33
Plastics Dr. Chris DeArmitt FRSC

Phantom Plastics Dr. Chris DeArmitt FRSC€¦ · Calcium Carbonate Succinic anhydride Carboxylic acid Primary amine ... More anisotropic fillers give lower weld line strength Tensile

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

  • Phantom Plastics™ Dr. Chris DeArmitt FRSC

  • Phantom Plastics™

    A combination of technical expertise and business savvy

    n  Over 15 years of experience in innovation and industry: Cookson, Institute for Surface Chemistry (YKI), Electrolux, BASF, Hybrid Plastics & Phantom Plastics

    n  Recognized expert in plastics, filled plastics, fillers, dispersants, coupling agents, formulation, stabilization and more

    n  Serial innovator: many inventions, 13 patents & 3 Innocentive cash awards

    n  Papers, articles, book chapters, presentations & workshops

    n  Fellow of the Royal Society of Chemistry & Chartered Chemist

    n  Winner of Frost & Sullivan award 2009 and R&D 100 Award 2009

    n  Voted top plastics expert world-wide out of over 10 000 peers

    n  President of Phantom Plastics providing consultancy and training services to the plastics industry

    Your presenter

    2

  • Phantom Plastics™

    Many faceted approach to deliver solutions

    3

    Phantom Plastics™ capabilities

    Analysis

    Problem Solving

    Breakthrough Innovation

    Global Networking

    Marketing

  • Phantom Plastics™

    n  Introduction to fillers and polymers

    n  Common fillers and their characteristic properties

    n  Common polymers and how structure affects their properties

    n  How fillers affect polymer processing and properties of polymers

    n  Cheat sheet summarizing how all these factors influence the properties of the composite

    n  Misconceptions about filled plastics

    n  Further reading, consultants, web resources

    A foundation for working with polymers and composites

    4

    Outline

  • Phantom Plastics™

    n Change electrical properties

    n Modify specific gravity n  Improve abrasion

    resistance n  Improve impact strength n  Improve thermal

    conductivity n  Improve moisture

    resistance n  Increase adhesion n Appearance, opacity, gloss

    n Raise heat resistance n  Increase stiffness n  Increase strength n Reduce shrinkage n  Improve dimensional stability n Reduce flammability n Modify flow n  Increase lubricity n Decrease permeability n  Increase degradability n  Improve processability n Reduce creep

    Innumerable different reasons to use fillers Reasons to use fillers

    5

  • Phantom Plastics™

    Polymer behavior depends on testing speed and temperature St

    ress

    or F

    orce

    (MPa

    )

    Strain or elongation (%)

    Increasing temperature or Lower testing speed

    Brittle failure

    Ductile failure

    Break or ultimate

    Yield

    Energy to break

    6

    Basic polymer mechanical properties

  • Phantom Plastics™

    The notch provides crack initiation and helps consistency

    Notched Izod Notched Charpy

    7

    Impact test methodology

  • Phantom Plastics™

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    0 5 10 15 20 25Filler Volume (%)

    Mod

    ulus

    (GPa

    )

    Glass FibreMineral FibreMicaTalcCaCO3Wood FibreNanoclayWollastonite

    High aspect ratio is best

    8

    Fillers improve modulus

  • Phantom Plastics™

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    0 5 10 15 20 25Filler Volume (%)

    Yiel

    d St

    ress

    (MPa

    )

    Glass FibreMineral FibreMicaTalcCaCO3Wood FibreNanoclayWollastonite

    High aspect ratio is best

    9

    Anisotropic fillers can improve yield strength

  • Phantom Plastics™ Courtesy of Imerys

    0 50 100 150 Aspect ratio

    Falli

    ng W

    eigh

    t Im

    pact

    Res

    ista

    nce

    (J)

    Talc

    Kaolin

    Calcium Carbonate

    Mica

    0

    2

    4

    6

    8

    10

    12

    14

    Anisotropic fillers worse for impact resistance

    Filler in PP copolymer

    10

    Aspect ratio & impact resistance

  • Phantom Plastics™

    Fillers very effective but only in semi-crystalline polymers Influence of glass fibre on HDT/B

    11

    50°C

    150°C

    200°C

    250°C

    100°C

    Pol

    ysty

    rene

    AB

    S

    Nor

    yl (P

    PO

    )

    Pol

    ycar

    bona

    te

    PO

    M/A

    ceta

    l

    Pol

    ysul

    fone

    PB

    T

    Pol

    yeth

    ersu

    lfone

    PE

    T

    Nyl

    on 6

    ,6

    PP

    S

    Unf

    illed

    + G

    lass

    fibr

    e

    300°C

  • Phantom Plastics™

    Property Isotropic Platy Fibres Modulus ↑ ↑↑ ↑↑↑ Yield Strength ― ↑ ↑↑ HDT in amorphous polymer

