| T ∆n(r1, t1)∆n(r2, t2) |N〉

Page 67: Photoelectron Spectroscopyetsf.polytechnique.fr/system/files/users/francesco/merged2.pdf · Photoelectron Spectroscopy Claudia Rödl and Matteo Gatti Laboratoire des Solides Irradiés

Probing Neutral Electronic Excitations

Inelastic scattering of

Electrons

electron-energyloss spectro-

scopy (EELS)

low q

X-rays

non-resonant

inelastic x-rayscattering (IXS)

large q

charge density fluctuations (interband transitions, excitons, plasmons)

charge-density response function χ(r1r2, t1 − t2)

χ(r1r2, t1 − t2) =1i~〈N| T ∆n(r1, t1)∆n(r2, t2) |N〉

loss function − Im ε−1(q, ω)

ε−1(q, ω) = 1 + v(q)χ(qq, ω)

Page 68: Photoelectron Spectroscopyetsf.polytechnique.fr/system/files/users/francesco/merged2.pdf · Photoelectron Spectroscopy Claudia Rödl and Matteo Gatti Laboratoire des Solides Irradiés

Probing Neutral Electronic Excitations

Inelastic scattering of

Electrons

electron-energyloss spectro-

scopy (EELS)

low q

X-rays

non-resonant

inelastic x-rayscattering (IXS)

large q

charge density fluctuations (interband transitions, excitons, plasmons)

charge-density response function χ(r1r2, t1 − t2)

χ(r1r2, t1 − t2) =1i~〈N| T ∆n(r1, t1)∆n(r2, t2) |N〉

loss function − Im ε−1(q, ω)

ε−1(q, ω) = 1 + v(q)χ(qq, ω)

dynamic structure factor S(q, ω)

S(q, ω) ∼ χ(qq, ω)