    ― ― ―

    HDT in semi x-line polymer

    ↑ ↑↑ ↑↑↑

    Impact resistance ↑ or ↓ ↓ ↓ Elongation to break ↓ ↓↓ ↓↓↓ Permeability ↓ ↓↓ ↓

    How to modify the properties of composites

    •  Adding dispersant improves impact resistance, elongation, gloss & flow but modulus & yield strength unchanged •  Adding coupling agent will improve yield strength but not modulus, flow may worsen •  Adding impact modifier particles will improve impact resistance but will lower modulus, yield strength and flow •  Isotropic fillers work in all three directions equally •  Platy fillers are very good in two directions and fair in the other •  Fibers are very good in one direction and fair in the other two

    12

    Cheat sheet

  • Phantom Plastics™

    n MFI is a good indicator flow n Coupling agents always couple n Coupling increases modulus n Anisotropic fillers are better n Properties depend on weight % filler n Filler reduce the specific heat capacity of polymers n Nano-composites are new n  Impact strength is a valid term n  Impact resistance is an intrinsic property n Notched impact resistance is most meaningful n Fillers function is just to reduce cost

    Some common misconceptions Fallacies

    13

  • Phantom Plastics™

    Dispersants improve impact resistance: coupling agents for strength

    14

    Surface treatment types

    Dispersant Coupling Agent

    A --- B A --- B --- C

    Anchor --- Buffer Anchor --- Buffer --- Couplant

  • Phantom Plastics™

    Succinic anhydride is a very effective anchor group Anchor group filler specificity

    Filler Type Best Dispersant 2nd Best 3rd Best

    Calcium Carbonate Succinic anhydride Carboxylic acid Primary amine

    Dolomite Sulfonic acid Carboxylic acid Succinic anhydride

    Magnesium Hydroxide Succinic anhydride Trichlorosilane Carboxylic acid

    Mica Primary amine Trichlorosilane Sulfonic acid

    Talc Trichlorosilane --- ---

    Silica Trichlorosilane Sulfonic acid Succinic anhydride

    Wollastonite Primary amine Succinic anhydride Carboxylic acid

    Titanium dioxide Succinic anhydride Carboxylic acid Trichlorosilane

  • Phantom Plastics™ Courtesy of Imerys

    0 10 20 30 Filler volume %

    Flex

    ural

    mod

    ulus

    (MPa

    ) Polycarb S – surface treated Polycarb - untreated

    0

    1000

    2000

    3000

    4000

    5000

    40

    Coupling and modulus – bonding does not affect modulus

    16

    Coupling agents and modulus

  • Phantom Plastics™ B. Pukánsky in Polypropylene Stucture, blends & composites vol 3

    10

    Filler volume %

    Tens

    ile y

    ield

    str

    engt

    h (M

    Pa)

    Stearic acid treated (poorer adhesion)

    10

    20

    20 30 40

    30

    40

    50 0

    Untreated (poor adhesion)

    Maleated PP (good adhesion)

    Coupling and yield strength – coupling agents raise yield strength

    17

    Nanopolymers

  • Phantom Plastics™

    Fibres and flakes align to give high tensile strength and modulus

    Direction of flow

    18

    Effect of flow

  • Phantom Plastics™

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    0 5 10 15 20 25Filler Volume (%)

    Mod

    ulus

    (GPa

    )

    Glass FibreMineral FibreMicaTalcCaCO3Wood FibreNanoclayWollastonite

    High aspect ratio is best

    19

    Fillers improve modulus

  • Phantom Plastics™

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    0 5 10 15 20 25Filler Volume (%)

    Yiel

    d St

    ress

    (MPa

    )

    Glass FibreMineral FibreMicaTalcCaCO3Wood FibreNanoclayWollastonite

    High aspect ratio is best

    20

    Anisotropic fillers can improve yield strength

  • Phantom Plastics™

    Flow direction Flow direction Flow line

    Fillers give weld lines – weak points that cause failure

    21

    Weld / flow lines

  • Phantom Plastics™

    More anisotropic fillers give lower weld line strength Tensile Yield Strength - Effect of Fillers & Weld Lines

    0

    10

    20

    30

    40

    50

    60

    70

    80

    ABS PP Unfilled PP (50% CaCO3) PP (30% GF)

    Without weld linesWith weld lines

    Yiel

    d St

    reng

    th (M

    pa)

    Courtesy of Electrolux

    22

    Fillers and weld line strength

  • Phantom Plastics™

    Always plot properties versus volume % filler to get straight lines!

    0

    1

    2

    3

    4

    5

    0 10 20 30 40 50 60 70 80 90 100

    Talc in PP

    Magnetite in PP

    Tungsten in Nylon

    Weight % Filler

    Den

    sity

    g/c

    ρc = ρf x ρp ρpmf + ρf x (1-mf)

    ρc - density of the composite ρf - density of the filler ρp - density of the polymer mf - weight fraction of filler (between 0 & 1)

    23

    Composite density and filler loading

  • Phantom Plastics™

    1 weight % air halves the mass of the material

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    0% 20% 40% 60% 80% 100%

    Density versus weight percent filler

    Filler Concentration (weight %)

    Com

    posi

    te D

    ensi

    ty (g

    cm-3

    )

    24

    Density versus weight % air as a filler

  • Phantom Plastics™

    Polymer   Melt Density (gcm-3)  Mass Specific Heat

    of melt (kJ/kg.K)  Volume Specific Heat

    (kJ/litre.K)  PES   1.48   1.3   1.9  PVC-U   1.15   1.5   1.7  PET   1.15   1.6   1.8  Polystyrene   0.88   1.8   1.6  Polycarbonate   1.01   1.8   1.8  SAN   0.92   1.9   1.7  PMMA   1.01   2.0   2.0  PPO   0.92   2.0   1.8  ABS   0.89   2.1   1.9  PBT   1.12   2.1   2.4  Acetal / POM   1.22   2.5   3.1  PA 6   0.95   2.7   2.6  PA 6,6   0.97   2.7   2.6  PP   0.85   2.7   2.3  LDPE   0.79   3.2   2.5  HDPE   0.81   3.2   2.6  Aramid Fibers*   1.45   1.42   2.1  Average   ---   ---   2.1  

    Average is 2.1 kJ / litre.K Volume specific heat capacity of polymers

    Source: Polypropylene The Definitive User’s Guide and Databook except *Handbook of Fillers

  • Phantom Plastics™

    Average is 2.1 kJ / litre.K

    Volume specific heat capacity of mineral and metallic fillers

    Mineral or Metal   Density (gcm-3)  Mass Specific Heat

    (kJ/kg.K)  Volume Specific Heat

    (kJ/litre.K)  

    BN (hexagonal)   2.25   0.794   1.8  

    Quartz   2.65   0.8   2.1  

    Silver   10.5   0.188   2.0  

    Talc   2.75   0.82   2.3  

    Tungsten   19.35   0.088   1.7  

    Beryllium Oxide   2.85   1.03   2.9  

    Average   ---   ---   2.1  

    Source: Handbook of Fillers

  • Phantom Plastics™

    Impact resistance is an energy (area under the curve) not a strength

    0 0 2 4 6 8 10 12 14

    500

    1000

    1500

    2000

    2500

    J = total energy

    Deflection (mm)

    Forc

    e (N

    ewto

    ns)

    Standard velocity 4.4 ms-1

    27

    Penetration test

  • Phantom Plastics™

    Take impact resistance results in context and with a grain of salt

    VINCENT, P. I . Impact Tests and Service Performance of Plastics, Plastics Institute, London (1971).

    0 0.25 1

    12

    16

    28

    32

    40

    Acrylic

    Notch Tip Radius (mm)

    Izod

    Impa

    ct R

    esis

    tanc

    e (k

    Jm-2

    )

    2 8 32 16 0.5 4

    36

    24

    20

    8

    4

    ABS

    Acetal (POM)

    Nylon PVC

    PC 3mm 8.6J, 6mm 1.6J so suppliers only show thin specimen results

    28

    Notch radius sensitivity

  • Phantom Plastics™

    The notch provides crack initiation and helps consistency

    Notched Izod Notched Charpy

    29

    Impact test methodology

  • Phantom Plastics™

    Cost Euro / ton

    Cost Euro / litre

    Size CaCO3 d50 microns

    100 0.27 ~ 2

    200 0.54 ~ 1

    300 0.81 ~ 0.5

    400 1.08 ~ 0.3

    500 1.62 ~ 0.1

    Prices must be compared on a per unit volume basis

    Approximate Polymer prices € / L

    PP 0.68

    PE 0.74

    PS 0.84

    HIPS 0.85

    PVC 0.98

    PET 1.4

    ABS 1.5

    Nylon 2.7

    PC 2.8

    30

    CaCO3 – particle size & cost

  • Phantom Plastics™

    Fair impact resistance, higher stiffness, retained strength, lower cost

    0 0

    Impact modifier (volume %)

    Cha

    nge

    in p

    rope

    rty

    20 40 60 50 10 30

    Tensile strength

    Materials cost

    Melt viscosity

    Impact resistance

    Incr

    ease

    D

    ecre

    ase

    Modulus

    31

    Filled polymers property profile

  • Phantom Plastics™

    n  Plastics Materials 7th Edition, J. A. Brydson, Butterworth-Heinemann 1999

    n  Plastics Additives Handbook, H. Zweifel, Hanser/Gardner, 2001

    n  Particulate-Filled Polymer Composites, 2nd Edition, Roger Rothon (Ed.), RAPRA, 2003

    n  Functional Fillers for Plastics, Marino Xanthos (Ed.), Wiley-VCH, 2005

    n  www.specialchem.com great resource for polymers, additives and more

    n  www.matweb.com free searcheable polymer properties data

    n  www.eng-tips.com free polymer & composites advice

    n  www.phantomplastics.com consultancy services – new materials, additives, training and problem solving

    Some excellent resources I use every day

    32

    Further reading

  • Phantom Plastics™